Accurate spreading of fertilizer and manure: lessons from UK practice

Two things to get right

Deciding the amounts of nutrients that should be applied

Applying the nutrients

Types of inaccurate spreading (fertilizer or manure)

- Wrong rate of nutrient application
- Uneven spreading

• Spreading outside crop area (no-spread zones) or over-/under-spreading

Inaccurate spreading affects:

- Crop yield, quality and sometimes harvesting efficiency so farm economics
- Compliance with environmental regulations and codes

Accurate spreading is a requirement

• NVZ rules:

Any person spreading nitrogen fertiliser must do so in as accurate a manner as possible.

• Farming Rules for Water:

You must take reasonable precautions to reduce the risk of pollution when you apply manure or fertiliser.

Examples include:

• checking your spreading equipment is calibrated and doesn't leak

Spreading manufactured fertilizers accurately

Concentrating on solid fertilizers and mostly nitrogen

Effect of wrong amount of N applied – winter wheat				
	Yield effect	Fertilizer effect	Net effect	
N rate 25 kg N/ha too high	+£14/ha	-£18/ha	-£4/ha	
N rate 25 kg N/ha too low	-£24/ha	+£18/ha	-£6/ha	

Effect of uneven spreading of N

CV% on winter wheat

Calculated effect

0	Perfectly even spreading	£0/ha
10	Achievable	-£3/ha
20	Striping starts	-£12/ha
30	Fairly common pre-testing	-£29/ha

To ensure fertilizer is spread accurately:

- Fertilizer must be of adequate physical quality
- Spreader must be in good condition
- Spreader must be calibrated for rate of application
- Spread pattern must be checked and adjusted if necessary
- Spreader must be operated properly in suitable conditions

Granular TSP

Blended 17:17:17

Damaged bag

Fertilizer physical quality

Consistent:	Particle size and size range Particle weight, shape and surface
High:	Particle strength
Low:	Presence of dust and fines Caking and lumps

Calibration for rate of application

- Manually using weight of fertilizer in collection bucket
- Continuously using weigh cells

Tray testing for evenness of application

Cost and benefit of tray testing

- Cost of professional tray testing around £250/machine
- Loss from CV of 30% against 10% around £25/ha in wheat
- Cost recovered in about 10 ha spread

National Sprayer Testing Scheme (also covers fertilizer spreaders)

Test includes:

- a) Initial inspection of the spreader including condition of discs and vanes.
- b) Tray testing to confirm evenness of spread across the working width of the machine.
- c) Adjustments made if required to achieve the best coefficient of variation (CV) for each product
- d) Electronic report of all test results

Frequency of fertilizer spreader tray-tests (Source: BSFP)

No Spread Zones

Surface water

Hedgerows

Improvements in technology

Development in claimed bout width (Disc spreaders)

Developments in technology

- Weigh cells and other sensors
- Actuators
- GPS
- Rate of application control during spreading
- Section control
- Spread pattern monitoring
- Crop sensors
- Variable rate via links to maps or sensors
- Uploading settings

Spreading organic manures accurately

'Accurately' applies to:

Amount of material Amounts of nutrients in the material

To ensure organic manure is applied accurately:

- Nutrient concentration in the manure must be estimated or measured
- The spreader must be in good condition
- Forward speed, rate of discharge and bout width must be matched to achieve intended rate of application
- Loss of nitrogen must be minimized
Nutrient concentrations

Measurement or estimation of the nutrient concentrations in manures (Source: Defra Farm Practices Survey 2020)

% of farms in England

Farm size:	Small	Medium	Large	All farms
Sampling and lab analysis	10	12	24	14
Sampling and on-farm testing	3	4	5	4
Based on published tables	29	44	45	36
No testing done	59	42	30	49

Rate of application

Factors affecting application rate

- Discharge rate
- Bout width
- Forward speed

Bout width

- Clear for trailing hose, trailing shoe, injection
- Broadcast spreaders half full spreading width
- Tray testing?

Ammonia loss

Reducing ammonia loss

- Rapid incorporation (6 hours for slurry, 24 hours for FYM) reduces loss by 40-70%
- Shallow injection of slurry reduces loss by around 70%
- Trailing hose or trailing shoe reduce loss by around 30%

Incorporation rules/guidance

Document	Incorporation on arable land
NVZ guidance	within 24 hours (FYM if within 50m of water and land slopes, poultry, slurry, liquid sludge)
Farming Rules for Water	within 12 hours
COGAP for Reducing Ammonia Emissions	within 12 hours
Protecting Our Water, Soil and Air	within 6 hours (slurry), 24 hours (solid manures)

Improvements in technology

Developments in technology

- Weigh cells/flow meters
- Rate control systems
- GPS and maps: variable rate applications
- Section control on slurry spreaders
- NIR nutrient monitoring (N, P, K, NH₄)

Can we leave it all to technology?

Precision v accuracy

Precision

Subjective judgements

- Is there sufficient soil variation across a field to justify treating parts of the field separately?
- How many soil cores are needed for an adequately representative result in each area?
- Is the CV measured by tray-testing good enough?
- Is the fertiliser too lumpy/dusty?
- Are conditions going to stay good enough for manure spreading?

Summary

- Accurate nutrient application is as important as correct recommendations/guidance on nutrient use
- Spreader technology for fertilizers and manures is evolving rapidly
- Significant improvements have been made but there remains scope for improving accuracy of fertilizer and manure application
- Human judgement still will be needed to ensure accuracy, not just precision
- Combination of technology and operator skills offers best way forward with technology supporting the operator