


Strategic Cereal Farm West Results Day

Wednesday 11 December 2019

Housekeeping

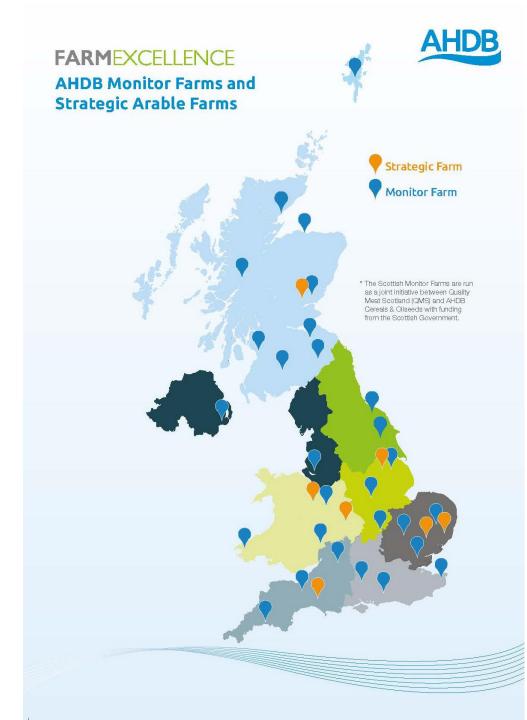
@SquabRob
@Cereals_West
@emilypope_KT
@TheAHDB
#strategicfarm

BASIS NRoSO

Programme

- 09:20 Introduction and overview of harvest 2019 trials Rob Fox, AHDB Strategic Cereal Farm – West host
- 09:35 What is good soil health and how do we measure it? Anne Bhogal, ADAS
- 10:00 The relationship between cultivations, crop rooting and yield Damian Hatley, ADAS
- **10:25** Refreshment break
- 10:30 Focus session 1
- 11:45 Managed lower inputs: how low can you go before compromising yield? *Catherine Harries, AHDB*
- 12:15 Focus session 2
- 13:20 Panel session
- 13:30 Lunch & event close

Monitor Farms - Farmer Led, Farmer Driven


- Aimed at business, technical and personal development
- 4 to 6 open meetings per year over 3 years, plus closed benchmarking sessions

Strategic Farms - Putting research into practice

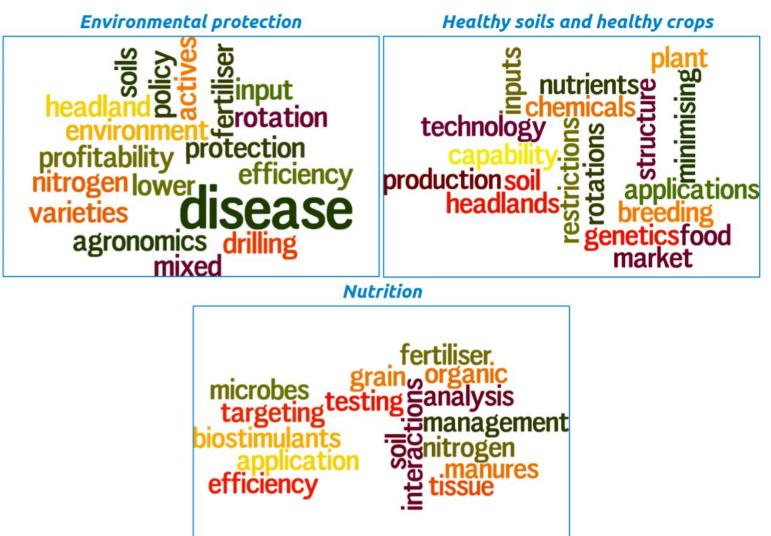
- Focus on improving arable productivity through the formal testing and demonstrating of innovative practices on a field or farm scale
- Aim to drive the adoption of innovation
- 3 open meetings per year over 6 years, plus closed group visits

Strategic Cereal Farms

- Putting research into practice
- Focus on improving arable productivity
- Structured testing and demonstrating of innovative practices on a field or farm scale
- 6 years
- Supported by Steering Group

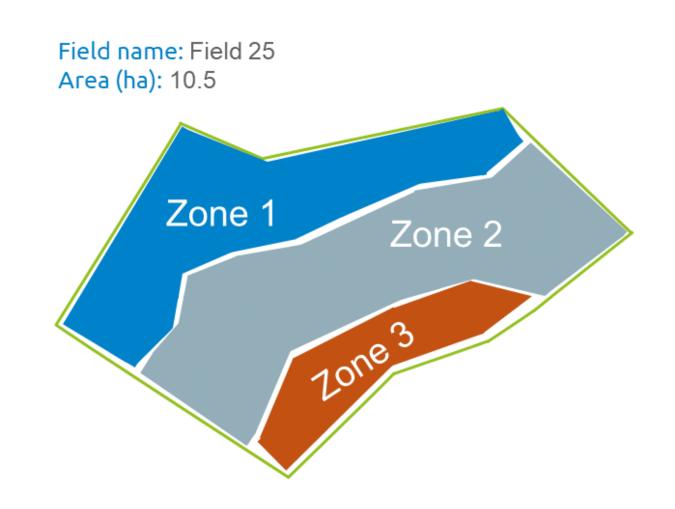
Introduction and overview of harvest 2019 trials

Rob Fox, Strategic Cereal Farm West


Rob Fox Farm Manager, Squab Hall Farm, Leamington Spa

- 1000 acres arable, 900 acres arable cropping
- Part of 1800 acre Arable Joint Venture
- Varied Soils 15-65% clay
- Manager and 2 full time plus harvest casuals
- 9 years as Farm Manager at Squab Hall Farm
- CSS Jan 2019
- Extensive diversification in national/international removals, storage & van hire
- AHDB Monitor Farmer 2014 2017
- AHDB Strategic Farmer 2018 2024

Ideas from the launch meeting: 6 June 2018


Strategic Cereal Farm West trials 2019-2020

- **1.** Baselining: soil health
- 2. Assessing the impact of cultivation depth on soil properties and rooting on winter wheat yields and quality
- 3. Determining the effect of reduced fungicide input regimes on production costs (and gross margins)
- 4. Assessing the impact of cultivation depth on headland areas on soil health and crop productivity
- 5. Assessing the impact of nutrient applications on soil nutrition and crop performance
- 6. Determining the impact of perennial flower strips on beneficial insect populations, pests and weeds

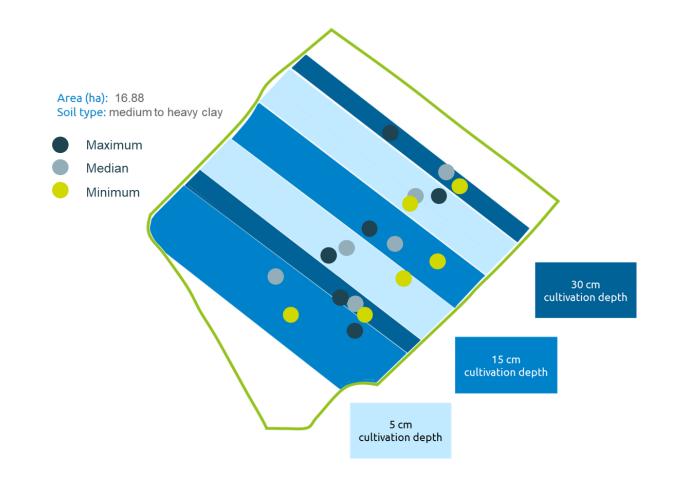
Baselining: soil health

- Baseline soil properties were assessed on 9 fields across the farm and evaluated using the soil health scorecard
- The fields were divided into soil management zones according to the underlying soil variability (as identified using the farm soil texture maps)

Field 25: soil health scorecard

Key issues found in Field 25 are soil structure & earthworm numbers (particularly zones 2 & 3 associated with the heavier textures and below average organic matter contents)

Zone	1	2	3
Texture	clay	clay	clay
% clay	37	43	51
SOM (%LOI)	5.0	4.7	4.4
рН	7.5	8.1	8.1
Ext. P (mg/l)	18	13	21
Ext. K (mg/l)	344	375	433
Ext. Mg (mg/l)	849	708	675
VESS score (limiting layer)	3		4
Bulk density (g/cm ³)	1.17	1.26	1.28
Earthworms (number/pit)	6	1	2
PMN (mg/kg)	98	112	88
Respiration (mg CO ₂ -C/kg)	215	169	166


Note: benchmarks are subject to review

The impact of cultivation depth on soil properties and rooting on winter wheat yields and quality

- Start date: 19 October 2018
- End date: 8 August 2019
- Replicated tramline trial of 3 cultivation depths (5, 15 and 30 cm)
- Winter wheat var. Graham

The effect of reduced fungicide input regimes

- Start date: 12 October 2018
- End date: 4 August 2019
- Split field trial
- Winter wheat variety Graham
- Deep tine to 6-8 inches, carrier, drill and roll

What is good soil health & how do we measure it?

Anne Bhogal, ADAS

Soil – your greatest asset

SOIL HEALTH

PROVISIONING:Food & fibreRaw materials

"The ability of a soil to act as a living system to sustain, in the long term, its most important functions'

SUPPORTING

• Habitats & biodiversity

•Nutrient cycling

• *Platform for infrastructure*

CULTURAL • Archaeology • Education & recreation

Assessing & managing soil health

- How do we know if a soil is healthy?
- What do we need to measure?
- How do we benchmark/interpret those measures?
- How can we improve soil health?

GREATSOILS

Soil Biology and Soil Health Partnership **Research and Knowledge Exchange** 2017-2021

What do we know?

NUTRIENT INPUTS Fertiliser, manure, deposition; where availability is mediated by many of the same factors

Bulk density

Soil water balance

Temperature

Texture

Development Plant with mycorrhizal of root hairs fungi Root uptake Nodule formation Root density efficiency N fixation e.g. Nutrient Supply Action and Soil enzymes activity of soil fauna **Biological** Activity of decomposing micro-organisms Mineralisation -immobilisation **Organic ligands** pН

Chemical Redox potential

Salinity Mineralogy

CEC

Compaction

Aeration

Physical

Pore size

distribution

Buffer capacity

Balance of macro-. micro nutrient availability

Root infection

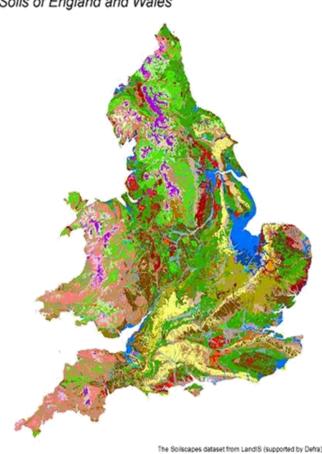
CLIMATE

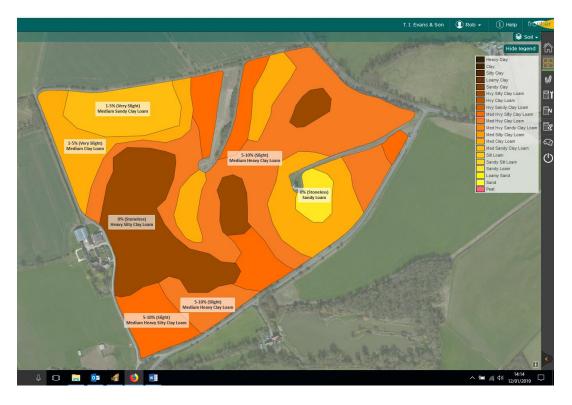
Temperature, rainfall, evaporation; where impact is mediated by both amount and seasonality

Presence of potentially

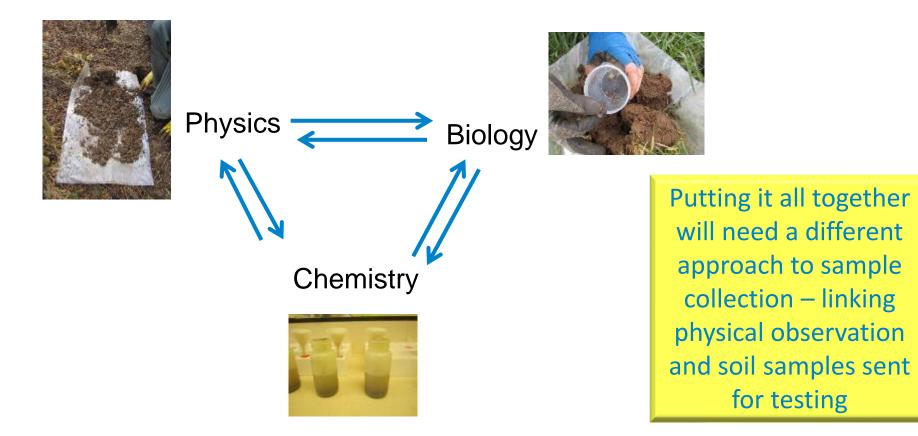
toxic elements

Soils are complex!




What do we know?

The Soils of England and Wales


Soils are very variable!

Variation in soil texture at AHDB Strategic Farm West, field 42 (32 ha)

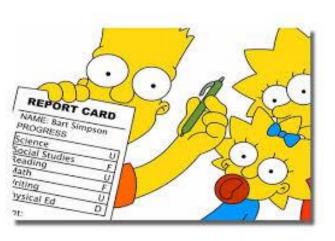
Assessing soil health

Assess on rotational basis at a similar time & from same location in the field.

Testing and developing measures of soil quality

Indicators of soil health ('SQIs'):

Defra projects – 7 physical indicators (42 'candidates'); 21 biological indicators (183 'candidates')

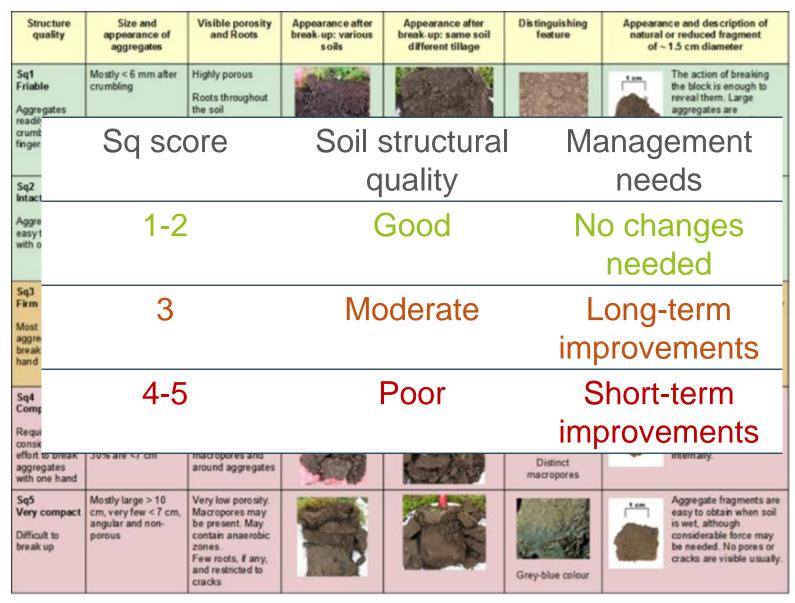

- \rightarrow No one indicator will cover all aspects of soil health
- ightarrow Important to establish a link with soil function to be meaningful ('relevance')

SBSH Partnership soil health scorecard

Indicators of chemical, physical & biological condition of agricultural soils – scorecard approach

→Relevant & practical methods with clear interpretation scheme; use with farmers to guide soil management

Physical (17 'candidates')	Chemical (14 'candidates')	Biological (14 'candidates')
Visual Assessment of Soil Structure (VESS)	рН	Earthworms
Penetration resistance	Routine nutrients	Respiration
Bulk density	Soil organic matter (SOM)	Microbial biomass

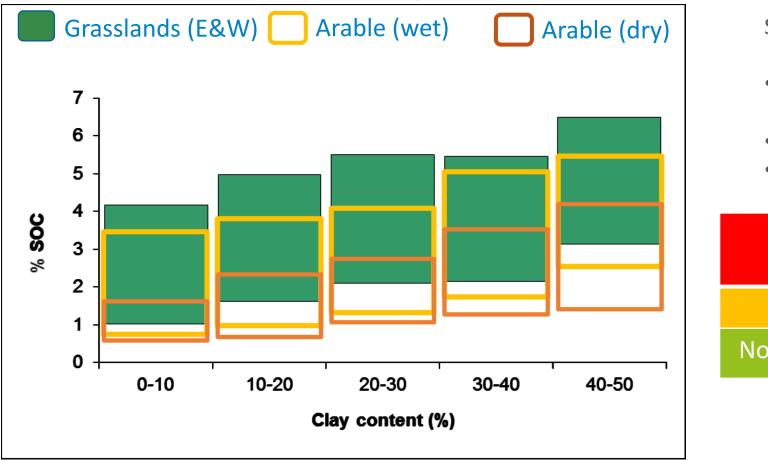


Benchmarking & interpretation

	Indicators	Benchmarks	
pH &	routine nutrients (Ext P, K,	The nutrient management	Investigate
Mg)		guide-RB209	Monitor
	al Soil Assessment of Soil cture (VESS)	Limiting layer score; SRUC guidance	No action needed
Soil o igniti	organic matter (loss on on)	Comparison with 'typical levels' for soil & climate	

Visual evaluation of soil structure

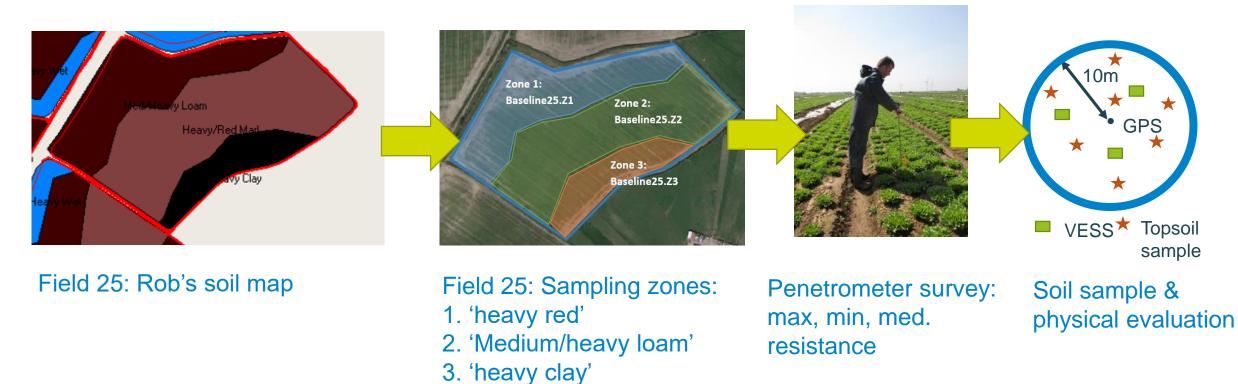
www.sruc.ac.uk/info/120625/visual_evaluation_of_soil_structure



'Typical' SOM levels

 There is no easily defined 'critical level' of organic matter below which soil functions become impaired

Simplified to:


- Light < 18% clay; medium 18-35% clay; heavy > 35% clay
- Low, mid & high rainfall regions
- Arable & ley arable; permanent grassland

Investigate	Very low for climate & soil type	
Monitor	Below average	
No action needed	≥ average	

Assessing baseline soil health at Squab Hall farm

 Using the scorecard to benchmark soil health at the outset and track changes over time

Scorecard for field 25 10.5ha; Spring barley @ harvest 2019

Zone	1	2	3
% clay	37	43	51
SOM (%LOI)	5.0	4.7	4.4
рН	7.5	8.1	8.1
Ext. P (mg/l)	18	13	21
Ext. K (mg/l)	344	375	433
Ext. Mg (mg/l)	849	708	675
VESS score (limiting layer)	3	4	4
Bulk density (g/cm ³)	1.17	1.26	1.28
Earthworms (total number)	6	1	2
PMN (mg/kg)	98	112	88
Respiration (mg CO ₂ -C/kg)	215	169	166

AHDB

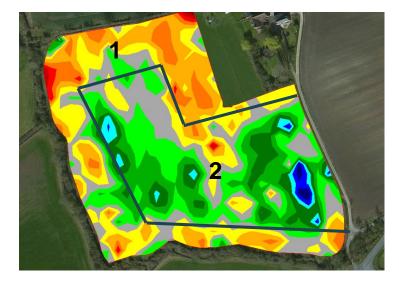
Note: benchmarks are subject to review

Key issues (field 25): soil structure & earthworm numbers (particularly zones 2 & 3 – heavier textures & below average SOM)

Key issues for Squab Hall Farm

• Soil structure and earthworm numbers identified as key issues across the farm

Sq 2 'intact'



Sq 4: 'Compact'

Scorecard for field 49 5.5ha; Winter wheat @ harvest 2019

Zone	1	2
% clay	25	21
SOM (%LOI)	6.2	4.9
рН	6.5	6.6
Ext. P (mg/l)	16	21
Ext. K (mg/l)	150	169
Ext. Mg (mg/l)	181	169
VESS score (limiting layer)	2	2
Bulk density (g/cm ³)	1.21	1.18
Earthworms (total number)	6	9
PMN (mg/kg)	62	66
Respiration (mg CO₂-C/kg)	199	185

Key issues (field 49): None

2018 yield map used to identify sampling zones

Investigate
Monitor
No action needed

Note: benchmarks are subject to review

Key to managing soil health

Biological

• Feed the soil regularly through plants and OM inputs

- Move soil only when you have to
- Diversify plants in space and time

KNOW YOUR SOILS

principles to improve soil health

Chemical

• Maintain optimum pH

• Provide plant nutrients – right amounts in the right place at the right time

• Know your textures and minerals – buffering capacity, free supply! Physical Know your textures and understand limits to workability, trafficability

Optimise water balance through drainage if necessary
Improve soil structure, minimise compaction – effective continuous pore space

Soil improving practices:

- Organic materials
- Grass leys
- Cover crops & diverse rotations
- Reduce tillage

Also....

- Appropriate operations timing & type
- Drainage

Summary

- Assessment of soil health requires an integrated approach linking chemistry, physics and biology
- To evaluate impact of management practices, track changes over time by assessing on a rotational basis & from same location/timing.
- A scorecard approach is being developed & evaluated which aims to provide benchmark data to guide interpretation
- Key issues for Squab Hall soil structure & earthworms, particularly on the heavy textured soils (cultivation effects?)

Thank you

For more info:

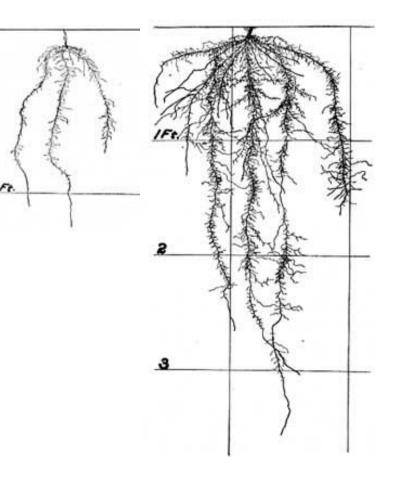
AHDB-BBRO Soil Biology and Soil Health Partnership https://ahdb.org.uk/greatsoils

Anne.bhogal@adas.co.uk

The relationship between cultivation, crop rooting and yield

Charlotte White

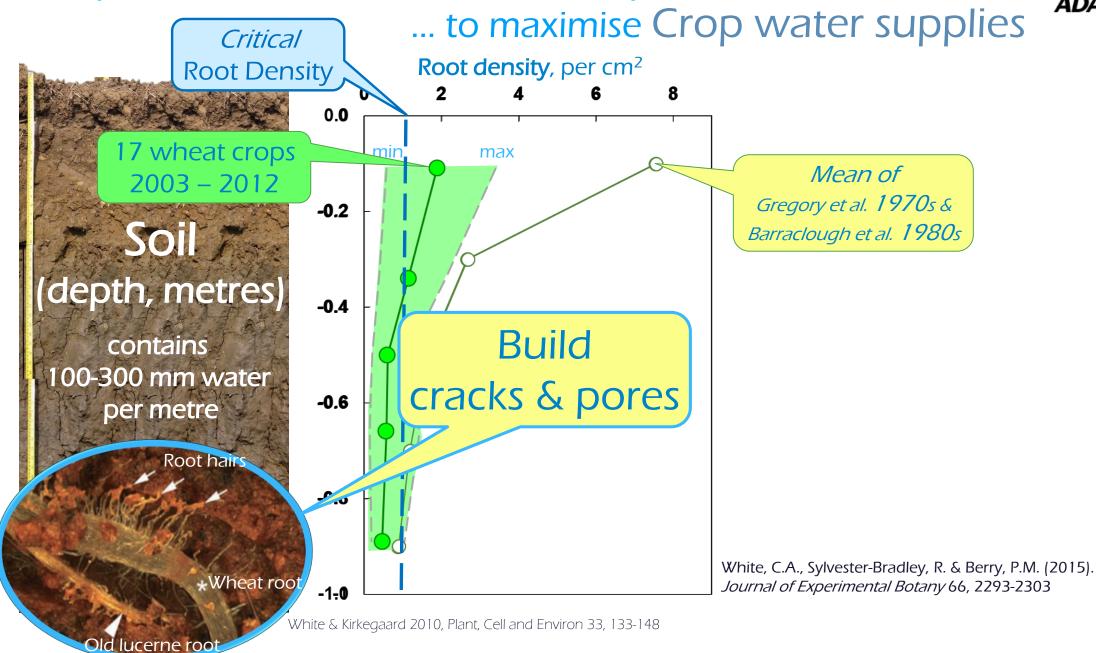
Presented by Damian Hatley


Outline:

- Rooting, water capture and high yields
- The cultivation Trial
- Results
 - Soil strength
 - Rooting
 - Aboveground biomass
 - Potential and actual yields
- Summary

Cereal Root Systems

- Seminal roots
 - Develop first, from the seed
 - 3 6 seminal roots in wheat and barley
 - 5-10 % of the total root volume of a mature crop
- Nodal roots
 - Also known as crown or adventitious roots
 - Develop later from the base of the main stem and tillers
 - 90 95 % of total root volume of the mature crop


Good soil performance Ensures continuity of supplies

Nutrients

-Water

Crops must be rooted as DEEPLY as possible

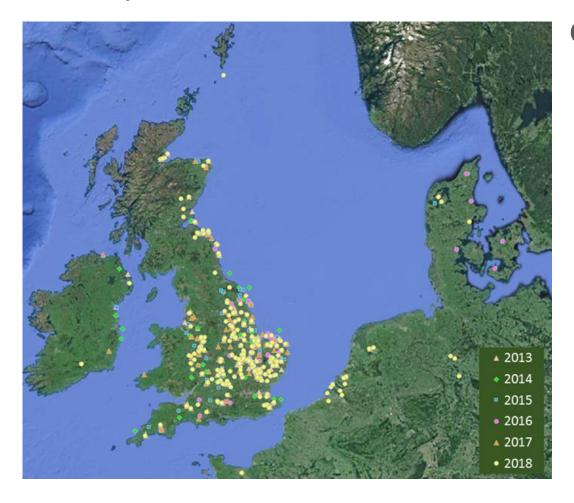
Possible causes of decreased rooting



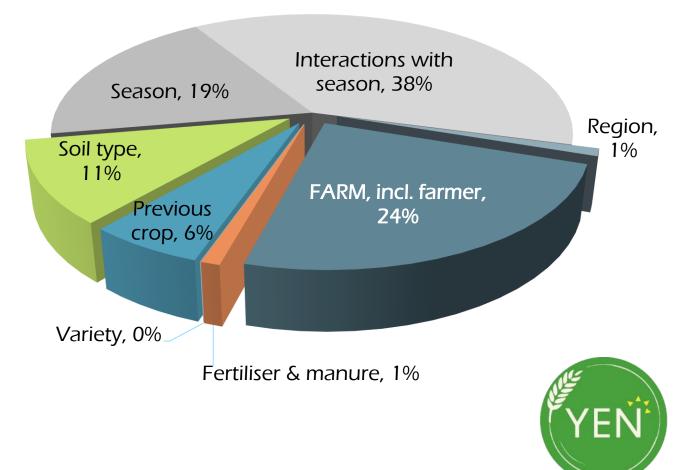
Decrease in organic matter usage

Tighter rotations

Impacts on soil fauna and flora



Modern varieties


YEN Dataset Analysis

• Analysed dataset 2013 – 2018, 570 yields

Contributions to yield variation from REML analysis:

Summary

• 15 t/ha is possible ... almost anywhere

It's less about what you spend, more about ...
 'Attention to Detail'

Large yields come from large crops

- With more ears than average
 - and tending to be taller, with greater straw N%
- So important associations include good nutrition, and control of disease & lodging risks
- Husbandry factors associated with high yields included:
 - Following a break crop
 - Narrow drill widths
 - Applying slurry
 - Adequate N use ... but liquid N (straight) was questionable
 - and several PGR applications.

The cultivation trial

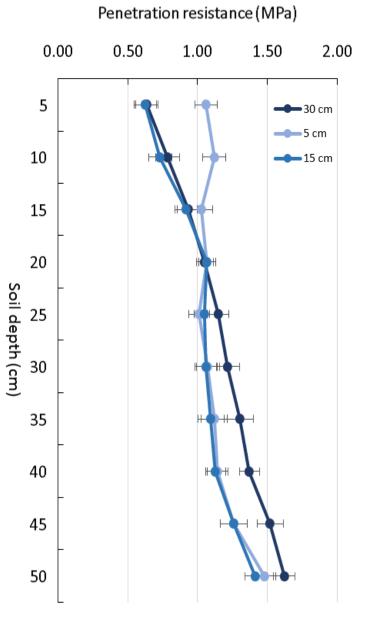
- 3 cultivation depths of 5 cm, 15 cm & 30 cm
 - 2 replicates
- Assessments on a zonal basis
 - Min, median and max penetrometer resistances in top 30 cm

SEEDS

The cultivations Trial : Treatments

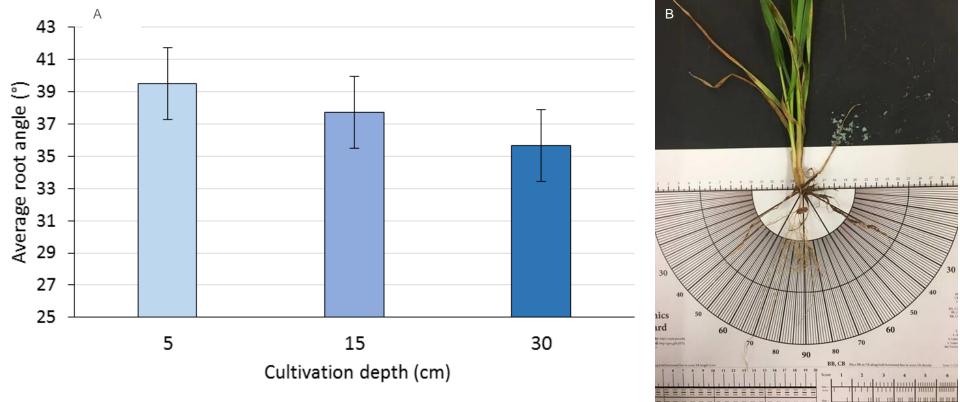
Field 15

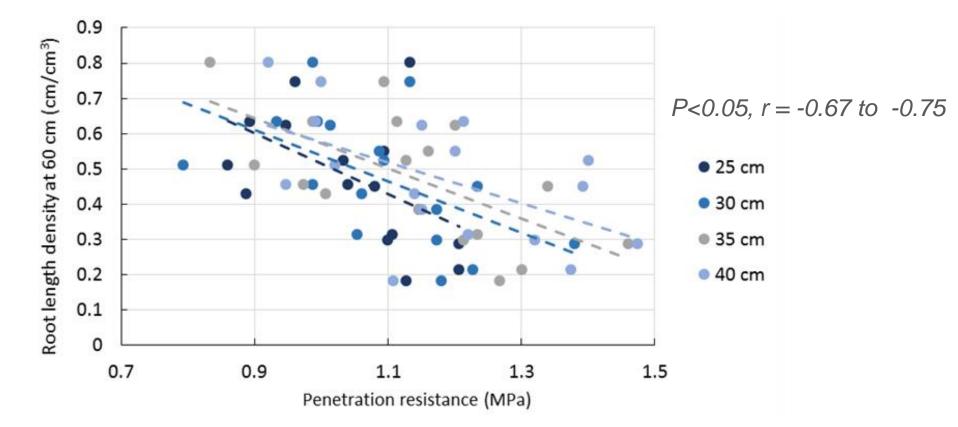
	Treatment name	Details	
1	Shallow Cultivation	Vaderstad Carrier to 5cm, shallow spring tine in front of drilling. Drilling with Horsch Sprinter	-VÄDERS
2	Min Till	Discaerator to 15 cm, shallow spring tine in front of drilling. Drilling with Horsch Sprinter	
3	Deep cultivation	Discaerator to 30 cm, shallow spring tine in front of drilling. Drilling with Horsch Sprinter	DISCASRATOR STORE


The cultivation trial assessments

- Measured:
 - Soil strength to 50 cm (penetrometer)
 - 'Shovelomics' phenotypic traits of the root crown
 - Soil analysis
 - VESS (visual evaluation of soil structure) & Sub-VESS
 - Earthworms
 - Above ground crop biomass at several points during the season
 - Root length density & root biomass post anthesis to 1m depth

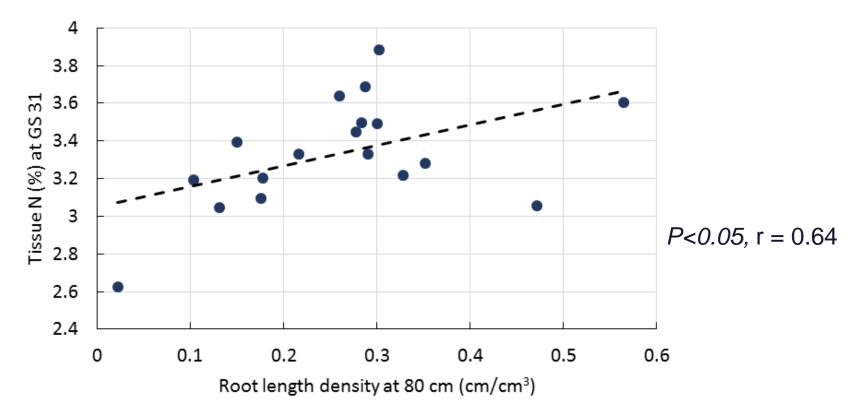
Cultivation depth & soil strength


- Root growth is restricted >1.5 MPa
- Shallow cultivation depth greater soil strength in top 10 cm (P<0.05)
- Increased topsoil strength did not significantly impact above ground crop biomass at GS31, 39 and 61
- Deep cultivation greater soil strength below 35 cm (P<0.05)

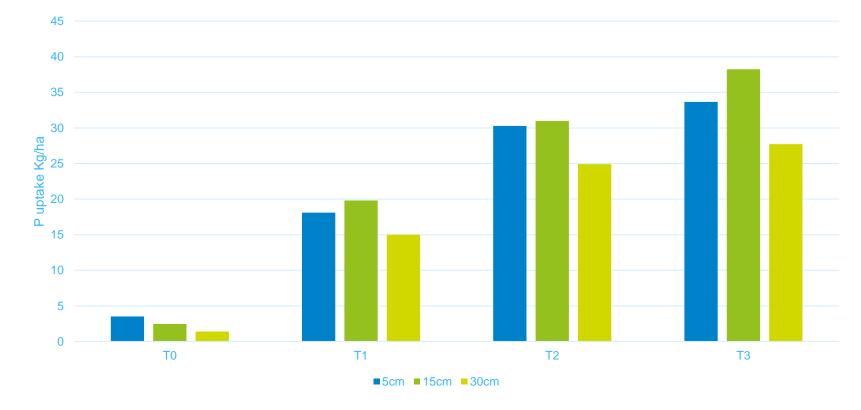

Soil strength & Rooting

- Root angle increased as cultivation depth decreased
 - increased soil strength in topsoil promoted early downward growth of roots
- Steeper root angle positively associated with RLD & root biomass in subsoil (~80 cm) (P<0.05, r=0.55)

Rooting & Subsoil Compaction



 Increased soil strength at 25 – 40 cm soil depths associated with less rooting in the subsoil (~60 cm)


Roots and shoots

 Increased rooting in the subsoil (~80 cm) associated with increased aboveground biomass at anthesis & increased tissue N% at GS31

Nutrient uptake

- P concentration and uptake less with deepest cultivation
- No treatment differences for N and K uptake.

YEN Yield Potentials

The cultivations trial is part of EIP-AGRI funded YEN Yield Testing project

• Deeper rooting Farmer innovation group (FIG)

Estimated from a theoretically 'perfect' crop with 'inspired' husbandry at your location with the seasons weather achieving either:

 60% Capture of light energy conversion 1.4 tonnes biomass per terajoule

OR

 Capture all of the available water held in soil to 1.5 m depth plus rainfall (April to July), conversion of 18 mm into a tonne of biomass per hectare

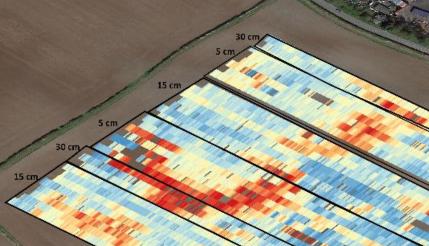
Take the lesser of the two amounts, 60 % used to create grain

Yield potential & Actual Yields

Estimated Yield potential of 17.7 t/ha

• Yield 11.6 t/ha (15 cm cultivation depth treatment)

• Actual yield represents 65% of yield potential


underlying spatial variation. No significant differences in yield Es ef Co

Agronomics: clean data & fit statistical model

Agronomics & The Yield Map

 Estimate treatment effects and probability due to treatment rather than

Treatment	Farm standard, 15 cm	5 cm	30 cm	
Mean yield, t/ha	11.57	-	-	
Estimated treatment	-	-0.44	-0.77	
effect, t/ha		±0.71	±0.84	
Confidence in effect	-	47%	64%	
being due to the				
treatment				

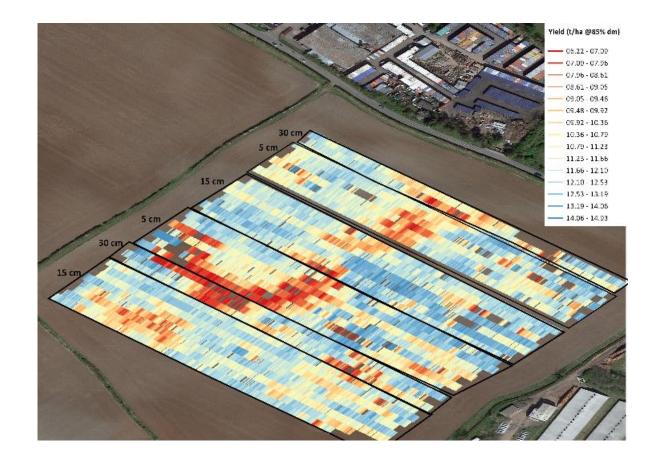
ield (t/ha @85% dm)

05.22 - 07.09 07.09 - 07.95 07.96 - 08.51 08.61 - 09.05

09.05 - 09.48 09.48 - 09.92 09.92 - 10.35 10.36 - 10.79

10.79 - 11.23 11.23 - 11.55 11.66 - 12.10

12.10 - 12.53 12.53 - 13.19 13.19 - 14.05 14.06 - 14.93


The European Agricultural Fund for Rural Development: Europe investing in rural areas

Yield Variation

The European Agricultural Fund for Rural Development: Europe investing in rural areas

Summary

- Shallow cultivation (5 cm) increased topsoil strength
- Increased topsoil strength associated with steeper root angle
- Steeper root angle associated with more roots in the subsoil
- P uptake greater with shallow cultivations.
- Deeper cultivation (30 cm) showed increased subsoil strength (40 & 45 cm)
- No significant differences in yield between treatments

Action point

- Monitor soil regularly to inform management decisions
 - VESS, Sub-VESS and earthworm counts
 - Carry out 'appropriate' cultivations on a field by field or zonal basis

Thank you

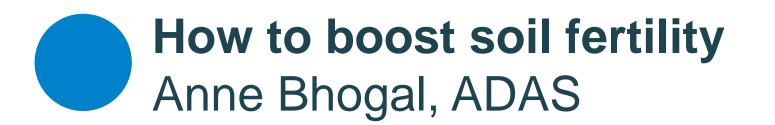
damian.hatley@adas.co.uk

charlotte.white@adas.co.uk

@c_a_white

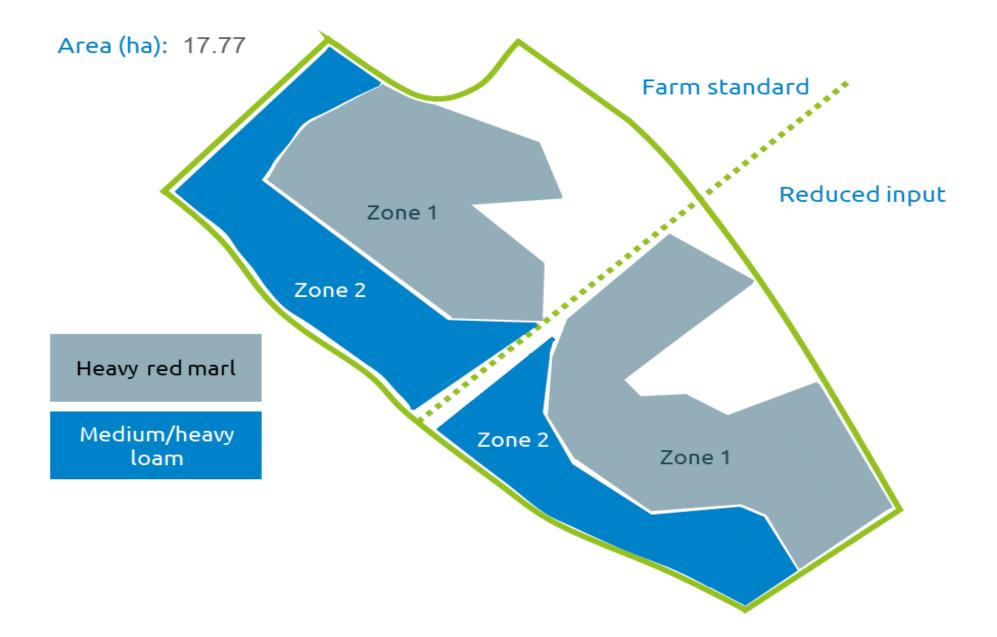
ADAS Gleadthorpe, Nottinghamshire, NG20 9PF

Focus session 1



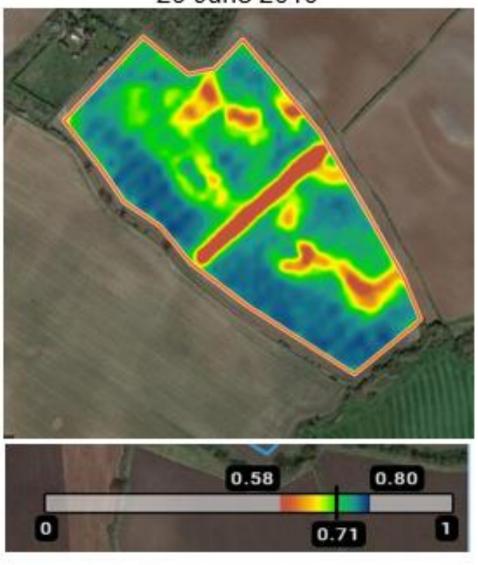
CEREALS & OILSEEDS

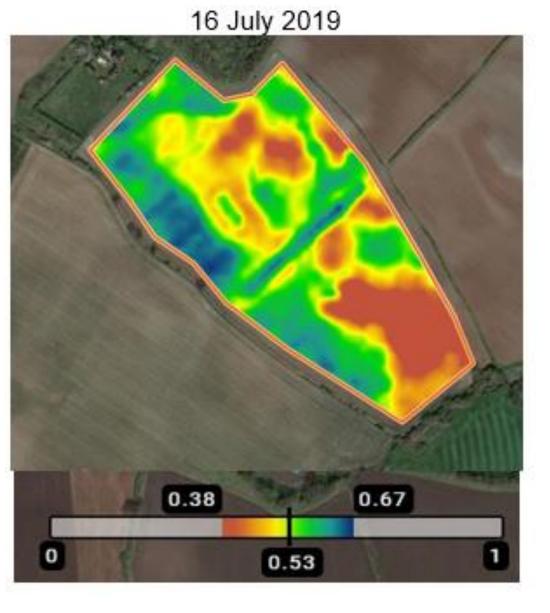
Focus session 1

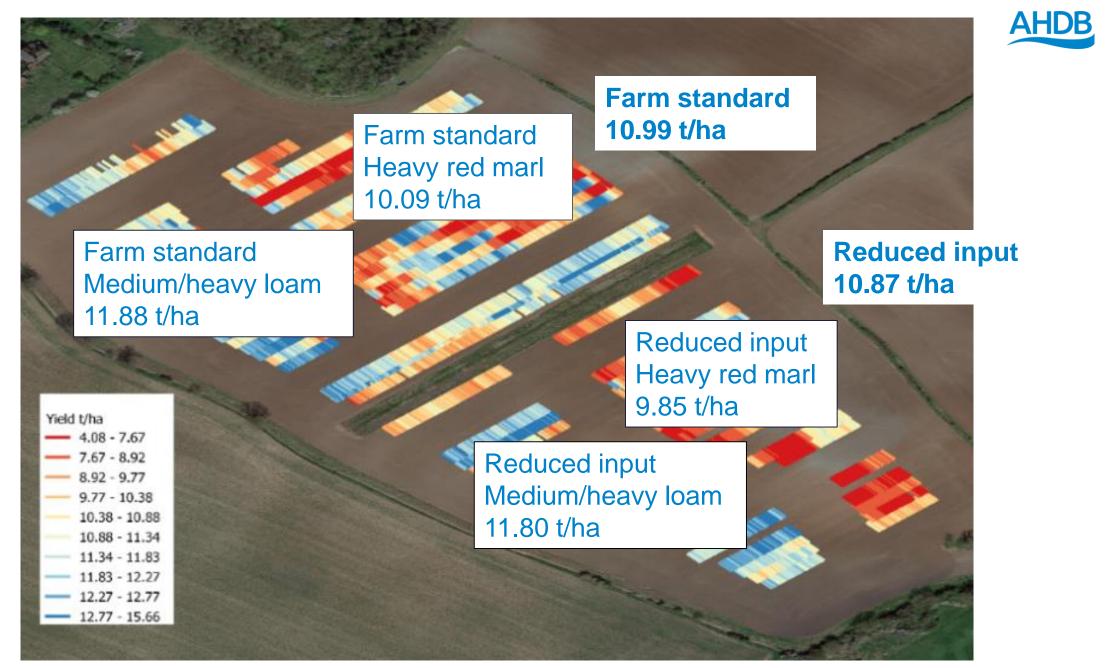

AHDB Strategic Farm West, Dec 2019

Managed lower inputs: how low can you go before compromising yield?

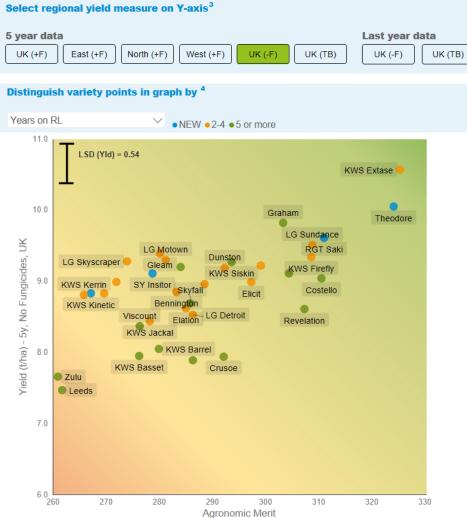
Catherine Harries


Graham		Winter w	/heat
AHDB	A high-yielding har Group 4 variety	rd-milling	
RECOMMENDED	UK		
Disease resista	nce (1–9)		
Mildew		7	Medium-high
Yellow rust		8	High
Brown rust		6	Medium
Septoria nodoru	um	[6]	Medium
Septoria tritici		6.9	High
Eyespot		4	Low
Fusarium ear bl	ight	6	Medium
Orange wheat k	olossom midge	-	



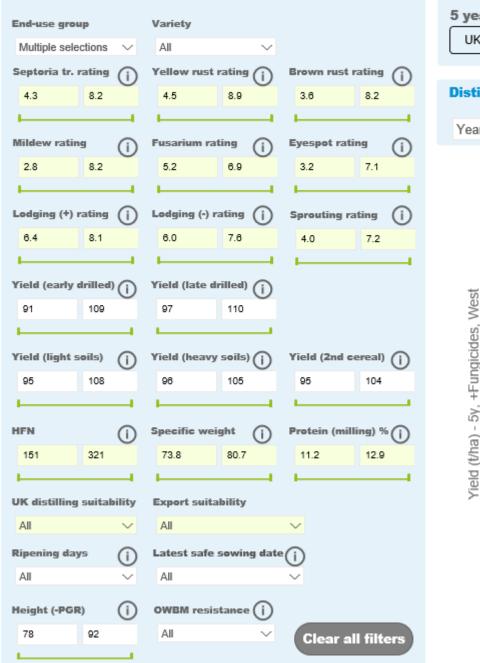

		Low input	Farm standard
Seed	12 th October	Untreated	Difend Extra 2 L/ha
Т0	12 th April	Chlormequat 1.5 L/ha	Bravo 1 L/ha (multisite)
			Chlormequat 1.5 L/ha
			Moddus 0.12 L/ha
T1	29 th April	Bugle 0.9 L/ha (SDHI)	Bugle 0.9 L/ha (SDHI)
		Mendoza 0.65 L/ha (azole)	Mendoza 0.65 L/ha (azole)
		Chlormequat 1 L/ha	Chlormequat 1 L/ha
		Moddus 0.1 L/ha	Moddus 0.1 L/ha
T2	22 nd May	Adexar 1 L/ha (SDHI + azole)	Adexar 1.25 L/ha (SDHI + azole)
			Bravo 1 L/ha (multisite)
Т3	18 th June	None	Teb 250 1 L/ha (azole)

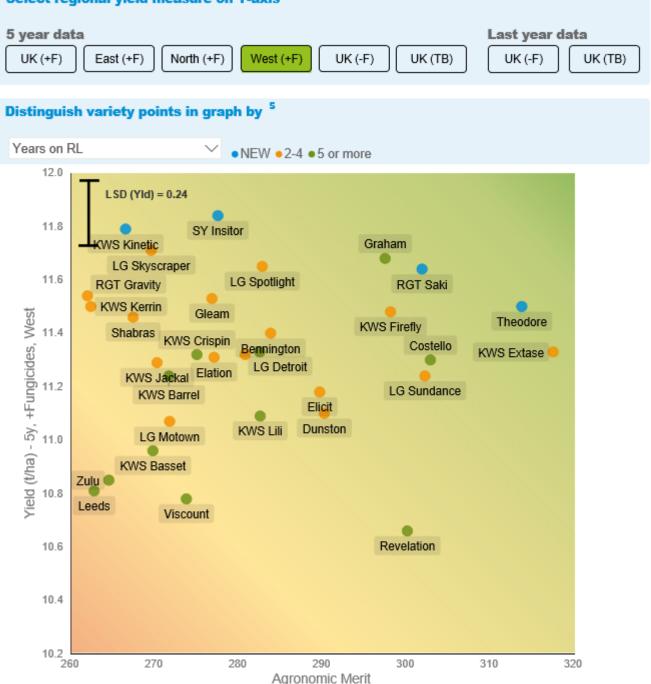
29 June 2019


		1
	Farm standard	Low input
Yield (t/ha)	11.03	10.91
Variable costs		
Total seed costs (£/ha)	23	6
Total fertilisers (£/ha)	151	151
Fungicides (£/ha)	80	62
Total crop protection (£/ha)	180	159
Total variable costs (£/ha) (direct)	354	316
Fixed costs		
Total labour, machinery and equipment (£/ha)	500	500
Total property and energy costs (£/ha)*	71	69
Total administration costs (£/ha)*	30	30
Cost of production and margins (per hectare)		
Full economic cost of production (£/ha)	954	914
Cost of production (per tonne)		
Full economic cost of production (£/t)	86	84

*These costs are the West regional averages from Farmbench for harvest 2018

Variety selection tool


Filter varieties by	Calculate Agrono	omic Merit on X-axis ¹	Select regional yie
End-use group	Variety		5 year data
All 🗸	All 🗸		UK (+F) East (+
Septoria tr. rating	Yellow rust rating	Brown rust rating (i)	
4.3 8.2	4.5 8.9	2.8 8.4	Distinguish variety
· · · · · · · · · · · · · · · · · · ·			
Mildew rating	Fusarium rating	Eyespot rating	Years on RL
2.8 8.2	5.2 7.0	3.2 7.1	11.0
			L SD (
Lodging (+) rating (i)	Lodging (-) rating (Sprouting rating (j)	_
6.4 8.1	6.0 7.6	4.0 7.2	10.0
I	- II	- II	10.0
Yield (early drilled) (i)	Yield (late drilled) (i)		×
91 109	94 110		
HH			LG Skysc
Yield (light soils)	Yield (heavy soils) (j)	Yield (2nd cereal) (i)	-06 9.0 KWS Kerr
92 108	96 105	93 104	KWS Kir
I		- II-	Ž
HFN (i)	Specific weight ()	Protein (milling) % (j)	LG Skysc KWS Kerr KWS Kir 8.0 Zulu Leeds
151 321	73.8 80.7	11.2 13.5	(t/he
I		- II	
UK distilling suitability	Export suitability		Eeeds
All 🗸	All	\checkmark	7.0
Ripening days (i)	Latest safe sowing dat	e(i)	7.0
All 🗸	All	\sim	
Height (-PGR) (i)	OWBM resistance (i)		
78 92	All ~	Clear all filters	6.0 260
H		order un inters	260

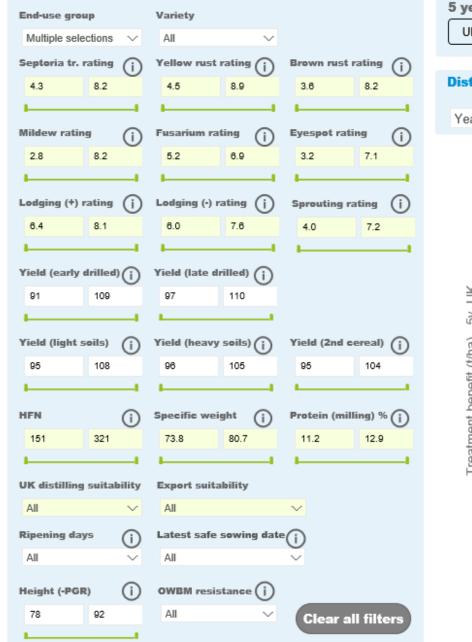


Filter varieties by¹

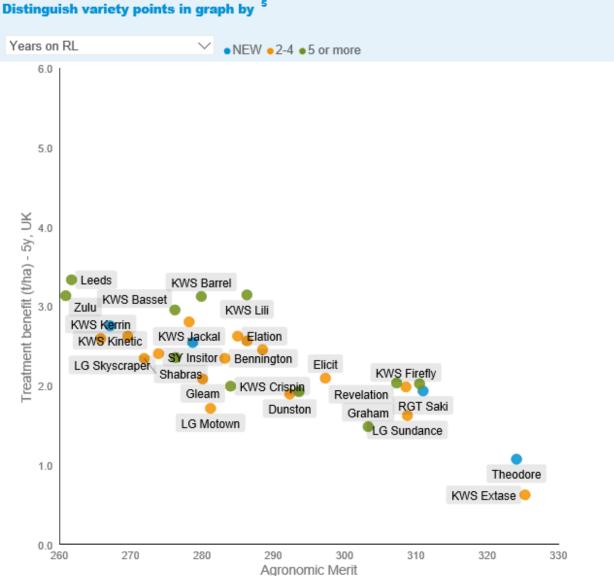
Calculate Agronomic Merit on X-axis

Select regional yield measure on Y-axis⁴

DB


AHDB										a,																						(%9) OS1
RECOMMENDED	S Extase	S Siskin	Detroit	III S	S Fimily	S Barrel	_	S Basset	_	Skysonap	Sat	Spotight	S Jacka	5	nington	Sundano	Notown	#	ount	elation	nsitor	S Kinetic	E	C Granity	S Kerrin	tras	mer	S Crispin	alobo	ston	tello	rage LSI
End-use group	ş	Š	ୁ Group 2	₹.	X	ž nab	im Gro	¥ 10 3	Zult	ĕ	E0	ğ	KWK	E So	and the second s	ő p4	ē	8	Visc	Rev	۶	X	ğ	RG.		E S d Grou	0 0 0 4	KWK	Ę	D	ŝ	Ave
Scope of recommendation	UK	UK C	E&W	UK •	UK	UK C	UK	UК •	UК •	UK	UK NEW	UK	N	UK C	E&W	UK	UК •	N •	N +	UК +	UK NEW	UK NEW	UK	UK	E&W	UK	UK	UК •	W NEW	UК •	UK	
Fungicide-treated grain yield (% treated control)	X																															
United Kingdom (11.2 tha)	101	101	100	99	102	100	100	98	97	105	104	103	101	101	101	100	99	97	96	96	105	104	103	103	102	102	102	101	100	100	99	2.1
East region (11.1 bha)	100	101	100	99	102	100	99	98	97	106	104	102	101	101	101	100	99	97	96	96	104	104	103	103	102	102	101	101	100	100	99	2.3
West region (11.2 tha)	101	101	101	99	102	100	100	98	97	104	104	104	101	101	102	100	99	96	96	95	105	105	103	103	102	102	104	101	102	99	101	2.7
North region (11.3 tha)	100	98	[93]	101	98	104	100	97	98	103	[101]	100	102	101	96	99	98	98	99	95	[105]	[102]	102	102	103	102	99	96	[[91]]	99	98	3.1
Untreated grain yield (% treated control)																																
United Kingdom (11.2 tha)	95	83	77	71	84	72	81	71	69	83	86	80	76	77	79	85	83	67	75	77	82	79	84	79	79	81	88	83	90	82	81	4.9
Agronomic features																																
Resistance to lodging without PGR (1-9)	7	6	8	7	8	7	7	7	6	7	7	7	7	7	7	6	6	7	7	7	6	7	7	7	7	7	7	7	7	7	7	0.6
Resistance to lodging with PGR (1-9)	8	7	7	8	8	8	8	8	7	7	8	8	7	8	8	7	6	8	8	8	7	8	7	7	7	7	8	7	8	8	8	0.5
Height without PGR (cm)	90	84	85	81	82	83	85	85	89	91	87	93	86	82	91	86	83	85	80	85	93	83	86	87	85	86	87	86	82	92	82	1.7
Ripening (days +/- Skyfall, -ve = earlier)	0	0	+1	+2	+1	+1	+1	+1	0	0	+3	+1	+1	+1	+1	+2	0	+2	+1	+3	+1	0	0	+1	+1	0	0	+1	0	+1	+2	0.6
Resistance to sprouting (1-9)	[7]	5	[6]	7	[6]	6	[5]	6	5	[6]	[5]	[7]	[5]	[6]	[5]	[4]	[5]	6	5	5	[5]	[6]	[5]	[4]	[5]	[4]	7	5	[7]	[5]	6	0.8
Disease resistance																																
Mlidew (1-9)	6	8	5	8	5	7	6	5	7	7	6	6	7	7	7	7	7	3	6	6	6	6	6	4	7	6	7	6	7	5	8	1.0
Yellow rust (1-9) - see note below	9	9	9	7	9	9	9	8	5	8	9	8	9	9	5	9	9	6	6	9	7	6	7	8	7	7	8	9	9	7	9	0.7
Brown rust (1-9) - see note below	7	5	5	4	6	5	7	5	7	6	8	7	5	6	7	6	7	7	8	8	4	6	6	6	7	5	6	5	7	6	5	1.1
Septoria nodorum (1-9)	-	[6]		161	-	161	161	161	[6]	-	-	-	[5]	161	171	161	161	161	161	171	-		[6]	161	161	161	161	[6]	-	[6]		0.9
Septona tritici (1-9)	8.1	6.6	5.3	5.9	7.0	4.3	5.5	5.0	5.4	5.0	6.8	5.1	4.9	4.3	6.6	7.9	5.4	4.8	4.8	6.0	6.6	5.0	6.3	4.8	4.9	6.3	6.8	5.9	8.2	6.6		0.8
Eyespot (1-9)	[4]	5	[5]	4	[4]	5	4	5	4	[4]	-	[5]	4	4	4	3	4	5	4	7@	-	-	4	4	5	4	4	4	-	6@		1.7
Fusarium ear blight (1-9)	6	5	7	6	5	6	6	6	6	6	6	6	6	6	6	6	6	7	6	6	6	6	6	6	6	5	6	6	6	6		0.5
Orange wheat blossom midge	-	-	R	-	R	R	R	R	R	R	Ř	R	R	Ř	-	R	R	R	R	-	R	R	R	Ř	R	-	-	R	-	-	-	

Yield, agronomy and disease resistance


Filter varieties by

Calculate Agronomic Merit on X-axis²

Select regional yield measure on Y-axis⁴

Winter wheat nabim group 4 (soft)

Yield control: UK 11.15 t/ha, E 11.09 t/ha, W 11.23 t/ha, N 11.34 t/ha

	New		
	RGT Saki	LG Skyscraper	LG Spotlight
UK treated yield	104	105	103
East treated yield	104	106	102
West treated yield	104	104	104
North treated yield	[101]	103	100
UK untreated yield	86	83	80
Hagberg	221	218	288
Spec. weight	75.7	76.9	77.9
UK distilling	-	[Y]	[Y]
Resistance to lodging + PGR	8	7	7
Ripening (+/- Skyfall)	+3	0	+1
Yellow rust	9	8	8
Brown rust	8	6	7
Septoria tritici	6.8	5.0	5.1
OWBM	R	R	R

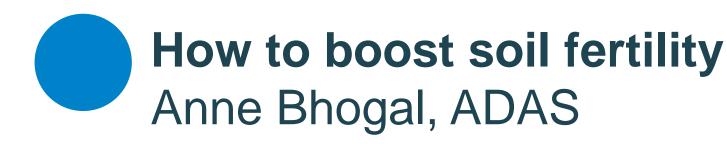
Winter wheat nabim Group 4 (hard)

Yield control: UK 11.15 t/ha, E 11.09 t/ha, W 11.23 t/ha, N 11.34 t/ha

		New			
	SY Insitor	KWS Kinetic	Theodore	Graham	Gleam
	UK	UK	W	UK	UK
UK treated yield	105	104	100	102	103
East treated yield	104	104	100	101	103
West treated yield	105	105	102	104	103
North treated yield	[105]	[102]	[[91]]	99	102
Untreated yield	82	79	90	88	84
Specific weight	78.3	78.5	73.8	76.8	76.3
Lodging + PGR	7	7	8	8	7
Maturity	+1	0	0	0	0
Mildew	6	6	7	7	6
Yellow rust	7	6	9	8	7
Septoria tritici	6.6	5.0	8.2	6.8	6.3
Brown rust	4	6	7	6	6
OWBM	R	R	-	-	R

Pocket books are changing to an App

Focus session 2


CEREALS & OILSEEDS

Focus session 1

How to put a true cost on crop establishment choice Harry Henderson, AHDB

Panel session

CEREALS & OILSEEDS

Closing comments

Richard Meredith, AHDB

CEREALS & OILSEEDS

ahdb.org.uk/farm-excellence

Topics for 2019-2020*

- 1. Cultivation depth
- 2. Managing pests on oilseed rape
- 3. Reduced fungicide input regimes
- 4. Cultivation depth on headland areas
- 5. Stubble management techniques
- 6. Perennial flower strips

Strategic Cereal Farm West Open Day Tuesday 2 June 2020

Monitor Farm meetings

Loppington

- 17 December 2019
- 7 January 2020
- 3 March 2020

Hereford

- 18 December 2019
- 19 February 2020
- 4 March 2020

Taunton

- 13 February 2020
- 12 March 2020

ahdb.org.uk/farm-excellence

Tyres, Traction & Compaction

- Tyre Choice: latest tyre technology explained
- How to balance weight, ballast and pressures
- Improve traction and work rates, save fuel
- Reduce damage to soils /minimise costly subsequent corrective cultivations/ improve yields
- Practical weigh cell/pressure demonstration

9 January 2020 Hereford Racecourse

Kate Adams, Wye & Usk Foundation Harry Henderson, AHDB Mark Stalham, NIAB Charlie Morgan, GrassMaster Michelin Tyres

West Agronomy Event 2020

Stephen Kildea, Teagsac (Ireland)
 Crop protection strategies for the future
 Jane Rickson, Cranfield University
 Systematic approaches to soil
 management

• Dave Chandler, Warwick University Bio-pesticides and their potential for field crops

Steve Klenk, Garnstone Farms

The fundamentals of good agronomy; a farmers perspective

• Steve McGrath, Rothamsted University Improving yield through micronutrients

Three Counties Showground, Malvern 11 February 2020

WE ALL NEED feedback. THAT IS HOW WE improve.

Inspiring our farmers, growers and industry to succeed in a rapidly changing world