

AHDB Agronomists' Conference 2019

Tuesday 3 – Wednesday 4 December 2019

AHDB Agronomists' Conference 2019

Session Three – Crop protection in potatoes

Agronomists' Conference 2019 Blight & phenotypic traits of new populations

David Cooke Faye Ritchie

Alison Lees, James Lynott, Louise Sullivan

2019 season – What's new?

- 3 year AHDB project 2019-2021 (Hutton and ADAS)
- Use of FTA (Flinders Technology Associates) card for within-season results. Informed fungicide testing
- Revisions to FAB web site work in progress
- Please register = efficient feedback

Sampling tips for 2020

- No leaves please
- OK to use last season's cards

- Single lesions dry tissue
- In fridge over the weekend if sampled on a Friday

AHDB

The 2019 season - mixed

- Rainfall (1981-2010 anomaly)
- Relatively warm increased blight activity
- Wet May in north more generally wet June and July
- Wet Aug in north
- Wet Sept in many places
- Oct & Nov grim in most parts

September

2019 season – challenging conditions

2019 season – challenging conditions

Organic crops without copper

GB Fight Against Blight outbreaks -2019

- 63 (33 in 2018) blight scouts
- 229 (40) outbreaks reported
- 68 varieties (top 3 M. Piper, K. Edward, Rooster)
- 1434 (262) samples to James Hutton Institute
- 977 (185) genotyped
- Mapped via FAB website

GB P. infestans population change

- 36_A2 17 to 27%
- 37_A1 16 to 6%
- 6_A1 47 to 36%
- 13_A2 8 to 9%
 - 'Other' 10 to 19%

GB P. infestans genotype mapping

- 6_A1 most widespread
- Wider range of 36_A2 and 37_A2 but not in SW England
- Some spread of 'Other' types – Fife and North Wales

A potato late blight network for Europe

European spread of new clones

Global reach of EuroBlight

- EU lineages disseminated via seed trade
- Nigeria & Senegal recent incursions
- AsiaBlight making good progress
- International cooperation & shared best-practice

Take home messages for 2020

- New clones increasing pressure on blight management mistakes can be costly
- Dominance of clones shows most inoculum overwinters in tubers (seed, volunteers, dumps)
- Soil-borne oospores still a threat (keep rotations long)

Jens Hansen & Isaac Abuley University of Aarhus, DK

Pete Skelsey (based on AHDB data)

Agronomists' Conference 2019

Fungicide sensitivity and late blight management strategies

Faye Ritchie, ADAS

Alison Lees, JHI

The *Phytophthora infestans* population in the UK and Europe has proved adept at evolving to:

- overcome host resistance genes in potato cultivars (virulence)
- reproduce faster or under a wider range of environmental conditions (aggressiveness)
- overcome fungicides (resistance)
- Monitoring and appropriate management methods

(Workshop session: late blight fungicide sensitivity)

Fungicide testing in GB lineages of *P. infestans*

Project lead: Dr Alison Lees

- Test range of FRAC fungicide groups
- Inhibit late blight growth in the laboratory
- Five isolates each of 6_A1, 36_A2 and 37_A2 tested

Mode of action	Active ingredient	Full dose (ppm)*
Qil	cyazofamid	400
Qil	amisulbrom	200
CAA	mandipropamid	750
Carbamates	propamocarb	5000
Benzamides	fluopicolide	500
OSBPI	oxathiapiprolin	75
Dithiocarbamates	mancozeb	6375

*field rate for illustration only

Assay and explanation of EC₅₀

- Detached leaf assay
- Inoculated using zoospore suspensions
- **EC50** value is the concentration of the **fungicide** that reduces growth by 50% relative to a non-fungicide treated control
- Six leaves inoculated per concentration
- Tests conducted according to standardised protocols and concentrations
- Zoospore motility assay

MIC value*

(ppm)

0.07^a

0.13^b

0.07^a

Maximum EC₅₀ value of 19 observed

Higher incidence of lesions for 36_A2

Min EC₅₀

0.25

0.25

0.25

Max EC₅₀

2.99

16.40

2.45

previously (other leaf assay)

Results consistent with 2018

Mean EC₅₀

0.62^a

1.56^b

0.59^a

Genotype

6 A1

36 A2

37_A2

*zoospore motility

Fluopicolide (field rate equivalent: 500ppm)

Mandipropamid (field rate equivalent: 750ppm)

- Maximum baseline EC₅₀ value of 2.98 observed previously (detached leaf assay, Israel)
- Generally higher incidence of lesions for 37_A2
- Results consistent with 2018

Genotype	Mean EC ₅₀	Min EC ₅₀	Max EC ₅₀
6_A1	0.44 ^{ab}	0.16	1.6
36_A2	0.29 ^b	0.15	4.5
37_A2	0.56 ^a	0.16	1.8

Cyazofamid (field rate equivalent: 400ppm)

Lesion Incidence

- Lesion incidence consistent across
 genotypes
- Small differences in mean EC₅₀ values observed in 2018 – none in 2019
- Results within expected range

Genotype	Mean EC ₅₀	Min EC ₅₀	Max EC ₅₀
6_A1	0.27 ª	0.15	2.21
36_A2	0.22 ^a	0.15	1.48
37_A2	0.25 ^a	0.15	1.49

Amisulbrom (field rate equivalent: 200ppm)

Lesion Incidence

- Lesion incidence higher for 36_A2 and 37_A2
- Significantly higher EC₅₀ values for 36_A2 than 6_A1 and 37_A2
- First year of testing in this project

Genotype	Mean EC ₅₀	Min EC ₅₀	Max EC ₅₀
6_A1	0.36 ^a	0.15	2.22
36_A2	0.98 ^b	0.15	8.14
37_A2	0.36 ^a	0.15	1.64

Propamocarb (field rate equivalent: 5000ppm)

Lesion Incidence

- Significantly higher EC₅₀ value for 36_A2 compared to other genotypes tested
- Same result as 2018

Genotype	Mean EC ₅₀	Min EC ₅₀	Max EC ₅₀
6_A1	39.9 ^a	2.5	133.9
36_A2	64.7 ^b	1.5	180.8
37_A2	38.1 ª	1.0	244.0

Oxathiapiprolin (field rate equivalent: 75ppm)

- Baseline mean EC₅₀ 0.0012 (leaf disc assay)
- Included in this project for the first time in 2019
- No statistically significant differences for EC₅₀ between genotypes

Genotype	Mean EC₅₀	Min EC₅₀	Max EC ₅₀
6_A1	0.0053 ^a	0.0003	0.054
36_A2	0.0048 ^a	0.0004	0.049
37_A2	0.0015 ^a	0.0004	0.0033

Mancozeb (field rate equivalent: 6375ppm)

Treatment

Lesion Incidence

Included as a control

- Lesion incidence was similar for all genotypes tested
- No statistically significant differences for EC₅₀ values between genotypes

Genotype	Mean EC ₅₀	Min EC₅₀	Max EC ₅₀
6_A1	53.1 ª	0.8	244.1
36_A2	66.6 ^a	0.9	329.5
37_A2	43.2 ^a	7.4	298.1

Fungicide sensitivity testing - messages

There were statistically significant but small differences between the EC₅₀ values for different modes of action – 36_A2 and 37_A2

 Differences in the incidence of different genotypes producing lesions across range of modes of action – natural variation

• No change in recommendations for control

• Need to consider resistance management strategies - use FRAG guidelines

Change in fungicide usage from 2016 to 2018

Garthwaite et al., Pesticide usage surveys 271 and 284

Change in fungicide usage from 2016 to 2018

Garthwaite et al., Pesticide usage surveys 271 and 284

Pathogen evolution is not random

The speed at which new strains occur are related to:

- 1. How many generations the epidemic runs for;
- 2. How fast the epidemic progresses

 IPM practices which delay and/or slow blight epidemics will slow selection for fungicide resistance, aggressiveness and virulence

Considerations for today and the future

Range of modes of action that are effective against current strains of *P*. *infestans* in GB Need to implement fungicide resistance management strategies now

A variety of strategies will be required to maintain control

Inspiring our farmers, growers and industry to succeed in a rapidly changing world

Agronomists' Conference 2019

PCN Lessons – Market Viewpoint

Graeme Byers

How can we achieve wide uptake of G pallida resistant varieties?

What constitutes mutually useful improvement?

How well do supply chain members understand each other?

Are targeted breeding programmes really targeted?

The end user can move ► how do we work together?

Total GB Crisps & Snacks (C&S) £RSV millions

GB Potato Processing Crop

30% of the GB crop grown for processing

36,000ha

1.5 million tonnes processed in GB each year

71% of the retail sales value of potato products made up of processed products

£89 million of crisp products exported

25,000t of crisps ► 80,000t of potatoes

But

1.4mt of finished processed product imported

Equivalent to 3mt of potatoes that could be grown

Can pallida resistant varieties open up production opportunities?
Understanding Market Needs What Does the End User Require?

We are a supply chain and not a market.

Grower

Yield, pest and disease resistance, store stability, damage resistance

Processor

Round uniform shape, high dry matter, pale fry colours, low AFP, firm texture

Retailer

Product offer, legislative compliance, sustainability, CSR

Consumer

Great tasting snacks!

Is a breeding programme targeted if it doesn't hit targets relevant to all parts of the supply chain?

Purchase Decision Hierarchy for Crisps & Snacks

Understanding Market Needs

Primary Cross Who is driving parental selection? How long is it going to take? Do we permit genetic modification?

Target market or targeted improvement? G pallida resistance ► so what? Fresh consumption declining Processed products under import pressure Without market driven characteristics agronomy improvements cannot be taken up

Who should be involved?

Genetic specialist and wide bank of genetic material Breeder/seed producer/growers/processor Consumer and consumer insight

The End User Can Move?

Variety Persistence Russet Burbank Jersey Royal King Edward Maris Piper Lady Rosetta

Variety Change Markies VR808 Taurus Arsenal

How Can We Move Faster?

Start with Targeted Change

Consult more widely within the supply chain

Agree all participants objectives

Involve the end user sooner and continuously

Use processor generated data early

Don't present a pallida resistant variety that doesn't crisp, bake, boil, chip or roast

Tayto Group - Variety Approval Process

We have a straightforward process and an open door policy

- Our specifications and process requirements well understood by suppliers
- Prefer to have all varieties plot tested by single key supplier
- Conduct factory testing
 - small scale fry work
 - process 1 tonne consignments
 - texture and organoleptic assessments
 - scale up into Tayto brands
- Brand and then retailer approval

What Does Improvement Look Like?

Define Strategic priorities

Support with levy input and core funding

Commence programmes with wide consultation

Traits that work for the whole supply chain

Decide on parental material to meet all objectives

Agree who will evaluate what

Agree commercial priorities

Exclusivities

Stakeholder reward

Lead time

AHDB Agronomists' Conference 2019

Session Four – Resource use in potatoes

Agronomists' Conference 2019

Nitrogen, desiccation and determinacy

Mark Stalham

Why do we need to desiccate?

- Prevent further growth of tubers to maximize return
- Remove foliage to assist harvesting
- Initiate or advance the process of skinset to reduce damage at harvest
- Reduce disease risk

Ware treatments 2019 (rates in l/ha, vol. 400 l /ha

Treat	Т1	T2	ТЗ
1	Reglone 1.5 + Ranman Top 0.5	Reglone 2.5 + Ranman Top 0.5	
2	Flail + Spotlight 1.0 + Ranman Top 0.5	Ranman Top 0.5	
3	Flail + Spotlight 1.0 + Gozai 0.8 + Ranman Top 0.25	Ranman Top 0.5	
4	Gozai 0.8 + Toil 1.5 + Ranman Top 0.25	Spotlight 1.0 + Ranman Top 0.5	
5	Spotlight 1.0 + Ranman Top 0.5	Gozai 0.8 + Toil + Ranman Top 0.25	
6	Spotlight 1.0 + Shinkon 0.25	Gozai 0.8 + Toil + Shinkon 0.25	
7	Spotlight 1.0 + Gozai 0.8 + Toil 1.5 + Ranman Top 0.25	Spotlight 0.6 + Gozai 0.8 + Toil 1.5 + Ranman Top 0.25	
8	No desiccant. Ranman Top 0.5	No desiccant. Ranman Top 0.5	
9	Finalsan 67 + Ranman Top 0.5	Spotlight 1.0 + Ranman Top 0.5	
10	Spotlight 1.0 + Ranman Top 0.5	Gozai 0.8 + Toil 1.5 + Ranman Top 0.25	Spotlight 0.6 + Ranman Top 0.5
11	Saltex 1123 + Ranman Top 0.5	Spotlight 1.0 + Ranman Top 0.5	

A hard target? Jelly seed crop

Still actively growing
Leaf area index 5

Long stems

Tal

Reglone 2 wks post-T1

Spotlight &/or Gozai 2 wks post-T1

Pelargonic acid 2 wks post-T1

Flail 2 wks post-T1

Flail Royal

Skinning (% surface area removed in barrel) in Jelly

Treatment	T1 (1 August)	T2	Т3	14-Aug	21-Aug	28-Aug
1	Reglone	Reglone		53	32	19
2	Flail + Spotlight			51	29	21
3	Flail + Gozai			46	33	18
4	Gozai	Spotlight		53	35	13
5	Spotlight	Gozai		55	40	16
6	Spotlight + Gozai	Spotlight +Gozai		54	36	12
7	Pelargonic acid	Spotlight		54	35	17
8	None	None		65	52	52
9	Spotlight	Gozai	Spotlight	52	38	12
10	Haulm pulling			44	21	13
	S.E. (27 D.F.)			3.6	3.0	3.4
	Control (None)			65	52	52
	Reglone			53	32	19
	Pelargonic acid <	15 % is harve	ster-suitable	54	36	12
	Spotlight/Gozai			54	37	13
	Flail			49	31	20
	Haulm pulling			44	21	13

Spotlight &/or Gozai

Skinset summary (3 weeks post-T1): 5 experiments + 2 demonstrations

Treatment	Skinning (% SA)			
Control (None)	33.0			
Reglone	19.9			
Pelargonic acid	23.8			
Spotlight/Gozai	22.9			
Flail/haulm pulling	19.7			
(Saltex)†	(16.4)†			

†5 trials only

Vascular browning & stem-end necrosis (%): Royal

Treatment	T1	T2	T3	Vascular browning	Stem-end necrosis	
1	Reglone	Reglone		26	3.0	
2	Flail + Spotlight			27	3.0	
3	Flail + Gozai			34	1.0	
4	Gozai	Spotlight		28	1.0	
5	Spotlight	Gozai		27	2.0	
6	Spotlight (+ Shinkon)	Gozai (+ Shinkon)		27	3.0	
7	Spotlight + Gozai	Spotlight + Gozai		25	2.0	
8	None	None		28	0.0	
9	Pelargonic acid	Spotlight		31	1.0	
10	Spotlight	Gozai	Spotlight	32	4.0	
11	Saltex	Spotlight		27	2.0	
	S.E. (30 D.F.)	····	(3.5	1.17	
	Control (None)		11	28	0.0	
	Reglone			26	3.0	
	Pelargonic acid		Mar	31	1.0	
	Spotlight/Gozai			28	2.4	
	Flail		E 1-2	30	2.0	
	Saltex	AF	all the second	27	2.0	

Stolon adhesion in Royal (incidence, %)

	II dulle sion	III KOyat (II	lucen	ice, 70)		AHDE	3
Treatment	T1	T2	Т3	Detached	Easily detached	Removes plug	
1	Reglone	Reglone		41.0	56.0	3.0	
2	Flail + Spotlight			49.0	50.0	1.0	
3	Flail + Gozai			45.0	55.0	0.0	
4	Gozai	Spotlight		49.0	51.0	0.0	
5	Spotlight	Gozai		52.0	46.0	2.0	
6	Spotlight (+ Shinkon)	Gozai (+ Shinkon)		50.0	50.0	0.0	
7	Spotlight + Gozai	Spotlight + Gozai		55.0	44.0	1.0	
8	None	None		71.0	29.0	0.0	
9	Pelargonic acid	Spotlight		52.0	48.0	0.0	
10	Spotlight	Gozai	Spotlight	43.0	55.0	2.0	
11	Saltex	Spotlight		55.0	45.0	0.0	
	S.E. (30 D.F.)		1	4.80	4.66	0.71	
	Control (None)			71.0	29.0	0.0	
	Reglone		T - ANY	41.0	56.0	3.0	
	Pelargonic acid			52.0	48.0	0.0	
	Spotlight/Gozai			49.8	49.2	1.0	
	Flail			47.0	52.5	0.5	
	Saltex	The see of		55.0	45.0	0.0	

Skinset summary

- Not defoliating slows skinset, but not always immediately
- Some crops (Jelly seed, Maris Piper and Georgina ware) were fully skinset after 3-4 weeks. Royal not set sufficiently even after 4 weeks
- Yield: no significant difference across methods: typically 10 t/ha yield gain by undefoliated crops in 3 weeks from T1
- No effect of defoliation method, chemical or timing on vascular browning or stemend necrosis
- Stolon detachment. Some prolonged adhesion in Royal. Undefoliated fewer attached stolons. Virtually no stolon plug removal in any crop

Maris Piper SPot North 5 September

Ground cover Maris Piper SPot North (%)

Treatment	T1 (5 September)	T2	Т3	05-Sep	12-Sep	19-Sep	26-Sep
1	Reglone	Reglone		99	7	0	0
2	Flail + Spotlight			98	0	0	0
3	Flail + Gozai			98	0	0	0
4	Gozai	Spotlight		99	21	1	0
5	Spotlight	Gozai		99	10	2	0
6	Spotlight (+ Shinkon)	Gozai (+ Shinkon)		98	14	0	0
7	Spotlight + Gozai	Spotlight + Gozai		99	12	0	0
8	None	None		99	87	46	32
9	Pelargonic acid	Spotlight		99	38	2	0
10	Spotlight	Gozai	Spotlight	99	13	2	0
11	Saltex	Spotlight		99	2	0	0
	S.E. (30 D.F.)			0.5	3.0	2.0	1.1
	Control (None)			99	87	46	32
	Reglone			99	7	0	0
	Pelagonic acid Virtu	ally no leaf afte	r 14 dav	99	38	2	0
	Spotlight/Gozai	any no loar are	i i t duy	99	15	1	0
	Flail			98	0	0	0
	Saltex			99	2	0	0

Skinning (% surface area removed in barrel)

Treatment	T1 (5 September)	T2	T3	19-Sep	26-Sep
1	Reglone	Reglone		5.0	0.9
2	Flail + Spotlight			5.4	0.8
3	Flail + Gozai			5.4	0.9
4	Gozai	Spotlight		6.2	1.2
5	Spotlight	Gozai		5.6	1.2
6	Spotlight (+ Shinkon)	Gozai (+ Shinkon)		5.2	1.2
7	Spotlight + Gozai	Spotlight + Gozai		6.1	0.9
8	None	None		8.3	3.0
9	Pelargonic acid	Spotlight		6.5	1.8
10	Spotlight	Gozai	Spotlight	5.9	1.2
11	Saltex	Spotlight		5.7	0.9
	S.E. (30 D.F.)			0.56	0.37
	Control (None)			8.3	3.0
	Reglone	Skineot off	or 14 days	5.0	0.9
	Pelargonic acid		ei 14 uays	6.5	1.8
	Spotlight/Gozai			5.8	1.1
	Flail			5.4	0.9
	Saltex			5.7	0.9

Estimating the optimal N application rate

N fertilizer recommendation: SPot Scotland

Step	Process	Factors	Outcome
1	Calculate soil nitrogen supply (SNS)	Cereal stubble, medium soil in a usually high rainfall area	SNS Index = 1 (soil will supply 60-80 kg N/ha)
2	Identify determinacy group	Maris Piper	Variety group = 3 (indeterminate)
3	Calculate season length	End of May (emergence) to mid September (defoliation)	Season length = 110 days
4	Calculate initial N requirement of crop		147 kg N/ha
5	Calculate supply from organic manures		0 kg N/ha
6	Fertilizer required		147 kg N/ha

Effect of intended season length and variety on N requirement

What is determinacy in potato varieties?

Indeterminate variety

variety

AHDB Determinacy Project 2018 3 metrics of Determinacy

Above ground nodes More = Indeterminate

Harvest Index =

 $\frac{\textit{Weight of tubers}}{\{\textit{Weight of tubers}+\textit{Weight of haulm}\}} \times 100 \ \%$

Integrated ground cover Larger = Indeterminate

Above ground nodes NIAB

Calculation used to estimate Nitrogen Grouping of a new variety

		Number		Difference			
		of main-		in the	Difference		
		axis		number of	in number		Rounding
		leaves	Change in	leaves	of leaves	Estimate of	value to
Varieties		> 5 mm	number of	between	converted	Nitrogen	nearest
grown in		(mean	leaves per	the New	to change	Group of	whole
similar	Nitrogen	of five	Nitrogen	Variety and	in Nitrogen	New	Nitrogen
conditions	Group	stems)	Group	Estima	Group	Variety	Group
Markies	4	38	$= (38 - 19) \div$				
Estima	1	19	(4 – 1)				
			= 6.3				
New	Unknown	24		= (24 – 19)	= (5 ÷ 6.3)	= (1 + 0.8)	2
variety				= 5	= 0.8	=1.8	

Ground cover development NIAB

Integrated ground cover NIAB

Analysis of historic data

	Number of crops	Integrated GC (% days)
Lady Claire (2)	23	6459 ± 227.5
Lady Rosetta (2)	105	6566 ± 140.3
Linton	12	6676 ± 359.9
Saturna (3)	52	7125 ± 165.6
Shelford	26	7135 ± 159.2
Markies (4)	6	7147 ± 455.6
VR808	65	7436 ± 96.6
Infinity	5	7460 ± 232.1
Arsenal	37	7488 ± 181.4
Hermes (3)	55	7711 ± 145.8
Brooke	5	8028 ± 221.1

Values in brackets are determinacy groups in Nutrient Management Guide

Fresh weight harvest index NIAB (55 DAE)

Relationship between metrics NIAB

Nitrogen recommendations

Identifying the variety determinacy group

Nitrogen recommendations split potato varieties into one of four groups according to their degree of determinacy (a measure of the crop's capacity to maintain leaf production after the first appearance of flowers). AHDB research at NIAB-CUF has consistently shown that for a given length of growing season, indeterminate varieties (variety groups 3 and 4) require less nitrogen than determinate varieties (variety groups 1 and 2).

The variety groups shown in Table 5.9 include the ratings for those varieties included in previous editions of this guide and for other varieties based on NIAB trials and breeder/agent experience of foliage habit (determinacy is not the same as the NIAB foliage-maturity score).

In addition, factors such as total nutrient balance, water availability and seed management, will also influence foliage longevity. The list is provided as an indication of determinacy groups but you are advised to seek the latest information from your agronomist or seed supplier for any particular variety.

Table 5.9 Variety determinacy groups Inform	mation provided by NIAB-CUF and AHDB
---	--------------------------------------

	Group					
	1	2	3	4		
	Determinate varieties	Partially determinate varieties	Indeterminate varieties			
	Short haulm longevity	Medium haulm longevity	Long haulm longevity	Very long haulm longevity		
Variety	Accord	Atlantic	Agria	Asterix		
	Annabelle	Amanda	Ambo	Cara		
	Anya	Arcade	Amora	Lady Balfour		
	Colmo	Carlingford	Cabaret	Markies		
	Estima	Charlotte	Caesar	Royal		
	Innovator	Courage	Cosmos	Vales Everest		
	Maris Bard	Dundrod	Cultra	Vales Sovereign		

Group				
1	2	3		
Determinate varieties	Partially determinate varieties	Indeterminate varieties		
Short haulm longevity	Medium haulm longevity	Long haulm longevity		
Minerva	Endeavour	Daisy		
Premiere	Harmony	Desiree		
Rocket	Juliette	Eos		
Vales Emerald	Kestrel	Fambo		
Winston	Lady Claire	Fianna		
	Lady Rosetta	Hermes		
	Marfona	Kerr's Pink		
	Maris Peer	King Edward		
	Maritiema	Lady Christl		
	Melody	Lady Valora		
	Miranda	Maris Piper		
	Mozart	Morene		
	Nadine	Navan		
	Nicola	Pentland Dell		
	Orchestra	Pentland Squire		
	Orla	Picasso		
	Osprey	Record		
	Pentland Javelin	Rooster		
	Rembrandt	Russet Burbank		
	Romano	Sante		
	Saxon	Sassy		
	Shannon	Saturna		
	Shepody	Slaney		
	Vivaldi	Stemster		
	Wilja	Valor		
		Victoria		

AHDE

Effect of N application rate on canopy persistence in Brooke (CUF 2007-9)

Effect of compaction and irrigation on nitrogen uptake. Maris Piper CUF 2006

No effect of N rate on black dol

Nitrogen	Incidence (%)	Proportion <5 % SA (%)	Severity (%-SA)
180	56.4	74.8	4.97
210	55.4	74.8	6.12
240	50.2	77.0	5.65
270	57.5	73.9	5.60
S.E. (30 D.F.)	3.60	2.83	0.783

Source: SPot East 2018

Increased N delays skinset

Summary

- Spotlight and/or Gozai straights or combinations all similar, but only 2-4 days slower in killing leaves than Regione or Saltex. Pelargonic acid slowest to act
- Spotlight/Gozai combinations no different to Reglone, flail, haulm-pulling or Saltex in terms of skinset at 3 weeks post-T1
- No effect of defoliation method, chemical or timing on vascular browning or stem-end necrosis or stolon adhesion
- Timing, water volume and conditions of application need more work or publication of data held elsewhere
- Crops demonstrating signs of "active senescence" easier to kill
- Aiming for visible loss of ground cover before chemical desiccation if possible
- Need to know season length and determinacy group for optimal N management
- Reduce insurance N: 28 kg is a 14 % reduction

Inspiring our farmers, growers and industry to succeed in a rapidly changing world

Agronomists' Conference 2019

Rooting and Water Uptake

Katharina Huntenburg

Soil conditions impact the whole plant

h

compacted,

drought

stressed

h

compacted,

Drought and Compaction limit shoot growth

2018

2018

Biomass mid-season predicts yield

compacted, deficit irrigation

uncompacted, deficit irrigation uncompacted, well watered

compacted, well watered

2018

2018 and 2019 combined

More small tubers under drought stress

Water extraction depth in May 2019

- Drought stressed plants extract water in deeper layers
- Plants in compacted soil show shallower water extraction

Measurements and Data analysis: G.Blanchy

Water extraction depth in July 2019

• Plants in compacted soil show shallower water extraction

Measurements and Data analysis: G.Blanchy

Soil conditions and irrigation impact yield

Thank you!