

Thrive to Survive Conference: Wales

18 February 2020

Presentation Information

Tillage, Soil & Crops in adversity

Blair M McKenzie

- soft, stable soil that allows root proliferation including to depth;
- can drain excess water but can hold water & nutrients;
- is not contaminated e.g. pesticides, heavy metals;
- has functioning "good" biology to cycle OM & nutrients; and
- free from pests & disease.

What do we know about ploughing?

How far will the soil move forward?How far will the soil move laterally?What information would help your estimate?

Perspective

Simple calculation 1 ha to a depth of 0.25 m =2500 m³. Assume bulk density 1200 kg m⁻³ means 3,000,000 kg soil moved.

Tillage erosion (movement of tilled soil downslope by gravity) overlooked problem.

Kouselou et al M 2018 Quantifying soil displacement and tillage erosion rate by different tillage systems in dryland, northwest of Iran. Soil Use and Management 34: 48-59.

Interactions between threats & synergies from benefits

- Compaction and erosion
- Loss of OM and compaction
- Soft soil and root proliferation

In situ measurements of stress and strain distribution

In collaboration with the University of Kiel, Germany but now at University of Kassel

Test vehicle

- Tractor, ripper, harrow and packer
- 9,2 Mg total load / 3,6 Mg wheel load
- 135 kPa contact pressure

Displacement measurement at 20cm

Study soil conditions under different management

Sites with long term cereals

 \star

Large shifts in soil management take years to establish a new equilibrium.

Non-inversion and ploughed at all sites.

Combined with experiments on rotational design and nutrients to determine best soil management practices.

Cultivar performance vs. soil management.

Sites operated at different scales

Mid Pilmore, JHI

STAR, NIAB-TAG

NFS, NIAB-TAG

Centre for Sustainable Cropping, JHI

Seasonal Changes : Mid-Pilmore

Taking field measurements in mid-late May each year. Stopped No-Till in 2015 as it was over-run with weeds. Other treatments finished at end 2016. Note winter conditions.

	Winter	Rank order of the	Rank order of the mean daily
	(December –	winter rainfall for	winter temperatures for the
	February)	the 62 available	62 available winters
	rainfall (mm)	winters	
	in months		
	preceding soil		
	measurements		
2011-12	108	57	23
2012-13	276	6	21
2013-14	290	4	18
2015-16	380	1	9

winter 2012 dry: winter 2013 & 2014 wet: winter 2016 record wet

Weather: soil conditions in spring cereal in May following mild winters with different rainfall.

Dry winter 11/12 Wet winters 12/13 & 13/14 Extreme wet 15/16

Waterlogging of soil causes slumping, stops aerobic processes, denatures OM, increases erosion risk,

2013, 2014 & 2015 identical genotypes and agronomy

Replicated plots (6 m x 1 m) – treat yields as relative

30 genotypes under established cropping systems

Continuous barley for > 10 years

Plough (x3) vs shallow non-inversion (Min-till) with same agronomy

Mean cultivar yield response differences between tillage treatment.

Mean cultivar yields ranked by difference between non-inversion and inversion tillage treatment.

Non-inversion yields were lower than inversion yields in every year (no differences between the three inversion tillage treatments). Evidence for both winter and spring barley.

The highest yield cultivars under non-inversion tillage tended to have the highest yield under ploughing but the yield difference between inversion and non-inversion was not correlated with cultivar yield overall.

Breeding under ploughed systems.

STAR Project

(Sustainability Trial for Arable Rotations)

In the managed approach the cultivation regime is decided annually by the project steering group; this decision is based on soil conditions / assessments, previous cropping, weed burden and local best practice. The techniques used have ranges from single pass approaches through to ploughing.

STAR: long term yield and margin trends (all crops)

(Heavy soil: Hanslope / Beccles series)

Years 2006-2015

	Relative yield return (relative to ploughed approach)				
	Winter	Spring	Cont	Alt Fallow	Mean
Plough	100	100	100	100	100
Managed	95	103	107	94	100
Deep	99	97	98	99	98
Shallow	93	93	100	98	96
Average	97	98	101	98	

	Cumulative gr	oss margin minus co	osts (£/ha)
	Mean		Mean
Plough	4326 (100%)	Winter	6103
Managed	4572 (106%)	Spring	4100
Deep	4516 (104%)	Cont	4315
Shallow	4272 (99%)	Alt Fallow	3183

NIAB TAG New Farming Systems (NFS)

- NFS cover crop and cultivation experiment
 - 4 cultivation systems (plough, deep and shallow non-inversion and managed)
 - ± autumn cover crops ahead of spring sown crops
 - medium soil (Ashley series)

Rotation	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	Year 9	Year 10
	(2008)	(2009)	(2010)	(2011)	(2012)	(2013)	(2014)	(2015)	(2016)	(2017)
Spring break based	ww	sosr	ww	sbn	ww	sbrly	wosr	WW	SO	WW

Long term yield and margin (all crops 2009-16)

	Relative yield (cf. plough)	Cumulative gross margin minus costs(£/ha)	Relative margin (cf. plough)	National Agronor
Plough	100	4133	100	Evaluating cultivation The New Farming Systems (NF of experiments and system The project aims to explore was sustainability, stability and output
Managed	100	4468	108	farming systems. The research is a sandy loam soil at Mor
Deep	95	4364	106	
Shallow	89	4131	100	
Average	-	4274		

(margins as gross output minus input costs and direct machinery costs)

Long term trends in yield and margin data – summary

	Plough	Deep non- inversion	Shallow non- inversion
l l	Yield - all	crops (% of plo	bugh)
STAR	100	98	96
NFS	100	95	89
Yie	eld - winte	r wheat (% of	plough)
STAR	100	100	98
NFS	100	100	96
Cur	nulative m	argin - all crop	os (£/ha)
STAR	4326	4516	4272
NFS	4133	4364	4131

Cumulative yield (t/ha) margin (£/ha) for NFS years 6 (2012/13) to 9 (2014/15)

	Cumulative yield over seasons 6-9			Cumulative margin over seasons 6-9			
		(t/ha)		(£/ha)			
Tillage	No	Cover	Mean	No	Cover	Mean	
	cover crop	crop		cover crop	crop		
Plough	27.63	27.38	27.51	2295	2210	2253	
Managed	28.29	28.04	28.17	2604	2533	2569	
Shallow	27.27	27.67	27.47	2457	2479	2468	
Deep	28.68	28.21	28.45	2557	2461	2509	
Mean	27.97	27.83	-	2478	2421	-	

Yield response (%) to the use of a brassica cover crop in the NFS long term rotation study at Morley.

• Generally positive responses with cover crops and shallow tillage systems. Benefits less clear where plough based systems were used

Questions from the Fife monitor farm on cover crops in Scotland

AHDB

- Will the soil be wetter / drier under a cover crop?
- Will cover crops help prevent erosion?
- Will the soil organic matter improve?
- Will there be more slugs?
- Will there be more earthworms?
- Will the yield of the following cereal crop be greater?

Experiment to (try to) answer these questions using farm scale equipment

Direct drilled cover crop followed by ploughed barley for 3 years replicated 3 times.

Strips 200 m long x 6 m wide (to suit our combine).

Sloping site at Balruddery.

Experiment to (try to) answer these questions using farm scale equipment at Balruddery Binns field 6.9 ha: strips 200m long x 6 m wide to suit our combine

3 blocks each with 8 strips (stubble control + 7 cover crops) = 24 strips for 3 years.

Cover crops were direct drilled into barley residue in early September with 30 kg N, 5.4 kg P and 19 kg K placed with the seed.

Rainfall & Temperature

15/16 winter (Dec, Jan, Feb) was wettest on record with 380 mm (since 1954). Long-term averages about 60 mm/month. 16/17 & 17/18 rainfall "normal". 17/18 cold winter and in late Feb to early March the "beast from the east" arrived which was detrimental to many plants.

Spring barley yield 3 years and mean

2016 average 7.8 t/ha. 2017 average 8.1 t/ha. 2018 average 6.4 t/ha

Spring barley yield mean of 3 years

2016 average 7.8 t/ha. 2017 average 8.1 t/ha. 2018 average 6.4 t/ha

Spring barley yield mean of 3 years by % Brassica

2016 average 7.8 t/ha. 2017 average 8.1 t/ha. 2018 average 6.4 t/ha

Interventions: Cover crops Why we are using them? Need to know

Currently analyzing data from 3 (very different) years of range of cover crops (or barley stubble) experiment followed by conventionally ploughed spring barley.

Some drying of the soil prior to sowing cereal

Any differences in soil fauna are minor

Help to minimize erosion risk

Benefit to following crop?

Possible changes to the nature of OM

Welcome to Terranimo[®] International

Terranimo[®] is a model for prediction of the risk of soil compaction due to agricultural field traffic

Start Terranimo[®] by clicking one of the buttons to the right

The different versions provide countryspecific soil types

Vejledning på dansk

Home 🕜 Help / Introduction 🔂 Create repo	me 🕡 Help / Introduction 🔂 Create report TERRANIMO [®] UNITED KINGDOM			
	Select n	nachine 🔞		
Big tractor Medium tractor Small tractor Big tractor with tracks Medium tractor with tracks	Medium tractor	Slurry spreader	Beet harvester Big baler Fertilizer Four wheeled straw wagon Mounted fertilizer	
Beet harvester Combine harvester Forage harvester Potato harvester Self-propelled sprayer Slurry spreader Track combine harvester	Click tyre/track Hold mouse over a tyre/t	k icon for changes rack icon to see specification	Mounted sprayer Potato harvester Slurry spreader Slurry spreader Slurry spreader Two wheeled straw wagon No implement	
Type the technical name of the tyre you want to use (e.g. The system will display the options available in the data b Traction Implement Select tyre 480/80R42, Agribib, Michelin, 157	800/50R34). (2) Pressure [bar] 1.8 4 Load [kg] 5400 4 50	2 1.7 2.2 2.7 3.2 3.7 4.2 00 1500 2500 Save X Cancel	2 4.7 5.2 5.7 6.2 6.7 7.2 3500 4500 5500	

🚹 Home 🔞 Help / Introduction 🔂 Create repo	t Terranimo [®] U	NITED KINGDOM	Language English 🔹 Login
🛛 Select machine 🛛 🖉 Describe site 🖉 Results	Contact stress 🛛 🚿 Results: Profile soil strength and str	ress	
	Select m	nachine 🕖	
330 HP tractor 170 HP tractor 90 HP tractor 90 HP tractor Potato harvester Potato harvester Self-propelled sprayer Surry spreader	170 HP tractor	Slurry spreader Funded Slurry spreader Control of the specification Control of the specifica	Beet harvester Big baler Fertilizer Four wheeled straw wagon Mounted fertilizer Mounted sprayer Potato harvester Slurry spreader Slurry spreader Slurry spreader Slurry spreader Mo wheeled straw wagon No implement
Type the technical name of the tyre you want to use (e.g. The system will display the options available in the data b Traction Implement Select tyre 710/45R22.5, ELS Radial, Nokian Save Cancel	800/50R34). (i) ase. Pressure [bar] [15] (i) Load [kg] 7000 (i) 50		3.5 4 4.5 5 5.5 6 5500 6500 7500 8500 9500 10500

age 🔘	Yes (only if recer	tly ploughed)	No			Site inf	ormation @)	
Autom	atic by soil type (Manual textu	Soil te	exture @	abase		Automation	c by wetness 🔘 Mar	Soil water @
ect soil	type ABERDEE	NSHIRE	•				Select wetne	Moist	▼
No.	Bottom [cm]	Clay [%]	Silt [%]	Sand [%]	Organic matter [%]	Bulk density [g/cm³]	No.	Bottom [cm]	Matric potential [hPa]
1	10	3.0	47.3	49.7	4.2	1.08	1	10	100
2	20	3.0	47.3	49.7	4.2	1.08	2	20	100
3	30	3.0	47.3	49.7	4.2	1.08	3	30	100
1	40	4.4	43.1	52.5	4.0	1.19	4	40	100
5	50	3.1	20.5	76.4	0.6	1.52	5	50	100
	60	3.2	19.2	77.6	0.1	1.89	6	60	100
)	70	3.2	19.2	77.6	0.1	1.89	7	70	100
7	80	3.2	19.2	77.6	0.1	1.89	8	80	100
) 7 3	00	2.2	19.2	77.6	0.1	1.89	9	90	100
	90	5.4		77.6	0.1	1.89	10	100	100
) ;) D	90 100	3.2	19.2	//.6			11	110	90
) ;) D	90 100 110	3.2 3.2 3.2	19.2 19.2	77.6	0.1	1.89			
)))) 1 2	90 100 110 120	3.2 3.2 3.2 3.2	19.2 19.2 19.2	77.6 77.6 77.6	0.1 0.1	1.89 1.89	12	120	80
9 3 9 0 1 2 3	90 100 110 120 130	3.2 3.2 3.2 3.2 3.2	19.2 19.2 19.2 19.2	77.6 77.6 77.6 77.6	0.1 0.1 0.1	1.89 1.89 1.89	12 13	120 130	80 70
6 7 8 9 10 1 2 3 4	90 100 110 120 130 140	3.2 3.2 3.2 3.2 3.2 3.2 3.2	19.2 19.2 19.2 19.2 19.2	77.6 77.6 77.6 77.6 77.6	0.1 0.1 0.1 0.1	1.89 1.89 1.89 1.89	12 13 14	120 130 140	80 70 60

Terranimo - Conclusions

Terranimo model : have a play – it's free

Real machinery and UK soils data

Does my choice of tyre and inflation pressure matter?

do I need to change inflation from road to field?

Is it important to avoid wet conditions?

Can I suggest limits on what contractors can do?

What's just arrived - tracks

Some of this talk is based on results from long-term experiments

Funded in different ways by multiple agencies Multiple organizations involved

For full 176 page report (or summary) see:

https://cereals.ahdb.org.uk/publications/2017/july/06/pla tforms-to-test-and-demonstrate-sustainable-soilmanagement-integration-of-major-uk-fieldexperiments.aspx

Many people and funders to thank

AHDB

NIAB: Ron Stobart, Nathan Morris, Mark Stalham University of Aberdeen: Paul Hallett James Hutton Institute: Tracy Valentine, Tim George, Adrian Newton, Jonathan Holland, Kirsty Binnie, Jennifer Brown, Anna Taylor, Lawrie Brown, Dave Guy SRUC: Bruce Ball, Joanna Cloy Kings Seeds: Alan Johnson

Funding from Scottish Government & AHDB

Used the platforms to measure changes in soil carbon

Why carbon? - relate to soil function

Need to allow for soil depth i.e. consider entire profile

Need to all for differences in soil bulk density

May need to consider stone content

Carbon – STAR allowing for bulk density

Figure 4.4.2: Soil organic carbon by tillage treatment and depth in STAR. D= deep non-inversion tillage, M= minimum or non-inversion tillage, P= mouldboard plough/inversion.

Carbon – NFS allowing for bulk density

Figure 4.4.4: Soil carbon distribution by depth and tillage treatment in the NFS site. D= deep non-inversion tillage, M= minimum or non-inversion tillage, P= mouldboard plough/inversion.

Soil Carbon Mid-Pilmore

Soil carbon distribution by depth and tillage treatment in Mid-Pilmore. C= compaction treatment, M= shallow non-inversion tillage, N= No-Till, P= plough.

Carbon messages

Even after multiple years of No-Till there was no increase in soil carbon store (vs plough).

Similarly for non-inversion tillage vs plough.

Large applications of compost over multiple years (combined with non-inversion tillage) did increase soil carbon.

'Inspiring our farmers, growers and industry to succeed in a rapidly changing world'

© Agriculture and Horticulture Development Board 2017 | All Rights Reserved

News from the East

Tom Mead

Bleak House Farm

@meadsfarm

Business Priorities

- 1. Justifying Scale
- 2. Growing Good Crops
- 3. Sustaining two Families
- 4. Making the most of Time

Justifying Scale

Bleak House Farm

- Started 1926 (35 acres, Milk Round and Coal Round)
- Today (312ha)
- 127 ha Owned
- 62 ha Contract Farming
- 65 ha rented on AHA and FBT's
- 58 ha stubble to stubble contracting on 2 holdings

Area

CEREALS & OILSEEDS

Labour

Machinery

- 1 John Deere
 6190R 190HP
- 1 John Deere
 6155R 155HP
- JCB Forklift
- 7.5m Claas
 - Combine
- 30m Sprayer
- 6m tine Drill

Innovation & Technology

- Section control
- **Yield mapping**
- Variable rate inputs
- Implementation cost V return

Trimble CFX-750 Display with Field-IQ Six boom sections

Chart 6: Sprayer, Drill and Combine utilisation per cropped hectare⁶

Chart 5: Horsepower per cropped hectare⁵

Storage

- 1000t Flat Store New in 2012
- 1000t Flat Store New in 2017
- 250t Brick built barn suitable for short term
 - storage
- 175t Brick built barn suitable for medium term storage

Growing Good Crops

Soil Type

- Sandy Loam over Chalk
- Sewage sludge applied for the last 10 years
- Small fields, straight
 Phosphate and
 potash applied
 depending on sample
 results
- Liquid N used since 2016

Crop Rotations

Current Cropping

150 Ha Wheat

53 Ha Winter Barley

25 Winter Beans

30 Ha Sugar Beet

32 Ha Peas

2 or 3 cereals followed by break crops of

- Sugar Beet
- Pea's
- Winter Beans
- OSR
- Winter Oats
 Decisions depending on Crop prices field conditions/ locations, weed control options

Establishment

Option 1

Plough Roll Cultivate Drill Roll Started Drilling 30th Sept Finished Cereals 15th November TSP Applied to seedbed Pre Drilling or sewage cake.

<u>Option 2</u> Light Tine Cultivation 2nd Tine Cultivation Drill Roll

YEN Results

	Rank	Grain yield (t/ha)		Rank	Grain yield (% potential)		
	1	16.2		1		103	%
	2	15.4		2		98%	%
	3	14.1		3		96%	%
Your entry	138	9.3		103		57%	%
			_				
	AND SIZE						
GRAIN FORMATION A	ND SIZE		37.7				
GRAIN FORMATION A TGW, g Specific Wt, kg/hl	AND SIZE		37.7 75.7				
GRAIN FORMATION A TGW, g Specific Wt, kg/hl Grain length, mm	AND SIZE		37.7 75.7 6.6				
GRAIN FORMATION A TGW, g Specific Wt, kg/hl Grain length, mm Grain width, mm	AND SIZE		37.7 75.7 6.6 3.4				
GRAIN FORMATION A TGW, g Specific Wt, kg/hl Grain length, mm Grain width, mm Grain L:W, ratio	AND SIZE		37.7 75.7 6.6 3.4 1.9		0	20	40
GRAIN FORMATION A TGW, g Specific Wt, kg/hl Grain length, mm Grain width, mm Grain L:W, ratio Grain vol., mm3 Gn density kg/l	AND SIZE		37.7 75.7 6.6 3.4 1.9 39.8 1.0		0	20	40
GRAIN FORMATION A TGW, g Specific Wt, kg/hl Grain length, mm Grain width, mm Grain L:W, ratio Grain vol., mm3 Gn density, kg/l In-grain void	AND SIZE		37.7 75.7 6.6 3.4 1.9 39.8 1.0 0.3	% yield	0	20	40

YIELD FORMATION			
*Biomass, t/ha	16.5		
Harvest index, %	48		
Weighbridge grain yield, t/ha	9.33		
Combine grain yield, t/ha			
Agronomics yield, t/ha			
% yield potential	56.6%		
Spikelets, #/ear	16.1		
*Ears, #/m2	525		
Grains, #/ear	38		
*Grains, '000s/m2	20		
Grains set per g chaff	110		

80

60

100

The average % of yield potential across YEN entrants was 60% in 2018, compared to 50%, 51%, 60%, 40% and 56% in the previous five years.

Productivity

- Benchmarking
- Monitor farm program
- Lessons from other businesses
- Analysing market demands/ consumer needs
- New varieties, Improvements to plant breeding
- Chemistry
- Soil health
- Environmental Stewardship

Sustaining two families

Bleak House Farm

- Started 1926 (35 acres, Milk Round and Coal Round)
- Today (312ha)
- 127 ha Owned
- 62 ha Contract Farming
- 65 ha rented on AHA and FBT's
- 58 ha stubble to stubble contracting on 2 holdings

Diversification

Making the most of Time

Lessons from other businesses

TESCO Future Farmer Foundation

Food Group

- Customer Choices
- Efficient use of inputs
- Personal/family time important to be efficient
- 1 or 2% improvements add up
- Larger businesses having experts in different areas
- Environmental pressures
 - Cost of implementing Improvements
 Will it increase Profit?

Putting a precise science in a unprecise environment

Why become a Monitor farm?

Business Aims

1.Remaining a sustainable business 2.Increased diversification **3.**Maintaining resilient yields **4.Increasing Profit 5.Happy Farming**

How Resilient are we all?!!

THE FARMING COMMUNITY NETWORK

farmwell.org.uk

Haynes

MEN'S

FIT FOR FARMING

Men's Health Made Easy

RABJ

Thrive to survive – Forage session

Maximising the value of forage

Siwan Howatson

Total production costs (£/t DM) AHDB 250 227 200 Production costs (\mathcal{E}/t Utilised DM) 150 37 100 31 91 66 50 0 Grazed Grass Grass Silage (1st cut) Conc 18%

Fixed costs (£/t DM)

(Kingshay)

Cash costs (£/t DM)

Checking conserved forage requirements and stocks

his simple calculator can be used to understand your conserved forage requirement for your stock and used to evaluate the stocks.

t can be used to highlight any deficits so decisions can be made early

The small table of the right can be used to calculate hay and straw requirements if some the allocation was being replaced by straw or hay

Calculating conserved forage requirement for the autumn and winter

OR

Animal type	No. of stock	No. of weeks	Allocation (kg DM per day)	Dry matter (%)	Total requirements (tonnes FW)	Bales (@0.6t FW
Dairy cows - milking			15	30	0.0	0
Dairy cows - dried off			12	30	0.0	0
actating suckler cows			12	30	0.0	0
Dry suckler cows			10	30	0.0	0
Cattle (up to 200 kg)			6	30	0.0	0
Cattle (up to 400 kg)			9	30	0.0	0
Cattle (up to 600 kg)			12	30	0.0	0
wes (>65 kg)			1.6	30	0.0	0
wes (>50 kg)			1.3	30	0.0	0
			TOTAL		0.0	0
	Add safety margin (10-20%)		10		0.0	0
	TOTAL including safety margin				0.0	0

Effect of early cutting

	Early o	cutting	Conventional cutting		
	First cut	Second cut	First cut	Second cut	
ME (MJ/kg DM)	11.8	11.4	11.1	11.3	
Yield (t DM/ha)	4.2	4.1	5.5	2.5	
Total yield (t DM/ha)	8.3		8.0		
Energy yield (MJ)	96,300		89,300		
Potential milk yield (L)	18,519		17,173		
Contracting costs/ L (@£131/ha)	0.70p		0.76p		

Thomas et al., 1998

Moisture content

The target DM should be: ✓ 28–32% for clamp silage ✓ 35–45% for bales of silage

Amount of squeezing	DM %
Juice easily expressed by hand	<20
Juice expressed with some difficulty	20–25
Little or no juice expressed but hands moist	>25
"Roll" shape	DM 0/
Dali shape	
Ball retains its shape and some free juice expressed	<25
Ball retains its shape and some free juice expressed Ball retains its shape but no free juice is expressed	<25 28-32
Ball retains its shape and some free juice expressed Ball retains its shape but no free juice is expressed Ball slowly falls apart	<25 28–32 32–40

Cutting date targets

- Before cutting, targets to aim for include:
 - ✓CP 16%
 - ✓ Sugars 2-3%
 - ✓ Nitrate-N levels <0.1%

A week's delay in cutting first cut

- DM yield ① 10%
- Digestibility 4 3.5% units
- ME 4 0.6 MJ/kg DM

A LOT COULD HAPPEN IN A WEEK. JUST LOOK AT The last one.

JULIA QUINN

Chop length

DM of silage	Ideal chop length	
28–35%	2.5–5 cm	
20–28%	8 cm	
< 20%	8–10 cm	

Managing silage effluent

DM % of crop	Amount of effluent released
25	Little
18	100 litres/tonne fresh weight per day at peak flow
15	200 litres/tonne fresh weight per day at peak flow

The role of precision technology

Most common reasons of compaction...

DAIRY

Soil compaction study

Tractor compaction $\sqrt[3]{grass}$ dry matter yield by 22%

Controlled traffic farming

• A management tool used to reduce the damage to soils caused by heavy/repeated passing of machinery

Study sites

Area covered

■Normal ■CTF

Silage DM yield

On-farm experience

Cost of CTF

- Low accuracy and non-repeatable positioning manual steered system = £18.70/ha for +100ha
- Fully integrated system, high accuracy systems = £85.50/ha for +200ha

Top tips for CTF implementation

Working width that is compatible with all farm machinery

Use permanent field markers to aligned GPS Field sizes and area to be cut need to be considered

THE SUCCESS OF A PRODUCTION DEPENDS **ON THE ATTENTION PAID** TO DETAIL

DAVID O SELZNICK

Thank you for listening Questions?

AHDB

E: siwan.howatson@ahdb.org.uk M: 07580741010 Siwan_howatson

Farming through challenge and change

18th February. 2020.

Eurig Jenkins

Pentrefelin Farm Ltd

- Grazing platform 94ha (232 acres)
- 410 spring calving NZ Friesians
- Block calving
- Aim to rear 100 heifers annually (surplus sold)
- Litres per cow 6069
- Milk from forage 4593 litres
- Concentrates fed per cow 1025kg

How we aim to be the best (why aim to be average). Our goal top 10% kpi

- Measure everything. Grass, weigh stock
- Set high standards
- Benchmark
- Attention to detail
- Pay staff on time (1st of following month worked)
- Friday night beer after milking
- Encourage days off
- Have non cow days

Strengths of the business

- Family labour
- Block calving
- Ability to grow grass
- Infrastructure
- Low cost structure
- High output
- Succession in place
- Merlin discussion group (mix with like minded)

Threats of the business

- Grazing platform
- TB
- Milk price
- Availability of rented ground

Opportunities

- Became demo farm for farming connect
- Study tour Sweden and Denmark
- Travelled visiting farms around the world
- Now a Mentor on the Mentoring scheme

Why keep it simple

- All grass
- Easy to manage
- Everything planned out same as last year (dates never change)
- Profitable
- Give animals fresh grass every 12 hours

