Fungicide resistance stewardship

Fiona Burnett,
Professor Applied Plant Pathology
Chair Fungicide Resistance Action Group UK

Leading the way in Agriculture and Rural Research, Education and Consulting
Challenges and choices 2020

Pesticide withdrawals
Evolving diseases and resistance
New products

• What are the resistance issues and how can we manage them?
• Where and when to use new and existing products?

• Chlorothalonil withdrawal
 (Authorisation ends: (a) 20 November 2019 for sale and distribution & (b) 20 May 2020 for the disposal, storage and use of existing stocks)
Resistance - threat of additional losses

- Fungicide resistance is eroding established actives and threatening newer ones
- Current resistance status for major arable crops is building
- Adds to input costs and reduces outputs

- What are the principals of resistance management?
- What information is available and useful
- How can we apply it?
- Opportunity and necessity to improve practice
Revystar XE

New fungicide product for 2020

- Contains a new triazole (Revysol) and an SDHI (Xemium)
 - 100 g/L mefentrifluconazole + 47.5 g/L fluxapyroxad
- Maximum individual dose 1.5 L/ha
- Maximum of two applications
- To be applied before GS69
- Approved for wheat, barley, oats, rye, triticale, spelt and durum wheat
Inatreq™

- Currently waiting approval and should be launched in 2020
- Contains fenpicoxamid
- Derived from a natural compound produced by fermentation of an Actinomycete (Streptomyces spp.)
- New mode of action - Quinone Inside Inhibitor (Qil) blocking mitochondrial respiration
- No cross-resistance to existing cereal fungicides but single site active so needs careful stewarding against resistance
- To be used once and only in mix with other actives to minimize the risk of resistance development.
- Best used as a protectant treatment or in the earliest stages of disease development.
Cereals: resistance issues

<table>
<thead>
<tr>
<th>Fungicide Group</th>
<th>Diseases affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strobilurins</td>
<td>mildew (wheat and barley), septoria, net blotch, tan spot, ramularia, rhynchosporium, M. nivale</td>
</tr>
<tr>
<td>Azoles</td>
<td>mildews, septoria, ramularia, rhynchosporium, tan spot</td>
</tr>
<tr>
<td>SDHIs</td>
<td>net blotch, septoria, ramularia, tan spot</td>
</tr>
<tr>
<td>MBCs (no longer used)</td>
<td>eyespot, septoria, M. nivale, ramularia</td>
</tr>
<tr>
<td>Quinoxyfen</td>
<td>wheat mildew, barley mildew</td>
</tr>
<tr>
<td>Metrafenone</td>
<td>wheat mildew, barley mildew</td>
</tr>
<tr>
<td>Chlorothalonil</td>
<td>None</td>
</tr>
<tr>
<td>Folpet</td>
<td>None</td>
</tr>
</tbody>
</table>
Have we learned anything???

- Before launch the base-line sensitivity and normal range determined
- Risk assessment made and resistance management plans put in place and assessed by approving authority
- Mix of statutory and stewardship measures
- Decisions will impact on grower profit and industry return on investment so evidence has to be both robust and pragmatic
- Monitoring part of conditions of approval for higher risk products
Resistance management issues

- Stewardship measures based on reduced reliance
- Heavy usage of an a.i. confers a massive advantage to any resistant individuals
- Advice is to use all available methods to reduce pressure on chemistry – mix, alternate, use low-risk multisites
- Difficulties in motivating industry to be collectively responsible
- Complex science, confused messages
Fungicide Resistance Action Group - UK

25 Members - Independent researchers, Crop Protection Association, Fungicide Resistance Action Committee, agronomists, regulator.

• Gather and interpret reports of fungicide resistance issues and arrive at UK consensus view
• Promote practical guidelines on status and management of fungicide resistance in UK
• Produce, publish and promote educational material that will assist in the understanding of and reduce the incidence of resistance in plant pathogens.
 o Website and Guidelines
 o Recommendations for label restrictions / changes

https://cereals.ahdb.org.uk/frag
More practical messages and higher profile?

Fungicide Futures – supported by AHDB

- Combine anti-resistance management information, developed and published by FRAG-UK, with the power of AHDB’s communications channels
- Stronger anti-resistance advice and consistent messages
- Focus on converting anti-resistance science into on-farm practice
- Putting anti-resistance at the heart of fungicide programme planning futures
- Messages timed with key growth stages
- Published on the AHDB website at cereals.ahdb.org.uk/fungicidefutures
Generic anti-resistance strategies

- Follow IPM principles and use pesticides in targeted and sustainable ways
- Make full use of alternatives
- Reduce reliance on fungicides
- Use as little fungicide as necessary to do the job (both dose and number of applications)
- Use balanced mixtures of products
- Alternate products
- Avoid multiple repeat dose programmes
- Utilise low risk fungicides (multisites)

- Difficulties in getting stewardship principles taken up in practice
- Difficulties in motivating industry to take responsibility
What’s the evidence?

<table>
<thead>
<tr>
<th>Method</th>
<th>Increase selection</th>
<th>No effect</th>
<th>Decrease selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase dose</td>
<td>16</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Increase spray number</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Split the dose</td>
<td>10</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Add mixture partner</td>
<td>1</td>
<td>6</td>
<td>46</td>
</tr>
<tr>
<td>Alternate (replace sprays)</td>
<td>1</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>Adjust timing</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

van den Bosch et al. 2014 Governing principles can guide resistance management tactics

Annual Review Phytopathology
Dose and number of applications that maximize fungicide effective life - exemplified by Zymoseptoria tritici on wheat

- A model analysis for a fixed number of applications,
- Selection ratio increases with the total dose in the spray programme.
- Selection is greatest at highest total dose
Frequency distribution of time from fungicide introduction to first detection of resistance (FDR time) for 67 cases of resistance in plant pathogens in Europe.

Evaluation of a matrix to calculate fungicide resistance risk

Pest Management Science, Volume: 70, Issue: 6, Pages: 1008-1016,
First published: 06 September 2013, DOI: (10.1002/ps.3646)
The effect of mixing a low-risk and a high-risk fungicides on the number of growing seasons before resistance to the high-risk fungicide emerges in a population of M. graminicola on winter wheat.

<table>
<thead>
<tr>
<th>Dose rate of the low-risk fungicide</th>
<th>Dose rate of the high-risk fungicide</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>0</td>
<td>46°</td>
</tr>
<tr>
<td>10</td>
<td>55°</td>
</tr>
<tr>
<td>20</td>
<td>65°</td>
</tr>
<tr>
<td>30</td>
<td>73°</td>
</tr>
<tr>
<td>40</td>
<td>78°</td>
</tr>
<tr>
<td>50</td>
<td>82°</td>
</tr>
<tr>
<td>60</td>
<td>80°</td>
</tr>
<tr>
<td>70</td>
<td>81°</td>
</tr>
<tr>
<td>80</td>
<td>81°</td>
</tr>
<tr>
<td>90</td>
<td>81°</td>
</tr>
<tr>
<td>100</td>
<td>81°</td>
</tr>
</tbody>
</table>

*The low-risk fungicide was assumed to be not-at-risk of resistance development, but unable to provide sufficient disease control when used alone. The resistant strain was assumed to be completely insensitive to the high-risk fungicide.

*The resistant strain was considered to have emerged when the number of resistant lesions reaches or exceeds a threshold (see text).

*The emergence times in the table were calculated for the default scenario, which assumes that i) fitness costs of resistance reduce the infection efficiency of the resistant strain by 10%, ii) resistance to the high-risk fungicide is complete and iii) a mutation probability amounting to 1.13×10⁻¹⁰.

*Fungicide doses are expressed as a fraction of the label recommended dose.

*Combinations of dose rates of the low-risk and high-risk fungicides that do not provide sufficient control of an average epidemic of M. graminicola on winter wheat.

Effective disease control was defined as a disease-induced loss of healthy leaf area duration during the yield forming period equal to or below 5% [18].

doi:10.1371/journal.pone.0091910.t002

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0091910
Confidence that:-

- Low dose rates of fungicides do not increase risk
- High doses do increase resistance risk
- Increased number of sprays does increase resistance risk

Reducing reliance on individual ai’s
- Mixtures and alternations reduce risk
Focus of current research

...Stewarding SDHIs and azoles

Advantages and disadvantages of mixing two single-site acting fungicides

DMI mutation data, 2012 & 2013, from ‘SDHI LINK’ project 2010-2013, HGCA 3517, ‘Improved tools to rationalise and support stewardship programmes for SDHI fungicides to control cereal diseases in the UK’, from sites in Herefordshire and Perth.

SDH mutation data, 2016, from AHDB fungicide performance trials sited in Herefordshire, Cardigan and Hampshire.
Gaps in knowledge

Mix or alternate?

Why choose – do both!

Mixtures compared to alternation selection

<table>
<thead>
<tr>
<th></th>
<th>reduce</th>
<th>No-difference</th>
<th>increase</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

van den Bosch et al. 2014. *Annual Review Phytopathology*
Fungicide resistance guidelines previously discouraged curative / eradicant use. Logic is if you are treating a large population you are likely to have many survivors that may be less sensitive.

But this is unproven – a very small population with one fit survivor which could multiply rapidly is likely to be equally dangerous.

But pragmatically, protectant use offers you more choice of fungicides so is likely to be useful for that reason.
How will we retain efficacy in new and existing chemistry?

- Maximise use of low risk (multisite) fungicides as mixture partners
- Use minimum effective doses and balanced mixtures
- Limit use and alternate where possible
- If multiple applications of single-site fungicides are needed:
 - Limiting number of treatments of a MoA is a simple, practical message
 - But may be unnecessarily restrictive or counterproductive (i.e. for multisites)
- Limiting by total dose may be effective and allow more flexibility
- Experimental evidence being obtained
Case study 1: Wheat / Septoria

- History of high yielding but susceptible varieties
- Multiple applications of limited number of chemical groups
- Resistance to QoIs since 2003
- Declines in azole sensitivity
- Issues with SDHIs emerging 2018 and 2019
- New chemistry is exciting but also needs protecting
Strains less sensitive to SDHIs (e.g. T79N and N86S) now widely present in populations

H152R overwintered at Rothamsted site
Azole efficacy on septoria tritici (2001–19)
Protectant activity at full rate
Septoria protectant activity 2019 (5 trials)
Septoria curative activity 2019 (2 trials)
Fusarium trials (inoculated)
Zyatt (near Mansfield, Nottinghamshire)

Note: Mancozeb doesn’t seem to control DON mycotoxin levels
Wheat programmes – what do we really need?

- T minus – autumn or winter clean up
- T0 – early rust protection
- T1 – stem-base disease and protection of yield important leaves
- T1.5 – protection of leaf 2 is gap between T1 and T2 is stretched
- T2 – protection of yield important flag
- T3 – continued green leaf retention and protection from ear diseases
- T4 – continued ear disease protection

- Can we reduce use of more marginal sprays?
Opportunity: Valuing varietal resistance

Disease assessment T2 + 3-4 weeks
18th June

Leaf 2 septoria

2018 IPM trial with ADAS

<table>
<thead>
<tr>
<th></th>
<th>Santiago</th>
<th>JB Diego</th>
<th>Revelation</th>
</tr>
</thead>
<tbody>
<tr>
<td>September</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>October</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fungicide P=<0.001
Seed rate P=0.006
Sowing date P=0.004
Variety P=<0.001
Fungicide.Seed rate P=0.013
Fungicide.Variety P=<0.001
Fungicide.Sowing date P=<0.001
Sowing date.Seed rate P=0.008
Seed rate.Variety P=<0.001
Sowing date.variety P=<0.001
<table>
<thead>
<tr>
<th></th>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Late sown</td>
<td>×</td>
<td>Azole plus CTL</td>
<td>Range of SDHI/azole options plus alternative multisite</td>
<td>Alternate azole plus multisite</td>
</tr>
<tr>
<td>Resistant variety</td>
<td>×</td>
<td>Azole plus CTL</td>
<td>Range of SDHI/azole options plus alternative multisite</td>
<td>Alternate azole plus multisite</td>
</tr>
<tr>
<td>Early drilled</td>
<td>? Maximise CTL / minimise azole</td>
<td>Azole plus SDHI plus CTL</td>
<td>Try new chemistry plus alternative multisite</td>
<td>Alternate azole plus multisite</td>
</tr>
<tr>
<td>Susceptible variety</td>
<td>? Maximise CTL / minimise azole</td>
<td>Azole plus SDHI plus CTL</td>
<td>Try new chemistry plus alternative multisite</td>
<td>Alternate azole plus multisite</td>
</tr>
<tr>
<td>2nd wheat / eyespot risk</td>
<td>×</td>
<td>Azole plus SDHI plus CTL</td>
<td>Top rank products plus alternative multisite</td>
<td>Alternate azole plus multisite</td>
</tr>
<tr>
<td>Yellow rust scenario</td>
<td>Maximise strob / minimise and alternate azole / use CTL</td>
<td>Azole plus SDHI plus CTL (increase azole or add strob)</td>
<td>Maximise azole / use top rank mixture products plus multisite</td>
<td>Two-way azole mix plus multisite</td>
</tr>
</tbody>
</table>
Case study 2: Barley

- Multiple disease targets
- Greater number of active groups
- Lower inputs
- History of slow uptake of more disease resistant varieties
- Issues with net blotch, mildew and rhynchosporium

Ramularia – evolving picture
- QoI resistance since 2002
- MBC resistance (2 forms)
- Emerging issue with SDHIs 2014
- Field failures with azoles and SDHIs
- 2017 Fall off in field performance
Declines in QoI (strobilurin) efficacy on Rhynchosporium (2001 – 2017)

Data based on efficacy of Comet (pyraclostrobin)

50% label rate

Full label rate

R² = 0.2547

R² = 0.4999
Net blotch - changes in efficacy in recent seasons

Mixture products still work well

2014+2015 trials (n=2)

2016+2017 trials (n=3)
Rhynchosporium 2017–19 (8 trials)

(protectant activity)

Priaxor = fluxapyroxad + pyraclostrobin
Net blotch protectant 2017–19 (4 trials)
Ramularia 2019 (2 sites)
Ramularia – a lesson in ‘how not to’

- Varieties to date have been weak so reliance on fungicides
- End user (malting) preference for consistency - majority of area often a single variety
- Fungicide resistance developments have changed the game
Ramularia – current advice

- Varietal ratings for ramularia withdrawn
- Breeding solutions are a longer game
- Use multisite chlorothalonil to manage ramularia risk at T1 and T2 (until 20th May 2020)
- Residual efficacy in prothioconazole
- Revystar XE efficacy sits between CTL and prothioconazole
- Folpet, biostimulants / micronutrients may play greater role
- Minimise crop stresses
Advice should be centred on efficient and targeted use

Understanding principles of fungicide use

- Manage crop to maximise grain number and potential grain size
- Early T1 sprays retain healthy tillers hence more ears where disease pressure threatens
- WB higher risk of early disease. SB lower risk at T1 and move to more resistant SB varieties gives scope to reduce T1 input
- A T2 application at GS49 gives sufficient protection of canopy post-anthesis to ensure grains fill to their storage capacity
- Later sprays (post T2) don’t yield and could be omitted from recommendations
Barley programmes - strategic planning

<table>
<thead>
<tr>
<th></th>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter barley</td>
<td></td>
<td>Susceptible</td>
<td>CTL + mid dose azole + SDHI mix</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Resistant variety</td>
<td>CTL + low dose azole + strob mix</td>
<td></td>
</tr>
<tr>
<td>Spring barley</td>
<td></td>
<td>Susceptible variety</td>
<td>Low dose option in wet year and if disease present</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Resistant</td>
<td>CTL (or nothing if late crop)*</td>
<td></td>
</tr>
<tr>
<td>Spring barley</td>
<td></td>
<td>High risk ramularia</td>
<td>CTL*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CTL - many spring barley crops may not reach mid tillering /T1 by 20th May and stock must be disposed of by then*</td>
<td>Switch to other multisite Try Revystar XE</td>
<td></td>
</tr>
</tbody>
</table>
Opportunity: Understand barriers to uptake
Co-construct anti-resistance strategies

<table>
<thead>
<tr>
<th>Perception</th>
<th>Acceptable options</th>
</tr>
</thead>
</table>
| Increased uptake of IPM too complex | Increased varietal resistance
React to weather, tillage and sow date |
| Not economic to reduce inputs | Keep inputs high but use mixtures and alternations
Reduce use of marginal T0, T1.5 and T4 sprays
Reduce use of high risk fungicides
Increase use of lower risk / multisites |
| Fungicide resistance not important / not my problem | Label guidance
Label requirements
Statutory measures
Public good for public money |
Protecting products

• Do everything to reduce risk….rotation, variety, certified seed, sow date, monitoring, surveillance, crop walking, tailored sprays
• Value varietal resistance
• Don’t play fast and loose with new tools
• Take the risk of resistance in existing chemistry seriously
• Stick to guidelines and, obviously, to statutory limits

• Keep abreast of developments and follow the best technical advice
• Everyone wants new twists and clever pitches but this can leave individuals dangerously exposed and puts our whole industry at risk …. there are genuine win: wins.