

Fungicide Performance in Wheat 2010 -2011

Septoria tritici (Mycosphaerella graminicola)

In 2009 and 2010

- Lower pressure due to dry springs
- Mainly protectant activity in 2010

In 2011

A danger of complacency:

- Septoria tritici is potentially the most yield damaging pathogen
- Spring rainfall will determine the extent of the epidemic

Below-average Spring rainfall in 2009 & 2010

New SDHI / triazole mixtures approved

Aviator235 Xpro

75 g/litre of bixafen + 160 g/litre of prothioconazole

- new active ingredient (bixafen) and formulation (Xpro)
- version tested contained 150 g/litre prothioconazole
- evaluated in HGCA trials since 2008.

Seguris

125 g/litre of isopyrazam + 90 g/litre of epoxiconazole

- new active ingredient (isopyrazam) in wheat
- tested as tank mix in 2008 & 2009, co-formulation in 2010.

New SDHI / triazole mixtures approved

Succinate Dehydrogenase Inhibitors (SDHI's)

- a new mode of action for wheat foliar disease control
- same chemical group as boscalid (in Tracker)
- single site mode of action: use in mixtures e.g. with triazoles.

HGCA

Fungicides included

Product Used	Full Dos (I/ha)	se	Active Ingredients
Aviator Xpro	1.25		75 g/l bixafen + 150 g/l prothioconazole
Seguris	1.0		125 g/l isopyrazam + 90 g/l epoxiconazole
Brutus	3.0		37.5 g/l epoxiconazole + 27.5 g/l metconazole
Opus	1.0	6	125 g/l epoxiconazole (SC)
Ignite	1.5		83 g/l epoxiconazole (EC) (from 2010)
Proline (Proline275)	0.8 <i>(0.72)</i>		250 g/l prothioconazole (275 g/l prothioconazole) (from 2010)
IZM solo	1.0	1	125 g/l Isopyrazam
Comet200	1.25		200 g/l pyraclostrobin
Firefly	1.5		50 g/l fluoxastrobin + 100 g/l prothioconazole

Septoria tritici protectant activity 2008 - 2010 (all sites)

* only available in mixtures

Septoria tritici eradicant activity 2008 - 2010 (all sites)

^{*} only available in mixtures

Yield t/ha (single spray treatments) Septoria tritici sites 2008 – 2010

n=4 trials

Fungicide Performance Septoria tritici Half label rates at T1 & T2: 2008 Yields

Fungicide Performance Septoria tritici Half label rates at T1 & T2: 2010 Yields

Fungicide Performance Septoria tritici Half label rates at T1 & T2: 2008 – 2010

Septoria tritici activity 2010 (two sites) Protectant Eradicant

Summary: Septoria tritici and Yield

When compared as single or two-spray treatments:

- Combinations of bixafen + prothioconazole (as Aviator Xpro) and isopyrazam + epoxiconazole (as Seguris) add substantially to septoria control compared to Proline or Opus alone;
- Aviator Xpro has given similar level of septoria control to Brutus, and Seguris has shown comparable protectant activity;
- Aviator Xpro has given an average yield advantage of 0.35 t/ha over best triazole treatment (for half label rates applied twice);
- Seguris has given yields that are at least as good as Brutus;
- Ignite at least as effective as Opus against septoria in 2010.

Brown rust development slowed by:

- Frosts
 - affecting spore survival
- Overwinter temperatures
 - reducing infection efficiency
 - extending latent period
- However, many varieties are at risk
 - over 40% of UK wheat area rated 4 or less
 - susceptible varieties include:

Cordiale Solstice
Grafton Duxford
JB Diego Gallant

Brown rust 2008 and 09

* only available in mixtures

Yellow rust

2010

- Epidemic checked by winter frosts and dry spring
- Significant disease developed in some areas from April onwards

2011

- Early epidemics now unlikely
- April / May threat large, if conditions favourable
 - Oakley and Robigus account for >10% of sown area
 - Further 25% of area rated 5 or less

Yellow rust 2008 and 2009

^{*} only available in mixtures

Powdery mildew

2010

- Spring conditions generally too dry
- Slow N uptake / thin crops reduced pressure

2011

- Found widely in autumn 2010
- Later sowings / backward crops likely to favour disease development
- Significance will depend on spring conditions

2009 Half label rates at T1 and T2 - mildew

^{*} only available in mixtures

Summary: Other diseases

Yellow Rust

- Brutus and Opus have been the most effective products;
- New SDHI Isopyrazam very active on yellow rust.
- Aviator Xpro gave good control of yellow rust, especially at more than half label rate.

Brown Rust

- Brutus and Comet (pyraclostrobin) highly active on brown rust;
- Aviator Xpro has given very good control, significantly better than prothiconazole alone (Proline).
- Isopyrazam highly active on brown rust

Mildew

- Data from 2009 indicates that Aviator Xpro can give good control, comparable to standard mildewicides.
- Isopyrazam adds useful activity on mildew control

For more information...

Website: www.hgca.com/diseasecontrol

Barley Fungicide Performance 2010 – 2011

New SDHI Products

Siltra Xpro

bixafen 60 g/l + prothioconazole 200 g/l

Bontima

cyprodinil 187.5 g/l + isopyrazam 62.5 g/l

Fungicides included

Product	Full Dose		Active Ingredients
Used	(l/ha)		
Bontima	2.0		187.5 cyprodinil + 62.5 g/l isopyrazam
Comet200	1.25		200 g/l pyraclostrobin
Fandango	1.25		100 g/l fluoxastrobin + 100 g/l prothioconazole
Proline	0.8		250 g/l prothioconazole
(Proline275)	(0.72)		275 g/l prothioconazole (2010 only)
Siltra Xpro	1.00		60 g/l bixafen + 200 g/l prothioconazole
Bravo	2.0		500 g/l chlorothalonil
Tracker	1.5		233 g/l boscalid + 67 g/l epoxiconazole

Rhynchosporium protectant activity 2009 - 2010

Rhynchosporium eradicant activity 2009 - 2010

Net Blotch protectant activity 2010

Net Blotch eradicant activity 2010

Brown rust protectant activity 2008 - 2009

Ramularia protection 2009 - 2010 Spring barley

Barley Summary

Siltra Xpro

- Very good control of all foliar diseases tested;
- New standard for rhynchosporium;
- Useful mildew activity.

Bontima

- Very good control of net blotch, ramularia, brown rust;
- Good control of rhynchosporium (but inferior to Proline / Siltra);
- Useful mildew activity.

Thank you

Fungicide performance in oilseed rape 2010 - 11

Phoma leaf spot and stem canker

• Late epidemic in 2009/2010

Earlier onset in 2010 – October

Delayed by cold conditions

Re-infection occurring in crops now

Phoma fungicide trial – spray dates 2010

- cv Catana
- Boxworth sprayed 1 Dec (GS 1,6-1,9) and 15 Feb 42% phoma at T1
- Terrington sprayed 1 Dec (GS1,6-1,8) and 6 Jan 47% phoma at T1

Product choice important – use Poraz as a protectant

Slide 4

Change title - suggestion was 'Choose your product carefully'

Significant responses to full rate Prosaro and Poraz at drought-stressed site

HGCA Fungicide Performance: Phoma control and yield, Terrington 2010

15 Can we tailor this slide to 'Managing the threat? and show how disease control can be reduced from last year, but explain the threats that still remain laurat, 12/01/2011

Product performance – moderate disease canker and yield

Source: Six HGCA trials 2006 - 2008

Phoma control

- Good control with fungicides at half dose
- Positive yield trends in low disease situations
- Prochloraz should be used as a protectant treatment
- Responses in drought stressed situation in 2010
- Potential for responses of 0.5 t/ha in 2011

Light leaf spot

- 2010 epidemic less damaging to yield than usual (cold + dry spring)
- 2011

 most crops had at least one autumn fungicide
- Incidence increasing in all regions
 CropMonitor

Light leaf spot in spring has been increasing for the last 5 years

Old logo for Crop Monitor. Will send new one. laurat, 12/01/2011 18

Light leaf spot fungicide trial – spray dates 2010

- cv Castille
- Malton sprayed 4 Dec (GS 1,6) and 8 April
- cv NK Bravour
- Aberdeen sprayed 28 Oct (GS1,4) and 26 April

All treatments gave light leaf spot control in Aberdeen - low severity

HGCA Fungicide Performance: Light leaf spot control Aberdeen 26 April 2010

All treatments gave control of light leaf spot, Malton, N Yorks — no yield differences

HGCA Light leaf spot control (post T2), High Mowthorpe, May 2010

Use resistant varieties for light leaf spot control

Large yield benefits from varieties with good light leaf spot resistance

- Importance in England still underestimated
- 15% planted affected at stem extension = 5% yield loss
- Older azoles still giving control and economic responses
- Exploit varieties with good resistance where farms have difficulty controlling light leaf spot

- Late infection recorded into June
- Sclerotinia infection found after some single fungicide sprays
- Two spray programmes worked well at high risk sites

SkleroPro infection model – Koch et al. 2006

• Minimum requirements for infection:

7°C and 80% RH for 23hr

- Potential decision making tool
- Identifies infection events in England

Slide 17

Enlarge the reference for Koch and give longer explanation of SkleroPro and how it is not a tool that growers can easily use laurat, 12/01/2011

Fungicide persistence 3 weeks – needed 2 sprays in 2010

Sclerotinia surveys WOSR England 1986-2010 – low in 2010

Crop Monitor logo laurat, 12/01/2011 16

HGCA

Sclerotinia incidence (% plants)

Region	2007	2008	2009	2010
East	1.9	7.9	0.1	1.3
M & W	2.5	2.0	0.9	0.3
North	1.6	3.4	0.2	0.2
South East	6.5	6.8	1.8	0
South West	34.7	7.6	0.4	0.9
Mean	5.7	6.2	0.5	0.7
				<u>CropMonitor </u>

Crop Monitor logo laurat, 12/01/2011 17

Sclerotinia fungicide trial – spray dates 2010

Hereford cv DK Cabernet

Sprayed 13 May GS 4,5

Essex cv Vision

Sprayed 5 May GS 4,5

Products stretched in 2010 by late flowering infection (early June)

HGCA Fungicide Performance: sclerotinia control Hereford 2010

Responses c. 1 t/ha from all products, Hereford 2010

HGCA Fungicide Performance: yield responses to sclerorinia control Hereford 2010

Untreated sclerotinia incidence and yield response to control

(data taken from 3 products at full dose from HGCA-funded Fungicide Performance trials 2006 - 2010)

- Higher risk for next few years
- Sclerotinia control usually justifies high doses
- Spray timing is critical
- Protectant activity for 3 weeks
- Consider 2-spray programmes for high risk sites