October 2019

United Kingdom Cereal Pathogen Virulence Survey (UKCPVS) 2019 Annual Report

Amelia Hubbard, Sarah Wilderspin and Sarah Holdgate

NIAB, Huntingdon Road, Cambridge CB3 0LE

This is the first report of a 36-month project (21120034) that started in April 2019. The work is funded by AHDB (£563,238) and Defra.

While the Agriculture and Horticulture Development Board seeks to ensure that the information contained within this document is accurate at the time of printing, no warranty is given in respect thereof and, to the maximum extent permitted by law, the Agriculture and Horticulture Development Board accepts no liability for loss, damage or injury howsoever caused (including that caused by negligence) or suffered directly or indirectly in relation to information and opinions contained in or omitted from this document.

Reference herein to trade names and proprietary products without stating that they are protected does not imply that they may be regarded as unprotected and thus free for general use. No endorsement of named products is intended, nor is any criticism implied of other alternative, but unnamed, products.

AHDB Cereals & Oilseeds is a part of the Agriculture and Horticulture Development Board (AHDB).

1.	SUMMAR	Υ	5
2.	INTRODU		6
		neral Introduction to the United Kingdom Cereal Pathogen Virulen KCPVS)	
	2.1.1.	Establishment of the survey	6
	2.1.2.	Targets of the survey and pipeline for pathotyping	6
	2.1.2.1.	Targets	6
	2.1.2.2.	Timescale of characterisation	6
	2.1.3.	Key virulence changes over the years: wheat yellow rust	7
	2.1.3.1.	Changes in naming of races	8
	2.1.4.	Key virulence changes over the years: wheat brown rust	8
	2.2. Ain	ns and objectives	9
3.	MATERIA	LS AND METHODS	.10
	3.1. Wh	eat yellow rust and wheat brown rust	10
	3.1.1.	Collection of samples and preparation of isolates	10
	3.1.2.	Characterisation of isolates using differential tests	10
	3.1.3.	Characterisation of isolates using adult plant trials	10
	3.1.4.	Characterisation of isolates using variety seedlings	11
	3.2. Wh	eat and barley powdery mildew	.11
	3.2.1.	Collection of samples and preparation of isolates	11
	3.2.2.	Characterisation of isolates using differential tests	11
	3.2.3.	Characterisation of isolates using adult plant field trials	11
4.	RESULTS	AND DISCUSSION	.12
	4.1. Wh	eat yellow rust	.12
	4.1.1.	Samples received	.12
	4.1.2.	Pathotyping of isolates	13
	4.1.2.1.	Virulence for individual resistance genes and varieties	13
	4.1.2.1.	Virulence frequencies for pathotype groups	13
	4.1.2.2.	Commonly detected isolates	.19

4.1.3.	Variety testing of isolates from 2018	19
4.1.3.1.	Seedling tests	21
4.1.3.2.	Adult plant tests	21
4.2. Wh	eat brown rust	29
4.2.1.	Samples received	29
4.2.2.	Pathotyping of isolates	30
4.2.2.1.	Virulence for individual resistance genes and varieties	30
4.2.2.2.	Commonly detected races	30
4.2.1.	Variety testing of isolates from 2018	30
4.2.1.1.	Seedling tests	37
4.2.1.2.	Adult plant tests	37
4.3. Wh	eat powdery mildew	44
4.3.1.	Samples received	44
4.3.2.	Pathotyping of isolates	44
4.4. Ba	rley powdery mildew	49
4.4.1.	Samples received	49
4.4.2.	Pathotyping of isolates	49
CONCLUS	SIONS	53
APPENDI	X 1: SAMPLE REGISTER	54
REFEREN	ICES	63

5.

6.

7.

1. Summary

The United Kingdom Cereal Pathogen Virulence Survey (UKCPVS) monitors populations of important cereal pathogens:

- Puccinia striiformis f.sp. tritici (Pst) causes wheat yellow rust
- Puccinia triticina (Pt) causes wheat brown rust
- Blumeria graminis f.sp. tritici (Bgt) causes wheat powdery mildew
- Blumeria graminis f.sp. hordei (Bgh) causes barley powdery mildew

Wheat yellow rust

Since the incursion of the Warrior population in 2011, the UK *Pst* population has shown high levels of diversity. Isolates from the Red group, which has a broad range of virulence profiles, dominate the population. New combinations of virulence were detected and these were investigated in the adult plant trials. Natural infection may have confounded the results. However, a potential isolate was identified that could explain the unexpected levels of yellow rust observed on KWS Zyatt and Dunston in 2019 in some parts of the country. This isolate has been put forward for use in the National List and Recommended List trials.

Wheat brown Rust

The *Pt* population was analysed with the current differential set for a third year. This detected virulence for many of the *Lr* genes tested. Seedling and adult plant variety tests highlighted that most varieties were susceptible to at least one of the races under evaluation. However, the possible presence of multiple isolates has made more detailed isolate x variety interactions impossible. Three isolates were identified that may explain unexpected levels of brown rust on KWS Firefly. One of these isolates has been put forward for use in the National List and Recommended List trials.

Wheat and barley powdery mildew

Low-to-moderate levels of disease in 2018 led to modest numbers of samples of wheat and barley powdery mildew being received by the UKCPVS. Small changes in the *Bgt* and *Bgh* populations were detected but, as in previous years, no unusual outbreaks were reported. As a result, it is unlikely that these changes have translated into detrimental effects on variety performance.

2. Introduction

2.1. General Introduction to the United Kingdom Cereal Pathogen Virulence Survey (UKCPVS)

2.1.1. Establishment of the survey

Wheat production in the UK is threatened annually by a number of pests and diseases. In our cool maritime climate the foliar diseases Septoria leaf blotch and yellow (stripe) rust are easily found. Warmer summers have also led to the sighting of brown (leaf) rust at the end of the season which can be serious if left unchecked on susceptible varieties. Current methods of control are based principally on fungicidal inputs, however for the latter two diseases host resistance plays an important role due to the high levels offered in some UK wheat varieties. Host resistance to the rust fungi is however subject to change and should be monitored as part of a virulence survey due the ability of the pathogen to mutate and overcome some kinds of resistance. For this reason, the UK Cereal Pathogen Virulence Survey was established in 1967 following an unexpected outbreak of yellow rust on the previously resistant variety Rothwell Perdix.

2.1.2. Targets of the survey and pipeline for pathotyping 2.1.2.1. Targets

Known originally as the Physiologic Race Survey of Cereal Pathogens, the survey was conducted by a group of organisations including NIAB. The list of target diseases was longer and included wheat yellow rust, wheat and barley mildew, barley brown rust, barley leaf scald (*Rhynchosporium*), barley net blotch, oat crown rust, oat leaf spot and oat mildew. Over time, the list of target species has reduced but the principles remain the same and in its 50th year the survey continues to provide information to growers, breeders and other interested parties on the population of these important pathogens. The survey currently limits its activities to monitoring the pathogens causing the diseases wheat yellow and brown rust and wheat and barley powdery mildew. A close eye is also kept on the incidence of barley yellow rust, which although rare currently, has been a problem in the past.

2.1.2.2. Timescale of characterisation

Once a sample is received by the survey the causal agent is multiplied and stored for further testing. At the end of July when all the samples have been received the list is scrutinised and at least 25 samples are selected per disease for further characterisation using a differential test. The differential tests follow a worldwide standard procedure where the different isolates of rust or mildew are inoculated onto a set of different varieties ("differentials") whose

underlying resistance gene(s) are known (designated *Yr, Lr, Pm, Ml* or similar for yellow rust, brown rust, wheat mildew and barley mildew respectively). Other varieties carrying uncharacterised sources of resistance are also included in these tests. By assessing whether the isolate can cause disease on the individual varieties (termed as virulent) or not (termed avirulent) allows the isolate to be characterised and compared with isolates previously identified within the UKCPVS and also with colleagues elsewhere in the world. A new race is declared when virulence for a particular resistance gene, gene combination or variety is detected which has not been seen before in the UKC.

2.1.3. Key virulence changes over the years: wheat yellow rust

In 2011 a new race of yellow rust, the Warrior race, was identified that appeared to be similar to previous races, but with additional virulence for the resistance gene *Yr7* and the variety Spaldings Prolific. It is important to note that virulence for the resistance gene *Yr7* had been seen before, but not in combination with virulence to the resistance genes *Yr6*, *Yr9*, *Yr17* and *Yr32*. There were however other pieces of evidence to suggest that the Warrior race was different to previous races, with abundant production of the sexual stage spores (teliospores) and multiple sightings of the new race across Europe in the same year. Further molecular genotyping of the Warrior race has shown that this new race was a foreign incursion and not a mutation of the existing population (Hovmøller et al. 2016; Hubbard et al. 2015). The Warrior race was also characterised by its high population diversity, indicating that it was likely to be derived via sexual recombination, and not the asexual mutation that previously characterised the UK population (Ali et al. 2014; Hovmøller, Justesen, and Brown 2002). The population diversity identified in the Warrior race highlighted that the incursion was of multiple isolates, in effect a population, rather than a single isolate or race.

Since the arrival of the Warrior group of isolates in 2011, existing European populations have been replaced so that the population is now dominated by isolates classified as members of the Warrior group (Hovmøller et al. 2016; Hubbard et al. 2015). In 2015 the UKCPVS confirmed that an additional race had arrived in the UK, the Kranich race (since renamed Purple 3) and later that year the Blue 7 group of isolates was detected (Hubbard, Pritchard, and Holdgate 2016). An epidemic year followed the arrival of these two groups of isolates, although it was later found that another group, Red 24, first detected in 2016, was the most likely culprit for substantial changes to Recommended List (RL) ratings that year (Hubbard, Wilderspin, and Holdgate 2017).

2.1.3.1. Changes in naming of races

With the recent race changes affecting the UK and across Europe, the UKCPVS has sought to redefine the naming system for new races. A meeting between virulence surveys from across Europe in 2016 failed to reach a consensus of how to deal with such a diverse pathogen population. In the UK a system has now been proposed to take into consideration the genetic data currently produced by the John Innes Centre as well as the pathotype data generated by the UKCPVS. The races are now assigned a colour to divide the races into their genetic groups using the genotype data and then a number to divide the isolates according to the pathotype data. The colour group is based on that produced in the STRUCTURE programme used to analyse the data and the number is assigned sequentially. So, for example, the race Blue 1 will have been discovered in advance of Blue 2. Using this system it will be possible to separate races that may otherwise look similar. During this renaming process, colleagues at the Global Rust Reference Centre also developed a new naming system which groups races into PstS groups (Ali et al. 2017). This system takes a broader approach to naming races so that individual races are not named, rather they are included into the broad groups and important races within the group are highlighted. Translation between the two systems is ongoing.

2.1.4. Key virulence changes over the years: wheat brown rust

Surveillance of the Puccinia triticina (formerly P. recondita) population in the UK began a little later than surveys for the other cereal diseases, beginning in 1973 with samples collected from 1972. Colleagues at the Welsh Plant Breeding Station (now Institute of Biological, Environmental and Rural Sciences at the University of Aberystwyth) managed the survey of this pathogen until 2006 when the survey was transferred to NIAB. In the early stages of this programme there was very little known or developed in the way of differential sets, and the initial screening of isolates was conducted using a selection of winter and spring wheat varieties from the RL of that year along with some research lines from a Septoria leaf blotch resistance screen. From here, nine varieties were selected that were able to differentiate between the isolates and included current differentials Maris Halberd and Sappo. Like today, wheat brown rust is less important that wheat yellow rust, and at the start of the survey, there were only limited options for resistant varieties, for example Clement, which carried the gene *Lr26* (also referred to as WBR1). Official ratings of resistance to wheat brown rust were not introduced onto the RL until 1977. Dominant races of *P. triticina* tend to match commonly deployed host resistance genes. For example, use of the resistance gene Lr1 in the variety Glasgow led to the emergence of the Glasgow race in 2005 which carried virulence for this resistance gene (Table 1). Once the acreage of

varieties carrying these resistance genes reduces, the frequency of finding these isolates reduces. A recent example is virulence for *Lr24*. The two varieties carrying this resistance gene (Warrior and Stigg) are no longer widely grown and the population has therefore mirrored this and the frequency of detection continues to decline. The most recent change to the population saw the population overcome the moderate resistance in the variety Crusoe in 2014. The causal race is still under investigation by the UKCPVS.

Year	Variety	Key Resistance Gene Combination
1973*	Sappo	Lr20 (WBR3)
1973*	Maris Halberd	Lr20 (WBR4)
1974*	Maris Fundin	Lr17b (WBR2)
1976	Maris Huntsman	WBR5 (APR)
1977	Clement	Lr26 (WBR1)
1977	Sterna	Lr3a (WBR7)
1978	Maris Ranger	WBR8
1980	Avalon	WBR9
1982	Gamin	WBR6
1991	Slejpner	<i>Lr</i> 26 + APR
1993	Spark	Not specified
1994	Flame	Not specified
1995	Chablis	Lr3a + ?
1999	Rialto	<i>Lr17b, Lr26</i> + APR
2005	Glasgow	Lr1
2005	Claire	Lr3a, Lr17b, Lr20, Lr26, APR
2006	Robigus	Lr28
2006	Multiple Lr37	Lr1,Lr3a,Lr17b,Lr26,Lr37
	varieties	
2011	Stigg	Lr24
2014	Crusoe	Under investigation

Table 1: Key wheat brown rust changes in the UK since the start of the survey

* Tested for the first time, virulence may have been present in previous years. APR = Adult plant resistance

2.2. Aims and objectives

The principal aim of the project is to detect new races of economically important pathogens for UK growers to provide an early warning system that will aid effective disease management. To achieve this, the UKCPVS currently monitors the populations of the fungi causing wheat yellow rust and brown rust and wheat and barley powdery mildew. A subset of the isolates collected will be characterised to identify any new races. The reactions of the current RL varieties and candidates will be assessed using some of the newest isolates at both the seedling and adult plant stages to establish future risks of disease outbreaks.

3. Materials and methods

3.1. Wheat yellow rust and wheat brown rust

3.1.1. Collection of samples and preparation of isolates

Infected wheat leaves were received from growers, agronomists and operators of RL trials. Spores from the infected samples were transferred on to plants of the universally susceptible variety Victo (wheat yellow rust) or Armada (wheat brown rust). Plants were grown under controlled environment conditions on Burkard isolation benches until fresh sporulation was evident. Spores were collected and used to re-infect further pots of the susceptible varieties until enough spores were available to inoculate a differential test.

3.1.2. Characterisation of isolates using differential tests

Seedlings of the differential set were inoculated with spores from the new isolates, using a complete set of differential varieties for each isolate under test (Hubbard et al. 2015). The differentials used and the resistance genes they carry are listed in Table 2 and Table 9. Approximately 14 days post inoculation the tests were scored using a 0-4 scale which was then converted into an average infection type score (a.i.t.). A score of 0-2.3 indicates an incompatible (avirulent) reaction, a score of 2.4-2.6 represents a borderline reaction and should be treated with caution as it is difficult to be certain whether the reaction is one of virulence or avirulence, and scores of 2.7 - 4.0 indicate a compatible reaction and the isolate is virulent on that differential.

3.1.3. Characterisation of isolates using adult plant trials

Varieties from the current RL, RL candidate varieties and selected control varieties were hand sown in tussock plots for evaluation under field conditions to selected isolates. Each trial consisted of two replicates and one trial was used for each of the isolates under test. Prior to inoculation, natural infection was eliminated as far as possible by the use of a seed treatment and follow-up foliar fungicide applications up to and including a T1 application. Plots were directly inoculated as soon as eventual leaf 2 was fully emerged and then reinoculated at 2-3 day intervals. The wheat yellow rust trials were inoculated five times and the wheat brown rust trials were inoculated six times. Assessments were made at the onset of disease development on the upper leaves until senescence.

3.1.4. Characterisation of isolates using variety seedlings

The isolates under evaluation in the field trials were also used in parallel experiments under controlled environment conditions to assess the seedling reaction of the varieties used in the adult plant tests. These tests were inoculated in the same way as previous differential tests, and assessment was carried out using the same average infection type scoring system.

3.2. Wheat and barley powdery mildew

3.2.1. Collection of samples and preparation of isolates

Infected leaves were received from growers, agronomists and trials operators for the RL trials. Individual pustules taken from the infected samples were mounted on agar and when sporulation was seen the pustules were transferred onto fresh detached leaf sections using the universally susceptible varieties Cerco (wheat mildew) and Golden Promise (barley mildew). Subsequent transfers onto new detached leaves were conducted to maintain the isolate.

Where sample numbers were low, 'mobile trap nurseries' were also deployed. Pots of Cerco and Golden Promise were sown in controlled environment rooms and then given to NIAB staff living near arable areas to place in their gardens for up to 14 days, and then returned to the lab where individual pustules were harvested and maintained as normal.

3.2.2. Characterisation of isolates using differential tests

Seedlings of the differential set were inoculated with spores from the new isolates. The differentials used and the resistance genes they carry are listed in Table 15 and Table 17. Each differential was represented by 4 detached leaf sections, giving four replicates. This was to ensure the maximum amount of information obtained using the small amount of spores available. Approximately 14 days post inoculation the detached leaves were scored using a 0-4 scale. The score for each of the four detached leaf sections was then averaged to give the final score for each differential. A score of 0-2.5 indicates an incompatible (avirulent reaction) and a score of 2.75-4 indicates a compatible reaction and the isolate was virulent on that differential.

3.2.3. Characterisation of isolates using adult plant field trials

No adult plant field trials were carried out as part of the UKCPVS mildew survey.

4. Results and discussion

4.1. Wheat yellow rust

4.1.1. Samples received

In 2018 the UKCVPS received 134 samples of wheat yellow rust from 18 different counties across the UK (Figure 1).

Figure 1: Map of the UK with the number of samples of wheat yellow rust received in 2018 from the different counties.

Similar to the previous season, disease pressure was more modest compared to that experienced in 2016, partly as a result of the frosts experienced over the winter of 2017/18. No reports were received by the UKCPVS of unexpected varietal performance. In total, samples were received from 49 different varieties consisting of current and past RL varieties, spreader plots and other breeding lines. The full sample register is provided in Appendix 1. It is important to note that the host varieties in the sample register have not all been confirmed and it is entirely possible that a sample listed as coming from a resistant variety may turn out to be from another more susceptible variety. For this reason the sample register is included as an indicator of what was received but should not be used to infer any breakdowns in resistance or changes in rating at this stage.

4.1.2. Pathotyping of isolates

4.1.2.1. Virulence for individual resistance genes and varieties

Thirty isolates were selected for further pathotyping (Table 2). The isolates were selected based on their county of origin and the resistance rating of the host. Isolates were assessed for their reactions on a differential set and their reactions, expressed as an average infection type (a.i.t.), were recorded. Isolates were classified as virulent if the a.i.t. score was 2.7 or above. Scores between 2.4 and 2.7 were considered borderline. Using these scores it was possible to combine the scores for reactions to different resistance genes to infer a pathotype for each of the isolates (Table 3). No new virulences to individual genes were detected in the isolates collected in 2018 using the differentials tested at the seedling stage and frequency of virulence to the individual resistance genes remained relatively stable for known resistance genes in comparison to previous years (Table 4). Virulence for Rendezvous, Warrior, KWS Sterling and Evolution were found at lower frequencies than in previous years. It is unclear at this stage whether these changes are significant. It is possible that this could indicate further changes in pathogen population, however these tests were carried out in new facilities at NIAB and it is possible that there may have been some environmental influence on the results.

4.1.2.1. Virulence frequencies for pathotype groups

Some of the isolates were assigned to different genetic groups using tools developed in the Field Pathogenomics project (Diane Saunders, *pers. comm.*, Table 3). In the cases where this information was missing, the isolates were classed according to the pathotype data only based on results from previous years. Considering the population by genetic group, the frequencies of isolates found in each group was similar to that found in 2017 (Table 5). The Red group almost entirely dominated the surveyed isolates, with only one Purple isolate being found.

Table 2: Average infection type (a.i.t.) scores for the selected isolates against the UKCPVS differential set. Yellow shading indicates a compatible reaction; orange shading indicates a borderline reaction. Compatible interactions classify the isolate as virulent against a particular resistance gene or variety. Numbers next to the differential variety names indicate the known resistance genes carried by the variety. * = missing data.

		1	1	2	3a, 4a	3b,4b	4,Su	5	9	2,6	2,6,25	7	7,22,23	6,7	7,17	8	8,19	6	2,9,25	10	15	17	17	17	24	2,25	25,Sd	32	25,32	Sp	Sp	Ro	00	Wa	St		Am					
lsolate code	Host	Avocet Yr1	Chinese 166	Kalyansona	Vilmorin 23	Hybrid 46	Suwon Omar	Avocet Yr5	Avocet Yr6	Heines Kolben	Heines Peko	AV x Yr 7 NIL	Lee	Cadenza	Apache	Av x Yr8 NIL	Compair	Avocet Yr9	Clement	Moro	AVS x yr15	VPM 1	Rendezvous	AV x Yr17	Avocet Yr24	Heines VII	Strubes Dickkopf	Av x Yr32	Carstens V	Avocet Sp	Spaldings Prolific	Robigus	Solstice	Warrior	KWS Sterling	Claire	Ambition	Crusoe	Avocet S	Vuka	Kranich	Evolution
18/001	Graham	<mark>3.0</mark>	<mark>3.0</mark>	<mark>3.0</mark>	<mark>3.0</mark>	<mark>3.0</mark>	<mark>3.0</mark>	*	<mark>3.0</mark>	0.0	0.0	*	<mark>3.0</mark>	0.0	0.0	<mark>3.0</mark>	<mark>3.0</mark>	<mark>3.0</mark>	0.0	<mark>3.0</mark>	<mark>3.0</mark> 3	<mark>3.0</mark>	3.0 <mark>3</mark>	<mark>8.0</mark> 3	<mark>8.0</mark> 4	.0 <mark>3</mark>	<mark>.2</mark> 2	.0 0).4	<mark>3.0</mark>	0.2	0.0	3.0	<mark>3.5</mark> (0.2	<mark>3.0</mark>						
18/002	Reflection	<mark>4.0</mark>	3.0	4.0	3.0	3.0	3.0	0.0	4.0	<mark>3.5</mark>	<mark>3.0</mark>	*	<mark>3.0</mark>	<mark>3.0</mark>	<mark>3.0</mark>	0.0	0.0	*	<mark>3.0</mark>	0.0	0.0	<mark>3.0</mark>	<mark>3.0</mark>	*	0.0	<mark>3.5</mark>	3.5 <mark>3</mark>	3.0	3.5 <mark>3</mark>	3.0 3	<mark>3.0</mark> 3	.5 <mark>3</mark>	<mark>.0</mark> 2	.0	*	<mark>3.0</mark>	2.2	0.0	4.0	<mark>3.5</mark> (0.4	<mark>3.0</mark>
18/003	Victo/Vuka	<mark>3.0</mark>	3.0	<mark>3.5</mark>	3.0	3.0	3.0	0.0	4.0	<mark>3.5</mark>	<mark>3.0</mark>	*	<mark>3.0</mark>	2.6	2.6	0.0	0.0	*	<mark>3.0</mark>	0.0	0.0	<mark>3.5</mark>	<mark>3.0</mark>	*	0.0	3.0	3.5 <mark>3</mark>	3.O	4.0	۲ <mark>.0</mark>	1.0 <mark>4</mark>	.04	<mark>.0</mark> 2	.0	*	<mark>3.0</mark>	0.3	0.2	3.0	<mark>3.0</mark>	0.3	<mark>3.0</mark>
18/004	Invicta	<mark>3.0</mark>	<mark>3.0</mark>	<mark>3.0</mark>	<mark>3.0</mark>	3.0	3.0	*	3.0	3.0	3.0	3.0	3.0	<mark>3.0</mark>	<mark>3.0</mark>	0.0	0.0	*	3.0	0.0	0.0	3.0	3.0	3.0	0.0	3.0	3.0	3.0	3.0	3.0 3	<mark>3.0</mark> 4	.0 3	<mark>.2</mark> 2	.0 0).4	<mark>3.0</mark>	0.2	0.0	3.0	<mark>3.5</mark> (0.2	<mark>3.0</mark>
18/006	Hacksta	<mark>4.0</mark>	3.0	3.0	3.0	3.0	3.5	0.0	3.0	3.5	3.0	3.0	3.0	<mark>3.0</mark>	3.0	0.0	0.0	4.0	3.0	0.0	0.0	<mark>3.0</mark>	1.6	3.0	0.0	3.2	4.0	3.0	3.0	3.O 3	<mark>3.0</mark> 4	.0 3	<mark>.0</mark> 2	.2 2	2.2	<mark>4.0</mark>	2.3	1.5	3.0	<mark>3.0</mark> :	1.7	0.0
18/009	Leeds	0.0	1.8	3.0	3.0	1.8	3.0	0.0	3.5	3.0	3.0	3.0	3.0	<mark>3.0</mark>	3.0	0.0	0.0	4.0	3.0	0.0	0.0	<mark>3.0</mark>	1.4	3.0	0.0	3.0	3.0	3.0	3.0	3.O 3	<mark>3.0</mark> 4	.0 3	<mark>.5</mark> 2	.1 1	1	<mark>4.0</mark>	0.0	0.0	3.0	<mark>4.0</mark>	0.0	0.5
18/010	Brimstone	<mark>4.0</mark>	3.0	4.0	3.1	2.5	3.0	0.0	3.0	4.0	<mark>3.0</mark>	4.0	<u>3.5</u>	<mark>3.0</mark>	3.0	0.0	0.0	4.0	3.0	0.0	0.0	<mark>3.0</mark>	2.2	3.0	0.0	3.0	3.0 S	3.5	3.0	<mark>3.5</mark> 3	<mark>3.0</mark> 4	.0 3	<mark>.0</mark> 2	.0 2	2.0	<mark>4.0</mark>	2.0	1.6	*	<mark>4.0</mark> (0.9	0.4
18/011	Spyder	<mark>3.0</mark>	3.0	<mark>3.5</mark>	3.0	3.0	4.0	*	4.0	3.0	3.0	<mark>4.0</mark>	*	<mark>3.0</mark>	3.0	0.0	0.0	3.0	3.0	0.0	0.0	3.5	3.0	3.0	0.0	3.0	4.0	4.0	4.0	3.0 3	<mark>3.0</mark> 4	.0 3	<mark>.0</mark> 1	.8 <mark>2</mark>	2.7	<mark>4.0</mark>	0.3	0.0	3.0	<mark>3.0</mark> (0.4	*
18/014	LG Rhythm	<mark>3.0</mark>	<mark>3.0</mark>	<mark>3.2</mark>	<mark>3.4</mark>	3.0	3.0	0.0	4.0	3.0	<mark>3.0</mark>	4.0	4.0	2.7	<mark>3.0</mark>	0.5	0.0	4.0	3.0	0.0	0.0	<mark>3.4</mark>	3.0	4.0	0.0	4.0	3.5 S	3.5	3.2	3.2 3	3.2 <mark>4</mark>	.0 3	.0 3	<mark>.0</mark> 1	6	3.0	<mark>2.9</mark>	0.3	3.0	<mark>3.0</mark> (0.1	0.3
18/022	Dunston	<mark>3.5</mark>	<mark>3.1</mark>	<mark>3.9</mark>	<mark>3.8</mark>	3.0	3.0	0.0	3.0	3.5	<mark>3.5</mark>	<mark>3.5</mark>	3.0	<mark>3.0</mark>	2.2	0.0	0.0	3.0	3.0	0.0	0.0	3.0	2.8	3.0	0.0	3.5	3.2 S	3.5	3.0	3.5 3	<mark>3.0</mark> 4	.0 3	.02	<mark>.5</mark> 1	4	3.0	<mark>3.0</mark>	0.0	3.0	<mark>3.3</mark> (0.0	0.6
18/026	Zulu	*	<mark>3.0</mark>	<mark>3.0</mark>	<mark>3.0</mark>	3.0	<mark>3.5</mark>	0.0	4.0	3.0	3.0	3.0	4.0	<mark>3.0</mark>	<mark>3.0</mark>	0.0	0.0	*	3.0	0.0	0.0	<mark>3.0</mark>	2.0	3.0	0.0	3.0	3.0	3.0	3.2	3.03	<mark>3.0</mark> 4	.0 3	.1 2	<mark>.6</mark> 2	2.1	4.0	<mark>2.6</mark>	0.0	*	<mark>4.0</mark> (0.0	2.0
18/030	Revelation	<mark>3.0</mark>	3.0	3.0	3.0	3.0	3.0	0.0	3.0	3.0	3.0	3.0	3.0	<mark>3.0</mark>	2.0	0.0	0.0	4.0	3.0	0.0	0.0	3.0	2.5	3.0	0.0	3.0	3.5 S	3.5	3.2	<mark>3.5</mark> 3	<mark>3.0</mark> 4	.0 3	.1 3	<mark>.0</mark> 2	2.1	<mark>4.0</mark>	2.3	0.0	4.0	<mark>4.0</mark> (0.3	0.3
18/032	JB Diego	<mark>4.0</mark>	3.0	4.0	3.0	2.8	3.0	0.0	4.0	3.3	3.0	3.0	3.1	<mark>3.0</mark>	3.0	0.0	0.0	4.0	3.0	0.0	0.0	<mark>3.0</mark>	2.1	3.0	0.0	3.0	4.0 S	3.5	3.0	3.0 3	<mark>3.0</mark> 4	.0 3	<mark>.5</mark> 2	.0 2	2.0	<mark>3.0</mark>	0.0	0.0	*	<mark>3.0</mark> 2	2.0	0.5
18/041	Freiston	<mark>3.0</mark>	3.0	3.0	3.0	3.0	3.2	0.0	4.0	3.0	3.0	3.0	4.0	<mark>3.0</mark>	3.0	0.0	0.0	4.0	3.0	0.0	0.0	<mark>3.0</mark>	2.1	3.0	0.0	4.0	4.0 <mark>4</mark>	4.0	4.0	3.0 3	<mark>3.0</mark> 4	.0 3	.5 2	<mark>.8</mark> 2	2.0	<mark>4.0</mark>	1.7	0.0	*	<mark>3.0</mark>	0.5	0.4
18/048	JB Diego	<mark>4.0</mark>	3.0	3.5	4.0	3.0	3.0	0.0	4.0	3.0	3.0	3.0	3.5	3.0	3.0	0.0	0.0	4.0	3.2	0.0	0.0	3.0	3.0	3.0	0.0	3.0	3.0	3.0	3.03	3.0 3	<mark>3.0</mark> 3	.0 3	.02	.8 2	2.9	<mark>4.0</mark>	2.1	0.0	3.0	<mark>3.0</mark>	2.0	0.6
18/056	Skyfall	<mark>3.0</mark>	<mark>3.5</mark>	<mark>3.0</mark>	<mark>3.0</mark>	3.0	<mark>3.5</mark>	*	3.5	4.0	<mark>3.0</mark>	*	3.0	<mark>3.0</mark>	<mark>3.0</mark>	0.0	0.0	3.0	3.0	0.0	0.0	3.0	3.0	3.0	*	3.0	3.0	3.0	3.0	3.0 3	<mark>3.0</mark> 3	.5 <mark>3</mark>	<mark>.0</mark> 1	.5 2	2.1	<mark>4.0</mark>	0.3	0.0	3.0	<mark>3.0</mark> (0.0	<mark>3.0</mark>
18/061	Buster	<mark>3.0</mark>	<mark>3.5</mark>	<mark>3.0</mark>	<mark>3.0</mark>	3.0	4.0	*	4.0	3.5	3.0	3.0	3.0	<mark>3.0</mark>	<mark>2.8</mark>	0.0	0.0	*	3.0	0.0	0.0	3.0	3.0	3.0	*	3.0	3.0	3.0	3.0	3.0 3	<mark>3.0</mark> 4	.0 3	<mark>.8</mark> 1	.9 <mark>2</mark>	2.9	<mark>3.0</mark>	0.3	0.0	3.0	<mark>3.8</mark> (0.0	<mark>3.0</mark>
18/064	Beluga	<mark>4.0</mark>	3.0	3.1	3.1	3.0	3.5	0.0	4.0	3.0	3.0	3.0	3.0	<mark>3.0</mark>	3.0	0.0	0.0	4.0	3.0	0.0	0.0	<mark>3.0</mark>	2.0	3.0	0.0	3.0	<mark>4.0</mark>	*	4.0	3.O 3	<mark>3.0</mark> 4	.0 3	<mark>.7</mark> 2	.0 1	1	<mark>4.0</mark>	2.0	0.0	4.0	<mark>3.5</mark> (0.0	0.2
18/065	JB Diego	<mark>3.0</mark>	3.0	3.0	3.0	3.0	3.0	0.0	3.0	3.0	3.0	3.0	3.0	<mark>3.0</mark>	3.0	0.0	0.0	3.0	3.0	0.0	0.0	<mark>3.0</mark>	2.0	3.0	0.0	4.0	4.0 <mark>4</mark>	4.0	4.03	8.O 3	8.0 <mark>4</mark>	.04	.02	<mark>.9</mark> 2	2.1	<mark>4.0</mark>	0.0	0.0	3.0	<mark>3.0</mark>	0.0	0.3
18/066	RGT Universe	3.0	3.0	3.0	3.0	2.0	3.0	0.0	3.0	3.0	3.0	3.0	3.0	3.0	2.0	0.0	0.0	4.0	3.0	0.0	0.0	3.0	3.0	3.0	0.0	3.2	3.0	4.0	3.0 3	8.5 3	3.0 3	.0 3	.0 2	.3 2	2.1	4.0	2.2	0.0	3.5	4.0	0.0	0.0
18/085	Gleam	<mark>3.0</mark>	<mark>3.0</mark>	<mark>3.0</mark>	<mark>3.0</mark>	<mark>3.0</mark>	<mark>3.0</mark>	*	<mark>3.0</mark>	<mark>3.0</mark>	<mark>3.5</mark>	<mark>3.0</mark>	<mark>3.0</mark>	<mark>3.0</mark>	<mark>3.0</mark>	0.0	0.0	*	<mark>3.0</mark>	0.0	0.0	<mark>3.5</mark>	<mark>3.0</mark>	<mark>3.0</mark>	0.0	<mark>3.0</mark>	3.5 <mark>3</mark>	3.0	3.5 <mark>3</mark>	<mark>3.0</mark> 3	<mark>3.0</mark> 4	<mark>.0</mark> 3	.5 <mark>2</mark>	<mark>.5</mark> 1	.7	<mark>4.0</mark>	1.7	0.0	*	<mark>3.0</mark>	0.2	<mark>3.0</mark>

		1	1	2	3a, 4a	3b,4b	4,Su	5	6	2,6	2,6,25	7	7,22,23	6,7	7,17	8	8,19	6	2,9,25	10	15	17	17	17	24	2,25	25,Sd	32	25,32	Sp	Sp	Ro	So	Wa	St		Am					
Isolate code	Host	Avocet Yr1	Chinese 166	Kalyansona	Vilmorin 23	Hybrid 46	Suwon Omar	Avocet Yr5	Avocet Yr6	Heines Kolben	Heines Peko	AV x Yr 7 NIL	Lee	Cadenza	Apache	Av x Yr8 NIL	Compair	Avocet Yr9	Clement	Moro	AVS x yr15	VPM 1	Rendezvous	AV x Yr17	Avocet Yr24	Heines VII	Strubes Dickkopf	Av x Yr32	Carstens V	Avocet Sp	Spaldings Prolific	Robigus	Solstice	Warrior	KWS Sterling	Claire	Ambition	Crusoe	Avocet S	Vuka	Kranich	Evolution
18/102	Zulu	<mark>3.0</mark>	3.0	<mark>3.0</mark>	3.0	<u>3.0</u>	3.0	0.0	3.0	3.0	3.0	3.0	3.0	2.4	2.8	0.0	0.0	4.0	3.0	0.0	0.0	3.0	3.0	3.0	0.0	3.0	3.0	3.0	3.0	3.0	3.0	<mark>4.0</mark>	3.5	2.2	0.4	<mark>4.0</mark>	2.2	0.0	<mark>3.0</mark>	3.0	0.5	0.0
18/104	Shabras	3.0	3.0	4.0	3.5	3.0	3.5	*	4.0	4.0	3.0	3.0	3.0	3.0	2.9	0.0	0.0	3.0	<mark>3.0</mark>	0.0	0.0	4.0	3.0	3.0	0.0	3.0	3.0	3.0	4.0	3.0	3.0	4.0	3.8	1.8	2.6	<mark>3.0</mark>	0.1	0.0	<mark>3.0</mark>	3.0	0.0	<mark>3.0</mark>
18/115	LG Rhythm	<mark>3.5</mark>	<mark>3.0</mark>	<mark>3.5</mark>	4.0	<mark>3.0</mark>	<mark>4.0</mark>	*	<mark>3.5</mark>	4.0	<mark>3.0</mark>	3.0	4.0	<mark>3.0</mark>	<mark>3.0</mark>	0.0	0.0	*	<mark>3.0</mark>	0.0	0.0	3.0	3.0	3.0	0.0	<mark>3.0</mark>	<mark>3.5</mark>	<mark>3.5</mark>	<mark>3.5</mark>	<mark>3.5</mark>	<mark>3.5</mark>	<mark>4.0</mark>	<mark>3.0</mark>	1.7	2.0	<mark>4.0</mark>	1.0	1.0	<mark>4.0</mark>	3.0	0.0	<mark>3.0</mark>
18/118	Bennington	<mark>3.0</mark>	3.5	<mark>4.0</mark>	4.0	<mark>3.0</mark>	<mark>3.5</mark>	*	<mark>4.0</mark>	<mark>3.5</mark>	<mark>3.5</mark>	3.0	4.0	<mark>3.0</mark>	<mark>3.0</mark>	0.0	0.0	3.0	3.0	0.0	0.0	3.5	3.0	3.0	0.0	<mark>3.5</mark>	3.0	4.0	<mark>3.0</mark>	3.0	<mark>3.0</mark>	<mark>4.0</mark>	<mark>3.5</mark>	2.4	0.7	<mark>3.0</mark>	0.2	0.0	<mark>3.0</mark>	3.5	0.0	<mark>3.0</mark>
18/125	Zulu	<mark>4.0</mark>	3.0	3.0	3.0	2.1	3.0	0.0	<mark>4.0</mark>	<u>3.5</u>	3.0	3.0	3.0	3.0	2.2	0.0	0.0	4.0	3.0	0.0	0.0	3.0	2.1	3.0	0.0	<mark>4.0</mark>	<mark>3.5</mark>	<mark>3.3</mark>	3.2	<mark>3.5</mark>	3.0	4.0	<mark>3.5</mark>	2.0	2.0	<mark>3.5</mark>	2.6	0.0	<mark>4.0</mark>	3.5	0.2	0.6
					0 0	20	10	*	10	10	<u>з О</u>	3.0	3.0	3.0	2.8	0.0	0.0	*	<mark>3.0</mark>	0.0	0.0	3.0	3.0	3.0	0.0	<mark>3.0</mark>	3.0	3.0	4.0	3.0	3.0	4.0	3.1	1.8	1.0	<mark>3.0</mark>	0.8	0.0	3.0	3.0	0.1	<mark>2.7</mark>
18/126	Gleam	<mark>3.0</mark>	3.0	3.0	3.0	3.0	4.0	-	4.0	4.0	5.0		0.0																													
-		3.0 3.0													3.0	0.0	0.0	4.0	3.0	0.0	0.0	4.0	3.0	4.0	0.0	<mark>3.0</mark>	3.0	3.0	3.0	<mark>3.0</mark>	3.0	<mark>3.0</mark>	3.0	2.8	3.0	3.0	2.0	0.0	<mark>4.0</mark>	3.0	2.2	0.0
18/127																	0.0 0.0		3.0 3.0						0.0 0.0		3.0 3.1	3.0 3.3	3.0 3.5	3.0 3.0	3.0 3.0						-			3.0 3.0		

Virulence Profile³ Genetic Isolate Race Host **Group**¹ 2 10 15 17 24 number² 3 25 32 Re Sp Ro So Wa code 1 4 5 6 7 8 9 Ca St Kr Ap Cr Ev 2 25 32 3 17 Re Sp Ro So Са 18/001 Graham (Red) 27 1 4 6 7 9 Ap Ev 2 3 6 7 9 17 25 32 Re Sp Ro So 18/002 27 1 4 Са * Ev Reflection (Red) Ap 2 25 32 18/003 7 17 Re Sp Ro So (Ca) * Victo/Vuka 60 1 3 4 6 9 (Ap) Ev Red 2 3 9 17 25 32 Re Sp Ro So 18/004 (Red) 27 1 4 6 7 Ca Ap Ev Invicta 2 7 9 17 25 32 Sp Ro So Ca 18/006 Hacksta Red 3 1 3 4 6 Ap 18/009 Purple 5 2 3 4 6 7 9 17 25 32 Sp Ro So Са Leeds Ap 18/010 **Brimstone** 3 2 3 4 6 7 9 17 25 32 Sp Ro So Ca Ap (Red) 1 11 2 25 32 Re Sp Ro So 18/011 Spyder (Red) 1 3 4 6 7 9 17 Са St Ap 2 17 25 32 Re Sp Ro So 18/014 LG Rhythm (Red) 23 1 3 4 6 7 9 Wa Ca Ap 21 2 3 17 25 32 Re Sp Ro So (Wa) 18/022 1 4 6 7 9 Са Dunston (Red) 18/026 2 3 9 17 25 32 Sp Ro So Zulu 3 1 4 6 7 (Wa) Ca (Red) Ap Revelation 2 7 9 17 25 32 (Re) Sp Ro So Wa Ca 18/030 Red 47 1 3 4 6 18/032 3 2 4 6 7 9 17 25 32 Sp Ro So Са (Red) 3 JB Diego 1 Ap 25 32 18/041 Freiston 43 2 3 17 Sp Ro So Wa Са Red 4 6 7 9 Ap 1 26 2 6 7 9 17 25 32 Re Sp Ro So Wa 18/048 Red 1 3 4 Ca **JB** Diego St Ap 18/056 27 2 7 17 25 32 Re Sp Ro So Са Skyfall (Red) 1 3 4 6 9 Ap Ev 18/061 (Red) 28 1 2 3 4 6 7 9 17 25 32 Re Sp Ro So Са St **Buster** Ap Ev 25 32 18/064 Beluga (Red) 3 1 2 3 4 6 7 9 17 Sp Ro So Ca Ap 43 2 7 9 17 25 32 Sp Ro So Wa 18/065 **JB** Diego (Red) 1 3 4 6 Ca Ap Sp Ro So 21 2 6 9 17 25 32 Re Са 18/066 **RGT Universe** (Red) 1 3 4 7 2 9 25 32 Re Sp Ro So (Wa) 18/085 3 4 6 7 17 Са Gleam (Red) 27 1 Ap Ev 18/102 * * 2 3 7 17 25 32 Re Sp Ro So Zulu 4 6 9 1 Ap 2 3 4 6 7 9 17 25 32 Re Sp Ro So 18/104 Shabras 27 1 Ca (St) Ev (Red) Ap LG Rhythm 27 2 3 9 17 25 32 Re Sp Ro So 18/115 1 4 6 7 Са Ev (Red) Ap 18/118 2 7 9 17 25 32 Re Sp Ro So (Wa) **Bennington** (Red) 27 3 4 6 Ca Ev 1 Ap 18/125 2 4 6 7 9 17 25 32 Sp Ro So Са Zulu Red 8 3 1 18/126 Gleam 27 2 3 17 25 32 Re Sp Ro So Са Red 4 6 7 9 Ev 1 Ap 18/127 KWS Zyatt 24 2 17 25 32 Re Sp Ro So (Red) 1 3 4 6 7 9 Wa Ca St Ap 18/132 5 2 3 4 6 7 9 17 25 32 Re Sp Ro So Ca Ap Robigus Red 1 28 2 3 4 6 9 17 25 32 Re Sp Ro So 18/133 Moro Red 1 7 Са St Ap Ev

Table 3: Pathotypes of the 2018 wheat yellow rust isolates based on the differential test results in Table 2. Yellow shading indicates virulence of an isolate for a particular resistance gene or variety; orange shading with parentheses indicates a borderline reaction.

¹ Genetic group assigned using data from Diane Saunders, John Innes Centre. Only a limited number of samples were tested in this season, other groups are assigned in

parentheses based on pathotype data only. ² Race number assigned by the UKCPVS using pathotype data in Table 2. ³ Numbers refer to previously designated Yr genes, Re = Rendezvous, Sp = Spaldings Prolific, Ro = Robigus, So = Solstice, Wa = Warrior, Am = Ambition, Ca = Cadenza, St = KWS Sterling, Kr = Kranich, Ap = Apache, Cr = Crusoe, Ev = Evolution. * = Missing data

Virulence For Resistance Gene or	Percent	age of Isol for (ates Identi Gene or Va		/irulence
Variety	2014	2015	2016	2017	2018
Yr1	100	100	100	96	97
Yr2	100	97	100	100	100
Yr3	96	100	100	100	100
Yr4	96	97	100	100	100
Yr5	0	0	0	0	0
Yr6	100	100	100	100	100
Yr7	92	76	89	100	100
Yr8	4	3	3	4	0
Yr9	100	100	100	100	100
Yr10	0	0	0	0	0
Yr15	0	0	0	0	0
Yr17	100	97	100	100	100
Yr24	0	0	0	0	0
Yr25	100	100	97	100	100
Yr32	100	100	100	100	100
Rendezvous	12	38	87	96	67
Spaldings Prolific	88	72	82	96	100
Robigus	100	100	100	100	100
Solstice	85	90	100	100	100
Warrior	23	3	37	46	20
Cadenza	73	55	76	96	93
KWS Sterling	8	24	32	89	17
Kranich	4	7	8	7	0
Apache	65	52	55	96	83
Crusoe	0	0	5	7	0
Evolution	*	*	16	75	43
Total Number of Isolates	26	29	38	28	30

Table 4: Frequency of detection of isolates carrying virulence to the different yellow rust resistance genes and varieties over the past five years. * = missing data.

Table 5: Pathotype group frequencies from the past five years.

Pathotype Group*	Freq	uency o	f Isolate	es Foun	d (%)
Pathotype Group	2014	2015	2016	2017	2018
Pink	19	3	8	0	0
Blue	8	28	29	3	0
Red	69	66	63	93	93
Purple	4	3	0	0	3
Other	0	0	0	4	4
Number of isolates	26	29	46	28	30

* Due to the limited number of isolates that were genotyped this year, this grouping is based on a mixture of genotype and pathotype groups.

4.1.2.2. Commonly detected isolates

In 2018 there were 14 different pathotypes detected (Table 3), three of which were unique to this year. This contrasts with the 2017 results where 9 pathotypes were identified. Out of the 14 pathotypes detected this year, there were two pathotypes that dominated.

The most common group of isolates, represented by 9 isolates, was the group Red 27. This group carried virulence for *Yr 1,2,3,4,6,7,9,17,25,32,Re,Sp,Ro,So,Ca,Ap,Ev* and was detected for the first time in 2017. The isolates of this group were collected from the varieties Graham, Reflection, Invicta, Skyfall, Gleam, Shabras, LG Rhythm, Bennington and Britannia. The isolates were collected from a wide area of the UK in Devon, Norfolk, Lincolnshire, Warwickshire, Herefordshire, Leicestershire and East Lothian.

The second most common group of isolates was Red 23, which carry virulence for *Yr1,2,3,4,6,7,9,17,25,32,Sp,Ro,So,Ca,Ap* and was identified in five samples. This group has been identified every year since 2013 so it is unsurprising to identify these isolates now. The isolates from this group were collected from the varieties Hacksta, Brimstone, Zulu, JB Diego and Beluga and came from Cambridgeshire, Oxfordshire, Shropshire, Suffolk and Angus.

There was one other isolate identified in 2018 that was particularly interesting to the UKCPVS. The isolate was 18/009, was identified as being from the Purple group and had virulence for *Yr 2,3,4,6,7,9,17,25,32,Sp,Ro,So,Ca,Ap*. This group has historically had isolates from the old Kranich group. The economic importance of these new isolates is to be confirmed, the first step being the varietal seedling and adult plant tests reported in 4.1.3.

4.1.3. Variety testing of isolates from 2018

Five isolates were selected for further testing on the wider set of RL varieties and candidates (Table 6). The isolates were selected to best represent the results of the 30 tested isolates choosing isolates with the most complex virulence profiles where possible. The isolate 18/009 was selected as the only isolate from the Purple group this year and the isolates 18/003, 18/030 and 18/065 were all selected as novel pathotypes for this year.

Table 6: Virulence profile of the isolates chosen for further characterisation in seedling and adult plant tests. Re = Rendezvous, Sp = Spaldings Prolific, Ro = Robigus, So = Solstice, Wa = Warrior, Am = Ambition, Ca = Cadenza, St = KWS Sterling, Kr = Kranich, Ap = Apache, Cr = Crusoe, Ev = Evolution. Yellow shading = compatible reaction (virulence), blank = avirulence, * = missing data.

lsolate code	Host	Group	Race number													Vir	ulen	ce Pr	ofile										
coue			number	1	2	3	4	5	6	7	8	9	10	15	17	24	25	32	Re	Sp	Ro	So	Wa	Са	St	Kr	Ар	Cr	Εv
18/002	Reflection	(Red)	27	1	2	3	4		6	7		9			17		25	32	Re	Sp	Ro	So		Ca	*		Ар		Ev
18/003	Victo/Vuka	Red	60	1	2	3	4		6	7		9			17		25	32	Re	Sp	Ro	So		(Ca)	*		(Ap)		Ev
18/009	Leeds	Purple	5		2	3	4		6	7		9			17		25	32		Sp	Ro	So		Ca			Ар		
18/030	Revelation	Red	47	1	2	3	4		6	7		9			17		25	32	(Re)	Sp	Ro	So	Wa	Са					
18/065	JB Diego	(Red)	43	1	2	3	4		6	7		9			17		25	32		Sp	Ro	So	Wa	Ca			Ар		

4.1.3.1. Seedling tests

The five selected isolates were tested in seedling tests containing RL and candidate varieties in the controlled environment rooms at NIAB in the summer of 2019. Results are combined with the adult plant test results (Table 7) and are sorted by the reaction on the adult plant trials (see 4.1.3.2). In general, there was good agreement between the control differentials included in this test and the original differential test results (Table 8). Some variation was seen in the "supplementary" differentials. These are differentials that are included as they carry currently uncharacterised resistance genes. For example, the reaction on the variety Warrior was 2.0 in the original differential test for isolate 18/002 and 2.8 in the seedling variety test, moving it from an avirulent reaction, to a virulent reaction. The reasons for these discrepancies are unclear, although it is possible that despite our best efforts, some of the isolates are mixtures at the differential test stage. Following subsequent rounds of multiplication it's possible that one or more of the isolates are more heavily selected for, hence the differences. As in previous years, the three RL varieties Costello, KWS Crispin and KWS Siskin were resistant to all isolates tested, along with KWS Jackal, KWS Parkin, RGT Saki and Theodore. There were no varieties that were susceptible this year that had been resistant in previous years. Varieties that are only occasionally susceptible at the seedling stage included Cougar, Crusoe, Evolution, KWS Extase and LG Detroit. Virulence for Crusoe was first detected in 2013 and continues to be detected in occasional isolates. This has not translated into a susceptible response at the adult plant stage for this variety. The isolate 18/002 had a noticeably wider virulence profile on this extended variety set, with virulence for 50 out of the 64 varieties tested. This included some of the rare virulences for varieties such as KWS Extase and Crusoe. The impact of this was investigated in the adult plant trials using the same isolates.

4.1.3.2. Adult plant tests

Alongside the seedling tests, the five isolates were also evaluated in the UKCPVS adult plant trials at NIAB in the summer of 2019 which contained RL and candidate varieties. The new method of inoculation trialled for the first time in 2017 was used again. Plots were treated with fungicides up to and including the T1 application. Leaf two and the flag leaf were then inoculated directly to ensure that only the isolates under investigation were present. The first inoculation was carried out on the 22nd May and the first assessment was made on 15th June when the plants were at GS66. The percentage of leaf area infected was assessed and the mean was calculated from three assessments (Table 7). Disease levels were moderate in the trials this year despite being inoculated five times. As in 2018, hot and dry

weather is likely to have impacted on the disease levels this year, although levels were higher than in 2018. In combination with results from the control varieties included in the trials, the results suggested that the trials were generally infected with the correct races. The trials produced lower levels of disease in comparison with other inoculated yellow rust trials due to the delayed epidemic as a result of the new method used. As expected, the susceptible controls Reflection and Robigus produced the highest levels of disease with up to 42.5% as an average of the percentage leaf area infected assessments.

Out of the 42 RL varieties and candidates under evaluation, 29 were resistant to all isolates tested. It is worth noting that some of the known susceptible RL varieties and controls were resistant in these trials, which is inconsistent with reports from other parts of the country. For example, more disease would have been expected on the varieties Leeds, Skyfall and Torch. It is surprising that these varieties have lower levels of disease given the higher levels seen in other control plots. One explanation may be that some low levels of natural infection managed to get established in the Robigus and Reflection plots early in the season. Samples were taken from all of the trials once the disease was established and these were tested on the standard differential set (Table 8). These tests showed some disagreement with original differential tests, suggesting that there may have been some natural infection in the trial. A new method was implemented in the 2017 field season to eliminate natural infection as much as possible. This involved applying fungicides throughout the spring and stopping when the final leaf 2 emerged. The first year of this method was very successful but in 2018 this was less effective due to the hot weather conditions. This led to no disease developing in the trials. In this field season close attention was paid to the development of the crops and the weather forecast. In this scenario it appears that the fungicide programme may not have been robust enough and further optimisation of this method is required.

During the 2019 field season, the UKCPVS received many reports of higher than expected levels of disease in some varieties. The most commonly reported varieties were KWS Zyatt and Dunston. In these adult plant trials, these two varieties were noticeably more susceptible in the trial inoculated with 18/002. Although it is not absolutely clear whether it was this isolate that caused the disease in this trial, samples and isolates collected will be used as part of the National and Recommended List trials. This will help to understand this potential race change alongside the differential tests that are due to be carried out on other samples collected this season.

Table 7: Seedling and adult plant reactions to the five isolates selected for further characterisation. Seedling results are shown as average infection types on a scale of 0-4. Adult plant results are given as a percentage leaf area infected averaged over four assessments. Varieties are ordered in level of disease at adult plant stage. Control varieties are highlighted in green text.

	Current RL	See	edling (Av	verage Inf	ection Ty	/pe)	Adı	ilt Plant (% leaf are	ea infecte	d)
Variety	Rating	18/002	18/003	18/009	18/030	18/065	18/002	18/003	18/009	18/030	18/065
Apache		3.0	3.0	3.0	3.0	3.0	0.0	0.0	0.0	0.0	0.0
Costello	8.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Crusoe	8.9	2.8	1.8	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0
Elicit	8.8	3.0	3.0	3.0	3.0	2.8	0.0	0.0	0.0	0.0	0.0
Graham	8.3	3.0	2.9	3.0	3.0	3.0	0.0	0.0	0.0	0.0	0.0
KWS Crispin	8.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
KWS Extase	8.6	3.0	0.0	0.0	0.4	0.0	0.0	0.0	0.0	0.0	0.0
KWS Jackal	8.7	2.2	1.9	0.8	0.1	0.0	0.0	0.0	0.0	0.0	0.0
KWS Parkin	Candidate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
KWS Siskin	8.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LG Detroit	8.7	3.0	2.1	0.5	0.1	0.3	0.0	0.0	0.0	0.0	0.0
LG Motown	8.8	2.4	2.9	3.0	2.3	2.3	0.0	0.0	0.0	0.0	0.0
LGW110		*	*	*	*	*	0.0	0.0	0.0	0.0	0.0
Rendezvous		3.0	2.0	3.0	2.9	2.8	0.0	0.0	0.0	0.0	0.0
RGT Saki	Candidate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Stratosphere		3.0	2.8	3.0	3.0	3.0	0.0	0.0	0.0	0.0	0.0
Theodore	Candidate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Elation	8.6	3.0	2.2	3.0	3.0	2.8	0.0	0.0	0.0	0.0	0.0
LG Sundance	8.7	2.9	2.0	3.0	3.0	2.9	0.0	0.0	0.0	0.0	0.0
SY Insitor	Candidate	2.7	2.9	3.0	3.0	1.8	0.0	0.0	0.0	0.0	0.0
Ambition		3.0	3.0	2.5	2.9	3.0	0.1	0.0	0.0	0.0	0.0
Kranich		3.0	2.3	2.1	2.9	2.3	0.1	0.0	0.0	0.0	0.0
LG Skyscraper	7.9	3.0	2.8	3.0	3.0	1.9	0.1	0.0	0.0	0.0	0.1
Revelation	8.7	3.0	3.0	3.0	3.0	3.0	0.1	0.0	0.0	0.1	0.0
RGT Illustrious	8.8	1.9	1.9	1.3	0.9	0.3	0.1	0.0	0.0	0.0	0.0
Warrior		2.8	2.1	2.2	2.2	3.0	0.1	0.0	0.0	0.0	0.0

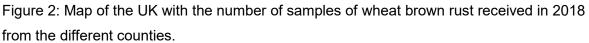
Variety	Current RL	See	dling (Av	verage Inf	ection Ty	/pe)	Adı	It Plant (% leaf are	ea infecte	d)
variety	Rating	18/002	18/003	18/009	18/030	18/065	18/002	18/003	18/009	18/030	18/065
KWS Firefly	8.7	0.2	0.1	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0
LG Rhythm	Candidate	3.0	3.0	3.0	3.0	3.0	0.1	0.0	0.1	0.1	0.2
Shabras	7.4	3.0	3.0	3.0	4.0	3.0	0.1	0.0	0.0	0.1	0.2
Leeds	6.4	3.0	3.0	3.0	3.0	3.0	0.2	0.0	0.0	0.1	0.0
Torch		3.0	3.0	3.0	3.0	3.5	0.2	0.0	0.0	0.1	0.0
Cougar		2.0	1.7	0.3	1.4	2.5	0.2	0.0	0.0	0.0	0.0
KWS Barrel	8.5	2.5	2.4	2.9	3.0	2.7	0.2	0.0	0.0	0.0	0.0
KWS Sterling		3.0	1.8	1.7	0.7	0.0	0.2	0.0	0.0	0.0	0.1
Gleam	6.9	3.0	3.0	3.0	3.0	3.0	0.3	0.0	0.7	0.2	0.1
KWS Lili	7.0	3.0	3.0	3.0	3.0	3.0	0.3	0.6	0.1	0.8	0.3
Skyfall	5.4	3.0	3.0	3.0	3.0	4.0	0.7	0.1	0.1	0.2	0.3
RGT Gravity	8.4	3.0	0.1	2.9	2.4	0.0	0.7	0.0	0.0	0.0	0.0
Viscount	6.5	3.0	3.0	3.0	0.0	3.0	1.0	0.1	0.5	0.5	0.6
KWS Basset	8.0	3.0	3.0	3.0	4.0	3.0	3.1	0.0	0.0	0.0	0.0
Delphi		3.0	3.0	3.5	3.0	3.0	3.2	0.0	0.2	0.3	0.2
LG Spotlight	8.2	4.0	3.0	3.0	3.0	3.9	3.9	0.0	0.0	0.1	0.0
Elysium	Candidate	3.0	3.0	4.0	3.2	4.0	4.8	0.0	0.0	0.1	0.1
KWS Zyatt	7.5	3.0	2.6	2.9	3.0	3.0	5.0	0.0	0.1	0.8	0.1
RGT Wasabi	Candidate	3.0	3.0	4.0	4.0	4.0	6.7	0.0	0.0	0.2	0.1
KWS Kerrin	7.0	3.0	3.0	3.0	3.0	3.0	7.1	0.0	0.0	1.5	0.1
RGT Blossom	Candidate	3.0	2.2	2.9	3.0	2.4	9.2	0.0	0.0	0.1	0.0
KWS Santiago		3.0	3.0	3.0	3.0	3.0	14.0	0.0	0.0	0.1	0.0
KWS Kinetic	Candidate	3.0	3.0	4.0	3.0	3.0	32.2	0.0	0.1	0.1	0.1
RGT Lantern	Candidate	3.0	2.7	4.0	3.5	3.0	2.6	0.2	0.3	4.7	0.4
Cadenza		3.0	2.9	3.0	3.0	2.9	2.8	0.0	0.1	2.0	0.9
Dunston	7.3	3.0	3.0	3.0	3.0	3.0	8.3	0.0	0.1	4.7	0.2
Hobbit		3.0	3.0	4.0	3.0	3.5	3.4	0.6	1.2	11.0	3.1
LG Graduate	Candidate	3.5	4.0	4.0	3.2	4.0	6.3	0.5	0.9	2.2	9.7
Cordiale		3.0	2.7	3.0	3.0	3.0	6.9	0.3	1.6	6.4	4.3

Veriety	Current RL	See	dling (Av	verage Inf	fection Ty	/pe)	Adı	ult Plant (% leaf are	ea infecte	d)
Variety	Rating	18/002	18/003	18/009	18/030	18/065	18/002	18/003	18/009	18/030	18/065
Bennington	6.1	3.0	3.0	3.0	3.0	3.0	12.3	0.5	7.3	12.2	10.2
KWS Gator		3.0	2.9	3.0	3.0	3.0	6.1	6.0	6.8	9.8	2.9
Zulu	4.7	3.0	3.0	3.0	4.0	3.0	15.0	5.8	21.2	18.0	19.3
Claire		3.0	3.0	3.0	3.0	3.0	18.8	7.6	14.5	21.0	33.8
Robigus		4.0	3.0	3.0	4.0	3.0	22.5	35.0	27.5	37.5	33.8
Solstice		3.0	2.9	3.0	3.0	3.0	25.2	13.3	12.0	22.7	15.2
Britannia		3.0	3.0	4.0	3.0	4.0	29.7	7.0	13.8	20.7	17.7
Robigus		*	*	*	*	*	38.0	16.7	23.3	30.8	31.0
Reflection		3.0	3.0	4.0	3.0	3.0	38.8	42.5	29.8	43.3	38.0
Avocet S		3.0	3.0	4.0	3.0	3.0	*	*	*	*	*
Avocet Sp		3.0	2.5	3.0	3.0	3.0	*	*	*	*	*
Avocet Yr1		3.0	3.0	3.0	3.0	3.0	*	*	*	*	*
Avocet Yr15		0.0	0.0	0.0	0.0	0.0	*	*	*	*	*
Avocet Yr17		3.0	3.0	4.0	3.0	3.5	*	*	*	*	*
Avocet Yr24		0.0	0.0	0.0	0.0	0.0	*	*	*	*	*
Avocet Yr27		3.0	3.0	3.0	3.0	3.0	*	*	*	*	*
Avocet Yr32		3.0	3.0	3.0	3.0	3.0	*	*	*	*	*
Avocet Yr5		0.0	0.0	0.0	0.0	0.0	*	*	*	*	*
Avocet Yr6		3.5	3.0	3.0	3.0	3.0	*	*	*	*	*
Avocet Yr7		3.0	3.0	3.0	3.0	3.0	*	*	*	*	*
Avocet Yr8		2.1	2.9	0.0	0.2	0.2	*	*	*	*	*
Avocet Yr9		3.0	3.1	3.0	3.0	3.3	*	*	*	*	*
Carstens V		3.0	3.0	3.0	3.0	3.0	*	*	*	*	*
Chinese 166		3.0	3.0	3.0	3.0	3.0	*	*	*	*	*
Clement		3.5	3.1	3.0	3.0	3.0	*	*	*	*	*
Compair		1.0	0.0	0.0	0.0	0.3	*	*	*	*	*
Evolution		1.7	2.3	2.2	1.8	3.0	*	*	*	*	*
Heines Kolben		3.0	2.9	3.0	3.0	3.0	*	*	*	*	*
Heines Peko		3.0	3.0	3.0	3.0	3.0	*	*	*	*	*

Veriety	Current RL	See	dling (Av	verage Inf	ection Ty	/pe)	Adı	ult Plant (% leaf are	ea infecte	d)
Variety	Rating	18/002	18/003	18/009	18/030	18/065	18/002	18/003	18/009	18/030	18/065
Heines VII		3.0	3.0	3.0	3.0	3.0	*	*	*	*	*
Hybrid 46		3.0	3.0	3.0	3.0	3.0	*	*	*	*	*
Kalyansona		3.0	3.0	3.0	3.0	3.0	*	*	*	*	*
Lee		3.0	3.2	3.0	3.0	3.0	*	*	*	*	*
Moro		0.0	0.0	0.0	0.0	0.0	*	*	*	*	*
Opata		3.0	2.0	3.0	3.0	2.9	*	*	*	*	*
Spaldings Prolific		3.0	3.0	3.0	3.0	3.0	*	*	*	*	*
Strubes Dickkopf		3.0	3.0	3.0	3.0	3.0	*	*	*	*	*
Suwon Omar		3.5	3.0	3.0	3.0	3.0	*	*	*	*	*
Vilmorin 23		3.0	3.0	3.0	3.0	3.0	*	*	*	*	*
VPM1		3.0	3.0	3.0	3.0	3.0	*	*	*	*	*
Vuka		3.5	3.0	3.0	3.0	3.0	*	*	*	*	*
Mean							5.2	2.1	2.5	3.9	3.5
LSD							8.1	3.9	9.0	5.8	7.8

Table 8 Comparison between initial differential test results, variety seedling test results and re-isolations from samples taken from variety adult plant trials for the isolates used in the 2019 variety tests and trials. ¹ Diff = Differential test result, ² Re-Is = Re-isolation results from adult plant trials, ³Seed = Variety seedling test result, * = missing data

	ly data	18/002			18/003			18/009			18/030			18/065	
Differential	Diff ¹	Re-ls ²	Seed ³	Diff	Re-Is	Seed									
Avocet Yr1	4.0	3.0	3.0	3.0	3.0	3.0	3.2	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Chinese 166	3.0	3.0	3.0	3.0	3.0	3.0	3.2	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Kalyansona	4.0	3.0	3.0	3.5	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Vilmorin 23	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Hybrid 46	3.0	*	3.0	3.0	*	3.0	1.8	*	3.0	3.0	*	3.0	3.0	*	3.0
Suwon Omar	3.0	3.0	3.5	3.0	3.2	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.5	3.0
Avocet Yr5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Avocet Yr6	4.0	3.0	3.5	4.0	3.1	3.0	3.5	3.5	3.0	3.0	3.0	3.0	3.0	3.5	3.0
Heines Kolben	3.5	3.0	3.0	3.5	3.0	2.9	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Heines Peko	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Avocet Yr7	*	3.0	3.0	*	4.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lee	3.0	3.0	3.0	3.0	3.5	3.2	3.0	3.2	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Avocet Yr8	0.0	0.0	2.1	0.0	0.0	2.9	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.2
Compair	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3
Avocet Yr9	*	3.0	3.0	*	4.0	3.1	4.0	3.0	3.0	4.0	4.0	3.0	3.0	3.5	3.3
Clement	3.0	3.0	3.5	3.0	3.0	3.1	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Moro	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Avocet Yr15	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
VPM 1	3.0	3.0	3.0	3.5	3.1	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Avocet Yr17	*	4.0	3.0	*	3.5	3.0	3.0	3.0	4.0	3.0	3.0	3.0	3.0	3.0	3.5
Avocet Yr24	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Heines VII	3.5	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	4.0	3.0	3.0
Strubes Dickkopf	3.5	3.0	3.0	3.5	3.0	3.0	3.0	3.0	3.0	3.5	3.0	3.0	4.0	3.0	3.0
Avocet Yr32	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.5	3.0	3.5	3.0	3.0	4.0	3.0	3.0
Carstens V	3.5	3.0	3.0	4.0	3.0	3.0	3.0	3.0	3.0	3.2	3.0	3.0	4.0	3.0	3.0
Rendezvous	3.0	2.1	3.0	3.0	2.2	2.0	1.4	2.1	3.0	2.5	2.5	2.9	2.0	2.0	2.8
Avocet Sp	3.0	3.0	3.0	4.0	3.1	2.5	3.0	3.0	3.0	3.5	3.0	3.0	3.0	3.0	3.0
Spaldings Prolific	3.0	3.0	3.0	4.0	3.0	3.0	3.0	3.0	3.0	3.0	2.0	3.0	3.0	3.0	3.0


		18/002			18/003			18/009			18/030			18/065	
Differential	Diff	Re-Iso	Seed												
Robigus	3.5	*	4.0	4.0	3.0	3.0	4.0	3.1	3.0	4.0	3.5	4.0	4.0	4.0	3.0
Solstice	3.0	3.0	3.0	4.0	3.0	2.9	3.5	3.1	3.0	3.1	3.1	3.0	4.0	3.0	3.0
Warrior	2.0	3.0	2.8	2.0	3.0	2.1	2.1	2.7	2.2	3.0	3.0	2.2	2.9	3.0	3.0
Cadenza	3.0	2.7	3.0	2.6	2.6	2.9	3.0	2.8	3.0	3.0	3.0	3.0	3.0	3.0	2.9
KWS Sterling	*	3.0	3.0	*	1.7	1.8	1.1	1.5	1.7	2.1	2.5	0.7	2.1	3.0	0.0
Kranich	0.4	2.4	3.0	0.3	0.3	2.3	0.0	0.3	2.1	0.3	0.3	2.9	0.0	0.2	2.3
Apache	3.0	2.4	3.0	2.6	2.9	3.0	3.0	2.5	3.0	2.0	3.0	3.0	3.0	3.0	3.0
Crusoe	0.0	0.0	2.8	0.2	0.0	1.8	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.0	0.0
Evolution	3.0	2.4	1.7	3.0	0.2	2.3	0.5	0.6	2.2	0.3	0.1	1.8	0.3	0.6	3.0

4.2. Wheat brown rust

4.2.1. Samples received

In 2018, the UKCPVS received 55 samples of wheat brown rust from 12 different counties across the UK (Figure 2).

The full sample register is provided in Appendix 1. Samples were received from 32 different varieties, with the most frequent variety being KWS Siskin. There no unexpected outbreaks of brown rust on established varieties. The host varieties in the sample register have not all been confirmed and it is entirely possible that a sample listed as coming from a resistant variety may turn out to be another more susceptible variety. For this reason the sample register is included as an indicator of what was received but should not be used to infer any breakdowns in resistance or changes in rating at this stage.

4.2.2. Pathotyping of isolates

4.2.2.1. Virulence for individual resistance genes and varieties

Thirty one isolates were selected for further pathotyping (Table 9). The isolates were selected based on their county of origin and the resistance rating of the host. Isolates from known susceptible varieties were also selected to investigate whether the same or similar isolates are found on different varieties across the resistance spectrum. Isolates were assessed for their reactions on a differential set and their reactions, expressed as an average infection type (a.i.t.), were recorded. As before, isolates were classified as virulent if the a.i.t. score was 2.7 or above. Scores between 2.4 and 2.7 were considered borderline. Using these scores it was possible to combine the scores for reactions to different resistance genes to infer a pathotype for each of the isolates (Table 10). This was the third year that the UKCPVS adopted a new differential set in order to bring the UKCPVS into line with other virulence surveys across the world (for example Kolmer et al. 2013). No new virulences were detected. The frequency of detection of virulence for the *Lr* genes monitored remained stable and were at similar levels to 2017 (Table 11). As in previous years virulence for *Lr24* and *Lr28* is either found at very low levels or not at all. This reflects the use of current varieties that do not carry these resistance genes.

4.2.2.2. Commonly detected races

In 2018 there were 24 different pathotypes detected in the 31 isolates tested, most of which were unique to this year. As discussed previously, this may well reflect the additional resolution afforded to us using the new differential set. In addition to this, it is likely that there will be more than one race present in some of the samples based on the experience of colleagues in France (H. Goyeau, *pers. Comm.*)

4.2.1. Variety testing of isolates from 2018

Five isolates from the 31 tested isolates were selected for further testing on the wider set of RL varieties and candidates (Table 12) and were selected to best represent the diversity of the isolates tested.

Table 9: Average infection type (a.i.t.) scores for the selected isolates against the UKCPVS differential set. Yellow shading indicates a compatible reaction; orange shading indicates a borderline reaction. Compatible interactions classify the isolate as virulent against a particular resistance gene or variety.

Isolate	Host Variety	Thatcher Lr1	Thatcher Lr2a	Thatcher Lr2b	Thatcher Lr2c	Thatcher Lr3a	Thatcher Lr3bg	Thatcher Lr3ka	Thatcher Lr10	Thatcher Lr13	Thatcher Lr14a	Thatcher Lr15	Thatcher Lr16	Thatcher Lr17	Thatcher Lr20	Thatcher Lr23	Thatcher Lr24	Thatcher Lr26	Thatcher Lr28	Thatcher Lr37	Armada	Crusoe	Maris Fundin (Lr17b)	Robigus (Lr28)
18/001	KWS Siskin	1.0	2.0	2.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	0.3	2.0	0.0	3.0	3.0	3.0	3.0	0.0
18/002	Jaidor	1.0	1.0	2.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	2.0	3.0	3.0	2.0	0.3	2.0	0.0	3.0	3.0	3.0	3.0	0.0
18/009	Moulton	3.0	2.0	2.0	2.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	2.0	0.3	2.0	0.0	3.0	3.0	3.0	3.0	0.0
18/011	Graham	2.0	2.0	2.0	2.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	2.0	3.0	3.0	3.0	0.6	2.0	0.1	3.0	3.0	3.0	3.0	0.0
18/012	Cougar	2.0	2.0	2.1	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	2.0	3.0	3.0	2.0	0.3	2.0	0.2	3.0	3.0	3.0	3.0	0.0
18/014	KWS Firefly	3.0	2.0	1.0	2.0	2.0	2.0	2.0	3.0	3.0	3.0	3.0	3.0	3.0	2.0	2.0	0.6	2.0	3.0	3.0	3.0	3.0	3.0	0.0
18/015	Freiston	3.0	1.0	2.0	2.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	2.0	3.0	3.0	2.0	0.6	2.0	1.0	3.0	3.0	3.0	3.0	0.0
18/016	KWS Kerrin	3.0	0.0	1.0	2.0	2.0	3.0	3.0	3.0	3.0	3.0	3.0	2.0	3.0	3.0	2.0	0.3	1.0	0.0	3.0	3.0	3.0	3.0	0.0
18/019	KWS Trinity	3.0	1.0	2.0	2.0	3.0	3.0	2.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	2.0	1.5	2.0	0.0	3.0	3.0	3.0	3.0	0.0
18/021	Spyder	3.0	1.0	1.0	1.0	2.0	2.0	2.0	3.0	3.0	3.0	3.0	2.0	3.0	3.0	2.0	0.6	1.0	2.0	3.0	3.0	3.0	3.0	0.0
18/022	RGT Illustrious	3.0	1.0	1.0	3.0	2.0	2.0	2.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	2.1	0.7	1.0	0.2	3.0	3.0	3.0	3.0	0.0
18/026	Bennington	3.0	1.0	1.0	2.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	2.0	0.3	1.0	0.0	3.0	3.0	3.0	3.0	0.0
18/028	SY Medea	3.0	2.0	2.0	3.0	2.0	2.0	2.0	3.0	3.0	3.0	3.0	2.0	3.0	3.0	2.0	0.0	1.0	0.2	3.0	3.0	3.0	3.0	0.0
18/029	Elicit	3.0	1.0	1.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	2.0	3.0	2.0	3.0	0.2	1.0	0.0	3.0	3.0	3.0	3.0	0.0
18/030	Buster	3.0	1.0	2.0	3.0	2.0	3.0	3.0	3.0	3.0	3.0	3.0	2.0	3.0	3.0	2.0	3.0	1.0	0.0	3.0	3.0	3.0	3.0	0.0
18/032	Dunston	3.0	0.0	0.0	2.0	2.0	2.0	3.0	3.0	3.0	3.0	3.0	2.0	3.0	2.0	2.0	0.2	1.0	0.0	3.0	3.0	3.0	3.0	0.0
18/033	KWS Lili	3.0	0.0	2.0	2.0	2.0	3.0	3.0	3.0	3.0	3.0	3.0	2.0	3.0	3.0	2.0	0.6	1.0	0.0	3.0	3.0	3.0	3.0	0.0
18/034	LG Sundance	3.0	0.0	1.0	2.0	2.0	3.0	3.0	3.0	3.0	3.0	3.0	2.0	3.0	3.0	3.0	0.6	1.0	0.0	3.0	3.0	3.0	3.0	0.0
18/035	Skyfall	3.0	1.0	1.0	2.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	2.0	3.0	0.6	1.0	0.5	3.0	3.0	3.0	3.0	0.0

Isolate	Host Variety	Thatcher Lr1	Thatcher Lr2a	Thatcher Lr2b	Thatcher Lr2c	Thatcher Lr3a	Thatcher Lr3bg	Thatcher Lr3ka	Thatcher Lr10	Thatcher Lr13	Thatcher Lr14a	Thatcher Lr15	Thatcher Lr16	Thatcher Lr17	Thatcher Lr20	Thatcher Lr23	Thatcher Lr24	Thatcher Lr26	Thatcher Lr28	Thatcher Lr37	Armada	Crusoe	Maris Fundin (Lr17b)	Robigus (Lr28)
18/036	KWS Barrel	3.0	1.0	1.0	2.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	1.2	1.1	0.2	3.0	3.0	3.0	3.0	0.6
18/038	KWS Zyatt	3.0	1.0	1.0	2.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	0.0	1.0	0.0	3.0	3.0	3.0	3.0	0.0
18/039	Revelation	3.0	0.0	0.4	2.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	2.0	0.6	1.0	0.0	3.0	3.0	3.0	3.0	0.0
18/041	KWS Santiago	3.0	0.1	1.0	2.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	1.6	2.0	3.0	3.0	3.0	3.0	3.0	1.8
18/042	Robigus	3.0	0.1	1.0	2.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	1.6	2.0	3.0	3.0	3.0	3.0	3.0	1.8
18/043	Robigus	1.0	2.0	2.0	3.0	1.0	1.1	2.0	3.0	3.0	3.0	3.0	3.0	3.0	2.0	3.0	1.2	3.0	3.0	3.0	3.0	3.0	3.0	3.0
18/045	LG Motown	3.0	0.0	1.0	2.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	2.0	2.0	0.3	1.0	0.0	3.0	3.0	3.0	3.0	0.0
18/046	Evolution	3.0	0.0	0.0	1.0	2.0	2.0	3.0	3.0	3.0	3.0	3.0	2.0	3.0	3.0	2.0	0.3	0.2	0.4	3.0	3.0	3.0	3.0	0.0
18/048	KWS Firefly	3.0	1.0	1.0	1.0	2.0	2.0	2.0	3.0	3.0	3.0	3.0	3.0	3.0	2.0	2.0	1.0	0.3	3.0	3.0	3.0	3.0	3.0	3.0
18/049	Costello	3.0	1.0	1.0	2.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	0.9	1.0	1.0	3.0	3.0	3.0	3.0	0.3
18/051	Crusoe	2.0	0.0	0.0	1.0	0.0	0.0	2.0	3.0	3.0	3.0	3.0	2.0	3.0	3.0	2.0	1.2	0.0	0.0	3.0	3.0	3.0	3.0	0.0
18/055	Hereford	3.0	0.0	1.0	2.0	2.0	3.0	3.0	3.0	3.0	3.0	3.0	2.0	3.0	3.0	3.0	0.6	1.0	0.0	3.0	3.0	3.0	3.0	0.0

Table 10: Pathotypes of the 2018 *Puccinia triticina* isolates based on the differential test results in Table 9. Numbers refer to specific *Lr* resistance genes, Cr = Crusoe, Ro = Robigus

Isolate	Host variety										Vi	rulenc	e Prof	ile									
Number	_	1	2a	2b	2c	3a	3bg	3ka	10	13	14a	15	16	17	20	23	24	26	28	37	17b	Ro	Cr
18/001	KWS Siskin				2c	3a	3bg	3ka	10	13	14a	15	16	17	20	23		26		37	17b		Cr
18/002	Jaidor	(1)			2c	3a	3bg	3ka	10	13	14a	15		17	20			26		37	17b		Cr
18/009	Moulton	1				3a	3bg	3ka	10	13	14a	15	16	17	20			26		37	17b		Cr
18/011	Graham					3a	3bg	3ka	10	13	14a	15		17	20	23		26		37	17b		Cr
18/012	Cougar	(1)			2c	3a	3bg	3ka	10	13	14a	15		17	20			26		37	17b		Cr
18/014	KWS Firefly	1							10	13	14a	15	16	17				26	(28)	37	17b		Cr
18/015	Freiston	1				3a	3bg	3ka	10	13	14a	15		17	20			26		37	17b		Cr
18/016	KWS Kerrin	1				(3a)	3bg	3ka	10	13	14a	15		17	20			26		37	17b		Cr
18/019	KWS Trinity	1				3a	3bg		10	13	14a	15	16	17	20			26		37	17b		Cr
18/021	Spyder	1				(3a)			10	13	14a	15		17	20			26		37	17b		Cr
18/022	RGT Illustrious	1			2c				10	13	14a	15	16	17	20			26		37	17b		Cr
18/026	Bennington	1				3a	3bg	3ka	10	13	14a	15	16	17	20			26		37	17b		Cr
18/028	SY Medea	1			2c	(3a)			10	13	14a	15		17	20			26		37	17b		Cr
18/029	Elicit	1			2c	3a	3bg	3ka	10	13	14a	15		17		23		26		37	17b		Cr
18/030	Buster	1			2c	(3a)	3bg	3ka	10	13	14a	15		17	20		(24)	26		37	17b		Cr
18/032	Dunston	1						3ka	10	13	14a	15		17				26		37	17b		Cr
18/033	KWS Lili	1				(3a)	3bg	3ka	10	13	14a	15		17	20			26		37	17b		Cr
18/034	LG Sundance	1					3bg	3ka	10	13	14a	15		17	20	23		26		37	17b		Cr
18/035	Skyfall	1				3a	3bg	3ka	10	13	14a	15	16	17		23		26		37	17b		Cr
18/036	KWS Barrel	1				3a	3bg	3ka	10	13	14a	15	16	17	20	23		26		37	17b		Cr
18/038	KWS Zyatt	1				(3a)	3bg	3ka	10	13	14a	15	16	17	20	23		26		37	17b		Cr
18/039	Revelation	1				(3a)	3bg	3ka	10	13	14a	15	16	17	20			26		37	17b		Cr
18/041	KWS Santiago	1				3a	3bg	3ka	10	13	14a	15	16	17	20	23		26	(28)	37	17b		Cr
18/042	Robigus	1				3a	3bg	3ka	10	13	14a	15	16	17	20	23		26	(28)	37	17b		Cr
18/043	Robigus				2c				10	13	14a	15	16	17		23		26	28	37	17b	Ro	Cr
18/045	LG Motown	1				3a	3bg	3ka	10	13	14a	15	16	17	(20)			26		37	17b		Cr
18/046	Evolution	1						3ka	10	13	14a	15		17	20			26		37	17b		Cr
18/048	KWS Firefly	1							10	13	14a	15	16	17				26	28	37	17b	Ro	Cr

Isolate	Host variety										Vi	rulenc	e Prof	ile									
Number		1	2a	2b	2c	3a	3bg	3ka	10	13	14a	15	16	17	20	23	24	26	28	37	17b	Ro	Cr
18/049	Costello	1				3a	3bg	3ka	10	13	14a	15	16	17	20	23		26		37	17b		Cr
18/051	Crusoe					(3a)			10	13	14a	15		17	20			26		37	17b		Cr
18/055	Hereford	1					3bg	3ka	10	13	14a	15		17	20	23		26		37	17b		Cr

Virulence For Resistance Gene or	Percentage	of Isolates Ide	ntified with Vi	rulence for Ge	ene or Variety
Variety	2014	2015	2016	2017	2018
Lr1	61	39	29	68	81
Lr2a	*	*	0	0	0
Lr2b	*	*	0	16	0
Lr2c	*	*	6	48	26
Lr3a	61	52	26	87	48
Lr3bg	*	*	19	81	71
Lr3ka	*	*	29	77	74
Lr10	*	*	29	87	100
Lr13	*	*	32	84	100
Lr14a	*	*	29	87	100
Lr15	*	*	16	84	100
Lr16	*	*	13	58	52
Lr17	*	*	23	87	100
Lr17b	68	55	81	55	100
Lr20	77	65	10	87	77
Lr23	*	*	6	45	39
Lr24	16	3	3	3	0
Lr26	71	52	0	58	100
Lr28	10	6	0	0	6
Lr37	65	45	39	74	100
Robigus	10	6	0	0	6
Crusoe	74	42	71	77	100
Total Number of Isolates	25	26	25	27	31

Table 11: Frequency of detection of isolates carrying virulence to the different brown rust resistance genes and varieties over the past five years. * = missing data.

Table 12: Virulence profile of the isolates chosen for further characterisation in seedling and adult plant tests. Numbers refer to specific *Lr* resistance genes, Ro = Robigus, Cr = Crusoe. Yellow shading = compatible reaction (virulence), blank = avirulence.

lsolate Number	Host variety										Vi	rulenc	e Prof	ile									
Number		1	2a	2b	2c	3a	3bg	3ka	10	13	14a	15	16	17	20	23	24	26	28	37	17b	Ro	Cr
18/001	KWS Siskin				2c	3a	3bg	3ka	10	13	14a	15	16	17	20	23		(26)		37	17b		Cr
18/011	Graham					3a	3bg	3ka	10	13	14a	15		17	20	23		(26)		37	17b		Cr
18/030	Buster	1			<mark>2</mark> c	(3a)	3bg	3ka	10	13	14a	15		17	20		(24)	(26)		37	17b		Cr
18/038	KWS Zyatt	1				(3a)	3bg	3ka	10	13	14a	15	16	17	20	23		(26)		37	17b		Cr
18/041	KWS Santiago	1				<mark>3</mark> a	3bg	3ka	10	13	14a	15	16	17	20	23		(26)	(28)	37	17b		Cr

4.2.1.1. Seedling tests

The five selected isolates were tested in seedling tests containing RL and RL candidate varieties in the controlled environment rooms at NIAB in the summer of 2019. Results are combined with the adult plant test results (Table 13) and are sorted by the reaction on the adult plant trials (see 4.2.1.2). Similar to previous years, only four of the RL varieties and candidates tested were resistant to all of the isolates tested (five in 2018). Virulence for LG Motown and LG Rhythm was detected for the first time this year. A general agreement was seen when these results were compared with those of the initial differential test, however some discrepancies were seen (Table 14). The most commonly found discrepancies were found in the differentials Thatcher *Lr23* and Thatcher *Lr26* and this is similar to what has been seen in previous years. For this reason, Clement was included as an additional differential for *Lr26* and this seemed to have better agreement across the tests. Further purification methods have now been used by the UKCPVS to solve the problem of multiple isolates in a sample. Discrepancies seen now are most likely due to environmental issues.

4.2.1.2. Adult plant tests

Alongside the seedling tests, the five isolates were also evaluated in the UKCPVS adult plant trials at NIAB in the summer of 2019 which contained RL and candidate varieties. As with the yellow rust trials, the adult plant trials were treated with fungicides up to and including the T1 application to keep the natural infection levels in the trial as low as possible. The trials were inoculated for the first time on the 15th May and were inoculated seven times. The first assessment was made on 25th June when the plants were at GS73. The percentage of leaf area infected was assessed and the mean was calculated from three assessments. Disease levels were higher in the trials this year compared to last year. Similar to last year, dry conditions during the inoculation and assessment period may have impacted on the amount of disease established in the trials. Susceptible control Buster showed variable amounts of disease across the five trials, with the highest score being 25.67%. The highest levels of disease were generally recorded in the current variety Crusoe. Samples were taken from the trials to confirm that isolates used to inoculate the trial were present (Table 14). Tests on these isolates showed some disagreement with original differential tests, suggesting that there may have been some natural infection in the trial. As discussed above, the new method for keeping out natural infection may need some further refinement. It is clear from the results however that the isolates used to inoculate the trial were not the only ones present in the trial and specific variety x isolate interactions are difficult.

37

Out of the 42 RL varieties and candidates under evaluation, only 5 were resistant to all isolates tested. There was a good range of disease across all of the varieties, and this reflects the range of resistance ratings currently seen in the Recommended List. During the 2019 field season, the UKCPVS received reports of higher than expected levels of disease in the variety KWS Firefly. In these adult plant trials, this variety was noticeably more susceptible in the trial inoculated with 18/030, 18/038 and 18/041. Although it is not absolutely clear whether it was these isolates that caused the disease in these trials, samples and isolates collected will be used as part of the National and Recommended List trials. This will help to understand this potential race change alongside the differential tests that are due to be carried out on other samples collected this season.

Table 13: Seedling and adult plant reactions to the five isolates selected for further characterisation. Seedling results are shown as average infection types on a scale of 0-4. Adult plant results are given as a percentage leaf area infected averaged over four assessments. Varieties are ordered in level of disease at adult plant stage. Control varieties are highlighted in green text.

Veriety	Current RL	See	dling (Av	erage Infe	ection Typ	be)	Ad	ult Plant (% leaf are	ea infecte	d)
Variety	Rating	18/001	18/011	18/030	18/038	18/041	18/001	18/011	18/030	18/038	18/041
Theodore	С	0.1	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.5
KWS Target		0.0	0.3	0.0	0.5	3.0	0.2	1.0	0.9	0.0	0.0
Stigg		0.3	0.5	0.0	1.5	0.9	0.2	0.0	3.6	0.2	0.0
Leeds	7	0.0	0.0	0.0	0.6	3.0	0.2	0.4	2.2	0.4	0.7
Robigus		0.0	0.1	0.0	0.5	3.0	0.4	1.3	1.9	0.3	0.8
Warrior		0.0	0.0	0.0	0.0	0.1	0.4	0.2	2.0	0.1	0.0
Maris Ranger		*	*	*	*	*	0.5	0.7	1.3	0.0	0.2
RGT Saki	С	0.0	0.0	0.0	1.4	2.0	0.8	2.8	2.0	2.3	2.2
Viscount	9	0.0	0.0	0.0	0.6	2.0	0.9	1.4	2.5	3.0	1.2
Skyfall	8	3.0	3.0	3.0	3.0	3.0	2.4	2.8	1.5	1.0	1.2
Elysium	С	3.0	3.0	3.0	3.0	3.0	2.5	2.0	3.9	3.3	2.2
LG Graduate	С	3.0	3.0	3.0	3.0	3.0	3.0	1.7	3.3	1.2	4.7
Sterna		3.0	3.0	3.0	3.0	3.0	6.4	1.7	0.9	1.8	3.0
Revelation	8	3.0	3.0	3.0	3.0	3.0	1.6	2.0	4.2	2.7	3.8
RGT Illustrious	6	3.0	3.0	3.0	3.0	3.0	2.4	2.0	6.7	5.6	5.9
KWS Firefly	8	0.1	0.1	0.0	0.3	2.0	3.3	3.0	4.4	5.0	4.0
Gamin		3.0	3.0	3.0	3.0	3.0	3.5	5.0	3.0	4.9	5.5
RGT Wasabi	С	3.0	3.0	3.0	3.0	3.0	2.9	4.5	5.0	2.9	4.2
Zulu	7	3.0	3.0	3.0	3.0	3.0	2.0	4.8	4.8	5.7	4.0
KWS Kerrin	7	3.0	3.0	3.0	3.0	3.0	2.8	4.0	5.4	4.7	4.0
Maris Halberd		3.0	3.0	3.0	2.0	2.0	4.5	2.8	6.4	8.3	4.7
KWS Extase	7	3.0	3.0	3.0	3.0	3.0	4.4	4.4	3.7	6.9	2.9
LG Spotlight	6	3.0	3.0	3.0	3.0	3.0	4.1	5.0	6.4	6.2	4.2
LG Skyscraper	5	3.0	3.0	3.0	3.0	3.0	4.9	6.2	6.7	6.0	6.7
Maris Fundin		3.0	3.0	3.0	3.0	3.0	5.4	4.2	5.8	7.2	7.0
Armada		3.0	3.0	3.0	3.0	3.0	7.2	4.7	6.5	6.5	7.6
Elicit	7	3.0	3.0	3.0	3.0	3.0	4.3	4.0	4.5	5.0	7.9

Variety	Current RL	See	dling (Ave	erage Infe	ection Typ	pe)	Ad	ult Plant (% leaf are	ea infecte	d)
variety	Rating	18/001	18/011	18/030	18/038	18/041	18/001	18/011	18/030	18/038	18/041
RGT Lantern	С	3.0	3.0	3.0	3.0	3.0	4.6	4.8	4.5	4.4	13.0
RGT Gravity	6	3.0	3.0	3.0	3.0	3.0	5.5	6.3	6.7	5.7	8.9
Bennington	7	3.0	3.0	3.0	3.0	3.0	5.6	7.2	8.5	7.0	4.4
LG Motown	7	0.0	2.0	3.0	3.0	3.0	4.8	9.2	7.0	6.0	5.9
KWS Basset	5	3.0	3.0	3.0	3.0	3.0	4.0	4.7	4.2	10.2	7.7
KWS Jackal	5	3.0	3.0	3.0	3.0	3.0	4.7	5.4	3.8	7.3	8.8
Reaper		*	*	*	*	*	6.2	5.5	5.9	9.9	11.5
KWS Crispin	5	3.0	3.0	3.0	3.0	3.0	6.5	3.7	4.7	10.0	7.7
KWS Zyatt	6	3.0	3.0	3.0	3.0	3.0	6.4	5.4	11.4	11.2	9.2
KWS Santiago		3.0	3.0	2.0	3.0	3.0	6.5	7.2	9.5	11.7	10.5
SY Insitor	С	3.0	3.0	3.0	3.0	3.0	7.1	7.3	7.1	10.3	7.3
Graham	6	3.0	3.0	3.0	3.0	3.0	5.5	8.8	8.2	5.0	9.4
Tuxedo		3.0	3.0	3.0	3.0	3.0	4.4	10.2	13.5	9.6	6.8
LG Rhythm		0.2	2.0	3.0	3.0	3.0	6.6	7.9	9.8	10.4	7.5
Soissons		3.0	3.0	3.0	3.0	3.0	6.7	7.4	10.8	8.2	10.9
Gleam	6	3.0	3.0	3.0	3.0	3.0	6.7	8.7	8.8	10.5	9.8
KWS Parkin	С	0.1	2.0	2.0	3.0	3.0	7.1	12.5	14.5	17.2	12.7
Sappo		3.0	3.0	3.0	2.0	3.0	8.3	4.2	11.4	7.4	9.0
Consort		3.0	3.0	3.0	3.0	3.0	11.0	7.2	8.5	11.0	12.8
LG Sundance	6	3.0	3.0	3.0	3.0	3.0	13.1	6.3	8.3	9.8	10.9
Maris Huntsman		3.0	3.0	3.0	3.0	3.0	10.3	6.7	14.5	13.5	12.1
KWS Sterling		3.0	3.0	3.0	3.0	3.0	14.4	8.9	5.6	11.4	11.8
Glasgow		0.3	2.0	3.0	3.0	3.0	14.3	14.4	15.8	5.0	11.2
Dunston	6	3.0	3.0	3.0	3.0	3.0	7.5	7.8	8.2	10.8	5.2
Shabras	5	3.0	3.0	3.0	3.0	3.0	8.2	8.4	8.4	8.0	5.2
KWS Siskin	5	3.0	3.0	3.0	3.0	3.0	13.6	8.2	8.9	10.3	6.4
KWS Kinetic	С	3.0	3.0	3.0	3.0	3.0	8.8	12.5	12.6	9.2	9.9
KWS Barrel	5	3.0	3.0	3.0	3.0	3.0	10.1	10.4	11.5	8.5	11.9
LG Detroit	5	3.0	3.0	3.0	3.0	3.0	11.0	9.8	10.9	10.1	14.3
Costello	5	3.0	3.0	3.0	3.0	3.0	11.7	13.5	9.7	8.8	11.8
Elation	6	3.0	3.0	3.0	3.0	3.0	12.5	13.7	10.1	11.8	9.7

Veriety	Current RL	See	dling (Av	erage Infe	ection Typ	be)	Ad	ult Plant (% leaf are	ea infecte	d)
Variety	Rating	18/001	18/011	18/030	18/038	18/041	18/001	18/011	18/030	18/038	18/041
Mascot		3.0	3.0	3.0	3.0	3.0	7.3	9.4	11.7	15.9	13.9
RGT Blossom	С	3.0	3.0	3.0	3.0	3.0	10.6	13.0	8.9	16.1	13.4
Avalon		3.0	3.0	3.0	3.0	3.0	17.3	8.6	18.2	11.7	13.6
KWS Lili	4	3.0	3.0	3.0	3.0	3.0	20.7	14.9	18.5	13.7	12.1
Buster		3.0	3.0	3.0	3.0	3.0	25.7	15.5	16.0	22.0	21.5
Crusoe	3	3.0	3.0	3.0	3.0	3.0	34.2	27.0	35.0	29.2	24.8
Thatcher Lr1		2.0	1.1	3.0	3.0	3.0	*	*	*	*	*
Thatcher Lr2a		1.0	1.0	1.0	1.0	1.0	*	*	*	*	*
Thatcher Lr2b		2.0	2.0	2.0	1.0	1.0	*	*	*	*	*
Thatcher Lr2c		3.0	3.0	3.0	2.0	2.0	*	*	*	*	*
Thatcher Lr3a		3.0	3.0	3.0	3.0	3.0	*	*	*	*	*
Thatcher Lr3bg		3.0	3.0	3.0	3.0	3.0	*	*	*	*	*
Thatcher Lr3ka		3.0	3.0	3.0	3.0	3.0	*	*	*	*	*
Thatcher Lr10		3.0	3.0	3.0	3.0	3.0	*	*	*	*	*
Thatcher Lr13		3.0	3.0	3.0	3.0	3.0	*	*	*	*	*
Thatcher Lr14a		3.0	3.0	3.0	3.0	3.0	*	*	*	*	*
Thatcher Lr15		3.0	3.0	3.0	3.0	3.0	*	*	*	*	*
Thatcher Lr16		3.0	2.0	2.0	3.0	2.0	*	*	*	*	*
Thatcher Lr17		3.0	3.0	3.0	3.0	3.0	*	*	*	*	*
Thatcher Lr20		3.0	3.0	3.0	3.0	3.0	*	*	*	*	*
Thatcher Lr23		2.0	2.0	2.0	2.0	2.0	*	*	*	*	*
Thatcher Lr24		0.9	1.5	2.2	1.2	0.9	*	*	*	*	*
Thatcher Lr26		3.0	3.0	2.0	3.0	3.0	*	*	*	*	*
Thatcher Lr28		0.4	0.0	0.0	0.2	3.0	*	*	*	*	*
Thatcher Lr37		3.0	3.0	3.0	3.0	3.0	*	*	*	*	*
Clement		3.0	3.0	3.0	3.0	3.0	*	*	*	*	*
Mean		*	*	*	*	*	6.9	6.5	7.7	7.7	7.5
LSD		*	*	*	*	*	4.3	4.6	4.1	4.5	3.5

Table 14: Comparison between initial differential test results, variety seedling test results and re-isolations from samples taken from variety adult plant trials for the isolates used in the 2019 variety tests and trials. ¹ Diff = Differential test result, ² Seed = Variety seedling test result, ³Re-Is = Re-isolation results from adult plant trials, * = missing data

Differential		18/001			18/011			18/030			18/038			18/041	
	Diff ¹	Seed ²	Re-ls ³	Diff ¹	Seed ²	Re-ls ³	Diff ¹	Seed ²	Re-ls ³	Diff ¹	Seed ²	Re-ls ³	Diff ¹	Seed ²	Re-Is ³
Armada	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Clement	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Crusoe	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Glasgow	0.3	0.6	3.0	2.0	2.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Maris Fundin	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Maris Halberd	3.0	*	2.0	3.0	*	2.0	3.0	*	0.4	2.0	*	2.0	2.0	*	2.0
Robigus	0.0	0.0	0.0	0.1	0.0	2.0	0.0	0.0	2.0	0.5	0.0	2.0	3.0	1.8	1.0
Sappo	3.0	3.0	2.0	3.0	3.0	2.0	3.0	3.0	2.0	2.0	3.0	2.0	3.0	3.0	2.0
Sterna	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	2.0	3.0	3.0	3.0	3.0
Stigg	0.3	0.0	0.9	0.5	0.0	2.0	0.0	0.0	0.9	1.5	0.0	0.7	0.9	0.0	0.9
Warrior	0.0	0.0	3.0	0.0	0.0	3.0	0.0	0.0	3.0	0.0	0.0	3.0	0.1	0.0	3.0
Thatcher Lr1	2.0	1.0	3.0	1.1	2.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Thatcher Lr2a	1.0	2.0	3.0	1.0	2.0	3.0	1.0	1.0	3.0	1.0	1.0	3.0	1.0	0.1	3.0
Thatcher Lr2b	2.0	2.0	3.0	2.0	2.0	3.0	2.0	2.0	3.0	1.0	1.0	3.0	1.0	1.0	3.0
Thatcher Lr2c	3.0	3.0	3.0	3.0	2.0	3.0	3.0	3.0	3.0	2.0	2.0	3.0	2.0	2.0	3.0
Thatcher Lr3a	3.0	3.0	3.0	3.0	3.0	3.0	3.0	2.0	2.5	3.0	3.0	3.0	3.0	3.0	3.0
Thatcher Lr3bg	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Thatcher Lr3ka	3.0	3.0	2.0	3.0	3.0	2.0	3.0	3.0	1.2	3.0	3.0	2.0	3.0	3.0	2.0
Thatcher Lr10	3.0	3.0	2.0	3.0	3.0	2.0	3.0	3.0	2.0	3.0	3.0	2.0	3.0	3.0	2.0
Thatcher Lr13	3.0	3.0	1.8	3.0	3.0	1.5	3.0	3.0	1.2	3.0	3.0	0.6	3.0	3.0	0.0
Thatcher Lr14a	3.0	3.0	3.0	3.0	3.0	2.7	3.0	3.0	2.0	3.0	3.0	3.0	3.0	3.0	3.0
Thatcher Lr15	3.0	3.0	2.0	3.0	3.0	3.0	3.0	3.0	2.0	3.0	3.0	3.0	3.0	3.0	3.0
Thatcher Lr16	3.0	3.0	1.0	2.0	2.0	0.0	2.0	2.0	0.2	3.0	3.0	1.0	2.0	3.0	0.0
Thatcher Lr17	3.0	3.0	2.0	3.0	3.0	1.0	3.0	3.0	1.0	3.0	3.0	1.0	3.0	3.0	1.0
Thatcher Lr20	3.0	3.0	2.0	3.0	3.0	2.0	3.0	3.0	2.0	3.0	3.0	2.0	3.0	3.0	2.0
Thatcher Lr23	2.0	3.0	3.0	2.0	3.0	3.0	2.0	2.0	3.0	2.0	3.0	3.0	2.0	3.0	3.0

Differential		18/001			18/011			18/030			18/038			18/041	
	Diff ¹	Seed ²	Re-Is ³	Diff ¹	Seed ²	Re-ls ³	Diff ¹	Seed ²	Re-Is ³	Diff ¹	Seed ²	Re-Is ³	Diff ¹	Seed ²	Re-Is ³
Thatcher Lr24	0.9	0.3	3.0	1.5	0.6	3.0	2.2	3.0	3.0	1.2	0.0	3.0	0.9	1.6	3.0
Thatcher Lr26	3.0	2.0	3.0	3.0	2.0	3.0	2.0	1.0	3.0	3.0	1.0	3.0	3.0	2.0	3.0
Thatcher Lr28	0.4	0.0	3.0	0.0	0.1	3.0	0.0	0.0	3.0	0.2	0.0	3.0	3.0	3.0	3.0
Thatcher Lr37	3.0	3.0	0.4	3.0	3.0	2.0	3.0	3.0	1.0	3.0	3.0	0.0	3.0	3.0	0.2

4.3. Wheat powdery mildew

4.3.1. Samples received

Levels of wheat powdery mildew were more modest in 2018 and the UKCPVS received 36 samples including samples from mobile trap nurseries (appendix 1). The samples came from 27 different varieties and 9 different counties (Figure 3).

Figure 3: Map of the UK with the number of samples of wheat powdery mildew received in 2018 from the different counties.

4.3.2. Pathotyping of isolates

From the 35 samples, multiple isolates were obtained, and 27 were pathotyped using a differential set (Table 15). Virulence was seen for most of the differentials tested, with avirulence seen only for Amigo and Shamrock. Virulence frequencies for most of the differentials remained in line with previous years (Table 16). The frequency of Maris Dove, Tonic, Broom, Warrior, Stigg and Crusoe virulences increased compared to last year, whilst

Table 15: Pathotype results for the wheat powdery mildew detached seedling tests. Average infection types of 2.7 and above (yellow shading) indicate a compatible reaction, values between 2.5 and 2.7 (shaded orange) indicate a borderline reaction and values below 2.5 indicate an incompatible reaction. Differential varieties are listed along with the known resistance genes carried by these lines.

Isolate	Host Variety		Pm2	Pm3b	Pm4b	Pm5	Pm6	MId	Pm8	Pm2,MITa2	Pm5, MITa2	MITo	Pm3d	Pm5, MISi2	MISo	MIAX	Pm17	MISh	MIRo			
Number	-	Cerco	Galahad	Chul	Armada	Flanders	Brimstone	Clement	Maris Dove	Brock	Mercia	Tonic	Broom	Sicco	Wembley	Axona	Amigo	Shamrock	Robigus	Warrior	Stigg	Crusoe
18/02/02	Skyfall	4.0	3.5	0.8	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	0.0	0.0	4.0	0.0	0.0	4.0	4.0	4.0	4.0
18/06/01	KWS Zyatt	4.0	4.0	0.5	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	0.3	0.3	4.0	1.3	1.0	4.0	4.0	4.0	4.0
18/07/03	KWS Trinity	4.0	4.0	3.0	4.0	3.5	4.0	4.0	3.8	3.8	4.0	4.0	4.0	0.0	0.0	4.0	0.0	0.0	4.0	4.0	4.0	4.0
18/08/01	RGT Illustrious	4.0	4.0	2.8	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	2.5	1.0	4.0	4.0	4.0	4.0
18/08/02	RGT Illustrious	4.0	4.0	1.0	4.0	4.0	4.0	4.0	4.0	3.8	4.0	4.0	4.0	4.0	4.0	4.0	0.5	0.3	4.0	4.0	4.0	4.0
18/08/03	RGT Illustrious	4.0	4.0	0.3	4.0	3.0	4.0	0.3	4.0	4.0	4.0	0.0	0.3	3.5	3.3	0.0	0.0	0.0	4.0	0.0	0.0	0.0
18/09/02	KWS Lili	4.0	4.0	1.0	4.0	0.8	3.8	3.8	3.5	3.5	3.3	4.0	4.0	0.0	0.0	4.0	0.5	0.5	3.8	3.8	4.0	3.8
18/09/03	KWS Lili	4.0	4.0	0.0	3.8	4.0	4.0	4.0	3.8	4.0	3.5	4.0	4.0	0.0	0.0	4.0	0.0	0.0	4.0	4.0	4.0	3.8
18/10/03	KWS Barrel	4.0	4.0	0.0	4.0	4.0	4.0	4.0	4.0	3.3	4.0	4.0	4.0	0.0	0.0	4.0	0.0	0.8	4.0	3.8	4.0	4.0
18/12/01	KWS Siskin	3.5	3.5	0.0	4.0	3.8	3.8	4.0	3.5	4.0	4.0	4.0	4.0	0.0	0.0	2.3	0.0	1.0	4.0	4.0	4.0	4.0
18/12/03	KWS Siskin	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.3	0.0	0.0	3.0	0.0	0.3	3.0	3.0	3.0	3.0
18/16/01	LG Rhythm	4.0	4.0	2.5	4.0	4.0	3.3	3.8	3.5	4.0	3.5	3.8	3.8	0.0	0.0	4.0	0.3	0.0	4.0	4.0	3.5	4.0
18/18/02	KWS Santiago	4.0	3.8	1.5	4.0	4.0	4.0	4.0	4.0	4.0	3.0	4.0	4.0	0.8	0.8	3.0	0.0	0.0	4.0	4.0	3.8	3.5
18/19/01	Dunston	3.0	3.3	1.0	2.8	0.0	2.5	3.0	3.0	3.3	1.5	3.0	3.0	0.0	0.3	2.8	0.3	1.3	0.5	0.0	0.0	2.8
18/23/02	Leeds	3.8	3.3	0.5	4.0	3.5	4.0	4.0	3.3	3.3	3.0	3.8	3.5	0.0	0.3	0.0	0.5	0.3	4.0	4.0	3.8	4.0
18/24/02	SY Medea	3.0	3.0	0.0	3.3	0.0	2.3	0.8	4.0	3.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.8	0.3	0.3	0.0

Isolate	Host Variety		Pm2	Pm3b	Pm4b	Pm5	Pm6	MId	Pm8	Pm2,MITa2	Pm5, MITa2	MITo	Pm3d	Pm5, MISi2	MISo	MIAx	Pm17	MISh	MIRo			
Number	nost vanety	Cerco	Galahad	Chul	Armada	Flanders	Brimstone	Clement	Maris Dove	Brock	Mercia	Tonic	Broom	Sicco	Wembley	Axona	Amigo	Shamrock	Robigus	Warrior	Stigg	Crusoe
18/24/03	SY Medea	4.0	4.0	0.0	4.0	4.0	4.0	4.0	4.0	3.8	4.0	4.0	4.0	0.0	0.0	4.0	0.0	0.0	4.0	4.0	4.0	4.0
18/25/01	Skyfall	4.0	4.0	0.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	0.0	0.0	4.0	0.0	0.0	4.0	4.0	4.0	4.0
18/25/02	Skyfall	3.5	3.8	0.0	4.0	3.5	3.3	3.8	3.8	3.3	3.5	3.0	3.5	0.0	0.0	3.8	0.0	0.8	0.0	0.0	0.0	4.0
18/26/01	LG Rhythm	4.0	3.8	0.3	3.8	4.0	4.0	4.0	3.8	3.3	3.5	4.0	4.0	0.0	0.3	4.0	0.0	0.5	4.0	4.0	3.8	4.0
18/26/03	LG Rhythm	4.0	4.0	0.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	0.0	0.0	4.0	0.0	0.0	4.0	4.0	4.0	4.0
18/35/02	KWS W308	4.0	4.0	0.0	4.0	4.0	4.0	4.0	3.8	4.0	3.5	3.8	4.0	0.0	0.3	3.5	0.0	0.8	4.0	4.0	4.0	4.0
18/39/01	Hardwicke	4.0	4.0	0.3	4.0	4.0	4.0	4.0	3.5	4.0	4.0	4.0	4.0	0.0	0.0	4.0	0.0	0.5	3.8	4.0	3.5	4.0
18/39/02	Hardwicke	4.0	4.0	1.0	4.0	1.8	4.0	4.0	4.0	4.0	4.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	4.0	0.0	0.0	4.0
18/40/01	Dunston	4.0	4.0	0.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	0.0	0.0	4.0	0.8	1.8	0.0	0.0	0.0	4.0
18/41/01	Basset	3.5	4.0	3.3	0.0	4.0	4.0	4.0	4.0	3.5	3.8	3.3	4.0	0.3	1.0	4.0	0.0	0.5	4.0	4.0	4.0	4.0
18/42/02	Freiston	3.5	3.3	0.5	3.3	2.3	3.3	3.0	3.8	3.8	3.0	0.0	0.0	0.3	0.3	0.0	0.0	0.8	3.5	0.0	0.0	3.3

Differential	Known Genes	,	Virulence	Frequen	cy by Yea	r
Differential	Known Genes	2014	2015	2016	2017	2018
Galahad	Pm2	72	71	88	100	100
Chul	Pm3b	20	14	8	20	15
Armada	Pm4b	84	64	84	100	96
Flanders	Pm5	76	71	76	84	81
Brimstone	Pm6	80	64	88	96	93
Clement	Pm8	44	50	88	84	93
Maris dove	Mld	60	64	64	68	100
Brock	Pm2,MITa2	88	71	84	96	100
Mercia	Pm5, MITa2	80	79	80	100	93
Tonic	MITo	24	14	28	64	85
Broom	Pm3d	20	14	28	60	85
Sicco	Pm5, MISi2	8	0	8	40	11
Wembley	MISo	8	0	4	44	11
Axona	MIAx	12	14	32	60	78
Amigo	Pm17	0	7	0	8	0
Shamrock	MISh	4	0	0	0	0
Robigus	MIRo	64	64	56	72	85
Warrior		8	0	8	16	74
Stigg		8	0	4	16	74
Crusoe		36	36	72	68	93
Total Number	r of Isolates Tested	43	25	14	25	27

Table 16: Virulence frequencies of key wheat powdery mildew resistance genes and varieties over the past five years of testing.

the frequency of virulence for Sicco and Wembley decreased to levels more in line with 2016 and before. From the 27 isolates tested, 12 different pathotypes were identified, 8 of which were unique to 2018. Although there were some differences in virulence frequencies and pathotypes between years, there were once again no reports of unusual mildew outbreaks during the year and based on this information we suspect that this population change is therefore unlikely to have much impact at the adult plant stage. The wheat powdery mildew isolates were not tested on varieties at the adult plant stage, and so the impact of these population changes can only be assessed through reports from growers, agronomists and trial managers.

4.4. Barley powdery mildew

4.4.1. Samples received

Like the wheat powdery mildew, modest levels of barley powdery mildew were observed in 2018. Growers, trial managers and agronomists provided 27 samples from 14 varieties across nine counties (Figure 4).

Figure 4: Map of the UK with the number of samples of barley powdery mildew received in 2018 from the different counties.

4.4.2. Pathotyping of isolates

From the samples received and collected, 29 isolates were obtained and characterised using a differential set (Table 17). Virulence for most of the differentials was detected and was broadly in line with frequencies observed in previous years (Table 18). Exceptions were seen for differentials such as Lofa, H.1063 and Porter. The UKCPVS received no reports of unexpected outbreaks of barley powdery mildew during 2018 so it is possible that this variation in the population will not translate into meaningful differences at the adult plant stage. As with the wheat powdery mildew, no adult plant tests were conducted with these isolates and the full impact of any change in the population will not become evident until the next season.

Table 17: Pathotype results for the barley powdery mildew detached seedling tests. Average infection types of 2.7 and above (yellow shading) indicate a compatible reaction, values between 2.5 and 2.7 (shaded orange) indicate a borderline reaction and values below 2.5 indicate an incompatible reaction. Differential varieties are listed along with the known resistance genes carried by these lines.

Isolate	Host Variety	0	ЧІМ	Mira	MIg	MIg,MI(CP)	Mla6	MILa	Mla12	MIK1	Mla7	MIAb	MIa7,MIAb	Mla1	Mla9	mlo 11	mlo?	Mla13	Mla3	Vanessa	Optic	Propino
Number	nost vanety	Golden Promise	W.37/136	W.41/145	Goldfoil	Zephyr	Midas	Lofa	Hassan	H.1063	Porter	Lotta	Triumph	Tyra	Roland	Apex	Riviera	Digger	Ricardo	Vanessa	Optic	Propino
18-1-1	Craft	3.8	4.0	4.0	3.5	3.5	3.5	1.8	1.5	3.0	2.5	3.0	1.3	3.5	0.0	2.0	0.3	0.0	2.8	3.3	0.0	1.5
18-1-3	Craft	4.0	4.0	4.0	4.0	2.8	3.0	2.0	1.0	2.5	1.0	2.0	0.3	0.0	0.0	2.0	0.0	0.0	0.3	4.0	0.0	0.0
18-2-2	Coref	4.0	4.0	4.0	4.0	4.0	4.0	3.0	4.0	3.3	2.5	2.8	1.8	4.0	0.0	2.3	0.0	0.0	3.3	4.0	2.0	4.0
18-2-3	Coref	3.5	4.0	3.3	3.0	3.0	3.0	2.3	3.3	3.3	1.8	2.8	0.8	0.0	0.0	0.3	0.3	0.0	2.0	3.8	1.5	3.3
18-3-3	Belmont	4.0	4.0	4.0	3.3	4.0	4.0	3.0	4.0	1.3	2.0	3.5	1.3	3.5	0.0	2.0	0.5	0.0	3.3	4.0	2.3	3.8
18-4-2	Amistar	3.8	4.0	3.8	3.3	3.8	3.3	2.0	1.5	1.0	3.0	2.8	1.3	0.0	0.0	2.5	0.0	0.0	1.0	4.0	0.3	0.0
18-4-4	Amistar	3.3	4.0	3.5	3.3	2.8	3.0	2.5	2.8	1.0	1.0	2.0	0.3	3.5	0.0	1.8	0.0	0.0	3.3	3.0	0.8	3.0
18-5-1	Unknown	3.5	4.0	3.3	0.0	0.0	3.0	3.0	3.8	1.0	3.3	2.5	0.8	0.0	0.0	0.0	0.0	0.0	1.0	3.8	0.8	0.0
18-5-2	Unknown	3.0	4.0	3.5	3.3	3.0	3.3	3.3	3.5	1.0	1.5	3.0	0.3	4.0	0.0	2.0	0.0	0.0	3.0	3.0	2.0	3.3
18-6-2	Unknown	3.5	3.8	3.5	3.3	3.3	3.0	2.0	3.0	2.5	2.8	3.0	1.3	4.0	4.0	2.8	0.5	0.0	2.5	3.8	1.3	3.0
18-7-1	SY Venture	3.8	3.8	3.8	0.0	0.0	3.0	2.3	4.0	1.0	1.0	1.5	0.5	0.0	0.0	0.0	0.0	0.0	3.0	4.0	2.0	2.0
18-7-2	SY Venture	3.5	3.8	3.3	1.0	1.0	3.0	1.8	3.3	1.0	1.0	1.3	0.0	0.8	0.0	0.3	0.0	0.0	3.0	3.5	1.5	2.0
18-8-1	KWS Orwell	4.0	4.0	3.8	3.8	3.8	4.0	2.5	4.0	4.0	2.0	3.5	1.5	0.0	0.0	2.3	0.8	0.0	4.0	4.0	2.5	4.0
18-9-3	KWS Infinity	4.0	3.8	3.0	3.5	3.3	3.3	2.5	4.0	1.0	2.0	3.8	0.8	3.5	0.8	1.8	0.0	0.0	3.0	3.0	2.3	3.5
18-10-1	LG Mountain	3.5	4.0	3.0	3.0	3.0	3.0	1.5	3.0	2.8	2.8	2.5	1.8	3.8	0.0	2.3	1.5	0.0	3.0	3.8	1.3	2.0
18-10-2	LG Mountain	3.3	4.0	3.3	0.0	0.0	2.8	1.8	2.0	1.0	1.8	0.0	1.0	3.3	0.0	0.0	0.0	3.3	1.5	3.8	0.3	0.0
18-11-1	Unknown	4.0	4.0	4.0	0.0	0.0	3.8	3.8	3.8	3.3	2.3	3.0	1.0	0.0	4.0	0.0	0.0	0.0	1.8	3.8	1.3	0.3
18-12-1	Unknown	4.0	4.0	4.0	0.0	0.0	3.8	3.8	4.0	3.3	3.5	3.8	3.5	0.0	0.0	0.0	0.0	0.0	3.8	4.0	2.3	3.0

Isolate	Host Variety	0	ЧIМ	MIra	MIg	MIg,MI(CP)	MIa6	MILa	Mla12	MIK1	MIa7	MIAb	MIa7,MIAb	Mla1	MIa9	mlo 11	mlo?	Mla13	MIa3	Vanessa	Optic	Propino
Number		Golden Promise	W.37/136	W.41/145	Goldfoil	Zephyr	Midas	Lofa	Hassan	H.1063	Porter	Lotta	Triumph	Tyra	Roland	Apex	Riviera	Digger	Ricardo	Vanessa	Optic	Propino
18-12-4	Unknown	4.0	4.0	3.3	3.3	3.8	3.3	2.0	4.0	1.0	2.8	3.0	2.3	4.0	0.5	2.8	1.3	0.0	3.3	4.0	1.5	3.3
18-13-1	SY Venture	4.0	4.0	4.0	4.0	4.0	4.0	2.8	2.0	4.0	3.3	2.3	0.5	4.0	0.0	3.0	0.8	0.0	3.8	4.0	0.0	2.8
18-14-2	Unknown	4.0	4.0	4.0	4.0	4.0	3.8	4.0	4.0	1.3	2.0	2.8	2.3	4.0	0.0	2.3	2.0	0.0	2.3	3.8	2.0	1.5
18-15-2	Unknown	4.0	4.0	4.0	4.0	4.0	4.0	3.8	4.0	3.5	2.0	4.0	1.3	4.0	0.0	3.3	0.3	0.0	3.5	4.0	3.0	4.0
18-16-1 R	KWS Tower	3.3	4.0	3.3	3.5	3.5	3.0	2.0	3.3	1.8	2.5	3.0	1.8	3.5	0.0	2.0	0.0	0.0	2.0	3.5	1.3	3.0
18-17-2	KWS Orwell	4.0	4.0	4.0	3.3	3.8	3.5	3.8	3.5	2.8	2.8	2.8	1.8	3.8	3.8	1.8	2.0	4.0	3.8	3.3	2.8	4.0
18-18-3	KWS Orwell	3.3	4.0	3.3	3.5	3.5	3.3	2.0	3.0	2.8	1.8	1.3	0.5	4.0	0.0	1.5	1.0	0.0	2.0	3.0	0.5	0.0
18-19-5	Unknown	3.5	4.0	3.5	3.3	2.8	3.5	2.5	4.0	1.0	1.8	2.5	0.8	4.0	1.0	1.3	1.0	3.3	3.3	4.0	1.8	3.0
18-24-3	Unknown	4.0	4.0	3.8	3.3	2.8	4.0	2.5	3.5	1.0	1.8	2.5	0.8	3.8	0.0	1.8	0.3	0.0	3.5	4.0	1.3	3.5
18-26-2	Unknown	3.3	4.0	3.3	3.3	3.5	3.5	2.3	4.0	2.0	3.0	3.0	2.5	3.3	0.8	2.0	0.3	0.0	1.0	3.0	2.3	2.8
18-27-3	KWS Infinity	4.0	3.5	3.5	3.3	3.0	3.3	3.5	3.5	3.3	2.5	2.3	1.0	3.5	3.5	0.8	0.8	3.0	2.3	3.8	1.8	2.0

Table 18: Virulence frequencies of key barley powdery mildew resistance genes over the past five years of testing. * = Not tested.

Differential	Known		Virulence	e Frequer	ncy by Ye	ar
Differential	Genes	2014	2015	2016	2017	2018
Golden Promise	0	96	98	88	100	100
W.37/136	Mlh	100	100	100	100	100
W.41/145	Mlra	100	100	100	100	100
Goldfoil	Mlg	100	88	100	97	79
Zephyr	Mlg,Ml(CP)	96	88	100	97	79
Midas	Mla6	93	98	100	100	100
Lofa	MILa	93	90	96	84	38
Hassan	Mla12	89	93	96	84	83
H.1063	Mlk1	41	43	31	13	41
Porter	Mla7	74	35	27	53	31
Lotta	MIAb	78	38	35	78	59
Triumph	Mla7,MlAb	11	5	12	22	3
Tyra	Mla1	37	58	73	56	69
Roland	Mla9	0	15	15	16	14
Apex	mlo 11	15	8	15	38	14
Riviera	mlo 11	4	0	0	6	0
Digger	Mla13	11	5	23	25	14
Ricardo	Mla3	63	53	62	75	59
Vanessa	Van	81	98	100	97	100
Optic		26	18	19	25	7
NFC Tipple		56	58	77	88	*
Propino		52	65	65	88	59
Total Number of	Isolates	27	40	26	32	29

5. Conclusions

The UK *Pst* population continues to show high levels of diversity since the incursion of the Warrior population in 2011. The current population continues to be dominated by isolates from the Red group, and within that group there are a broad range of virulence profiles. New combinations of virulence were detected and these were investigated in the adult plant trials. Natural infection may have confounded the results, however a potential isolate that could explain the outbreak on KWS Zyatt and Dunston in 2019 in some parts of the country was identified and has been put forward for further use in the National List and Recommended List trials.

A new differential set was used for the third year to analyse the *P. triticina* population. Virulence was detected for many of the *Lr* genes tested and seedling and adult plant variety tests highlighted that most varieties were susceptible to at least one of the races under evaluation; however the possible presence of multiple isolates has made more detailed analysis of isolate x variety interactions impossible. Three isolates were identified that may explain the outbreak of brown rust on the variety KWS Firefly and one of them has been put forward for use in the National List and Recommended List trials.

Small changes in the *Bgt* and *Bgh* populations were detected, but as in previous years no unusual outbreaks were reported so it is unlikely that these changes have translated into detrimental effects on variety performance.

6. Appendix 1: Sample register

2018 Wheat yellow rust isolate register

lsolate Number	Host Variety	Date Sampled	RL Rating 2018/19	Location
18/075	Apache	June 2018		Lincolnshire
18/100	Apache	June 2018		Lincolnshire
18/064	Beluga	June 2018		Angus
18/118	Bennington	June 2018	6	East Lothian
18/010	Brimstone	May 2018		Oxfordshire
18/076	Brimstone	June 2018		Lincolnshire
18/097	Brimstone	June 2018		Lincolnshire
18/017	Britannia	May 2018		Fife
18/061	Buster	June 2018		Oxfordshire
18/072	Buster	June 2018		Lincolnshire
18/088	Buster	June 2018		Lincolnshire
18/044	Cadenza	June 2018		Kent
18/021	Claire	May 2018		Fife
18/062	Claire	June 2018		Angus
18/080	Claire	June 2018		Lincolnshire
18/096	Claire	June 2018		Lincolnshire
18/057	Cordiale	June 2018	4	Oxfordshire
18/077	Cordiale	June 2018	4	Lincolnshire
18/093	Cordiale	June 2018	4	Lincolnshire
18/022	Dunston	May 2018	7	Lincolnshire
18/040	Dunston	June 2018	7	Lincolnshire
18/083	Dunston	June 2018	7	Lincolnshire
18/101	Dunston	June 2018	7	Lincolnshire
18/106	Dunston	June 2018	7	East Yorkshire
18/121	Dunston	June 2018	7	East Yorkshire
18/045	Flame	June 2018		Kent
18/041	Freiston	June 2018	9	Lincolnshire
18/038	Gallant	June 2018		Lincolnshire
18/024	Gleam	May 2018	7	Shropshire
18/070	Gleam	June 2018	7	Lincolnshire
18/085	Gleam	June 2018	7	Herefordshire
18/103	Gleam	June 2018	7	Leicestershire
18/126	Gleam	June 2018	7	Suffolk
18/001	Graham	December 2017	8	Devon
18/052	Graham	June 2018	8	Essex
18/074	Graham	June 2018	8	Lincolnshire
18/090	Graham	June 2018	8	Lincolnshire

lsolate Number	Host Variety	Date Sampled	RL Rating 2018/19	Location
18/108	Graham	June 2018	8	East Yorkshire
18/120	Graham	June 2018	8	East Yorkshire
18/006	Hacksta	April 2018		Cambridgeshire
18/018	Horatio	May 2018		Fife
18/007	Hornet	April 2018		Cambridgeshire
18/004	Invicta	April 2018		Lincolnshire
18/060	Invicta	June 2018		Oxfordshire
18/069	Invicta	June 2018		Lincolnshire
18/099	Invicta	June 2018		Lincolnshire
18/131	Invicta	July 2018		Lincolnshire
18/023	JB Diego	May 2018	5	Cambridgeshire
18/027	JB Diego	May 2018	5	Lincolnshire
18/032	JB Diego	May 2018	5	Suffolk
18/048	JB Diego	June 2018	5	Suffolk
18/065	JB Diego	June 2018	5	Fife
18/113	JB Diego	June 2018	5	East Lothian
18/036	KWS Cochise	June 2018	6	Cambridgeshire
18/071	KWS Gator	June 2018		Lincolnshire
18/089	KWS Gator	June 2018		Lincolnshire
18/059	KWS Silverstone	June 2018		Oxfordshire
18/073	KWS Silverstone	June 2018		Lincolnshire
18/091	KWS Silverstone	June 2018		Lincolnshire
18/134	KWS Siskin	July 2018	9	Lincolnshire
18/015	KWS Target	May 2018		Fife
18/119	KWS Zyatt	June 2018	7	Kent
18/127	KWS Zyatt	June 2018	7	Herefordshire
18/009	Leeds	April 2018	6	Lincolnshire
18/037	Leeds	June 2018	6	Cambridgeshire
18/034	LG Jigsaw	May 2018		Lincolnshire
18/105	LG Jigsaw	June 2018		East Yorkshire
18/110	LG Jigsaw	June 2018		East Lothian
18/124	LG Jigsaw	June 2018		East Yorkshire
18/025	LG Rhythm	May 2018		Shropshire
18/035	LG Rhythm	May 2018		Lincolnshire
18/042	LG Rhythm	June 2018		East Yorkshire
18/115	LG Rhythm	June 2018		East Lothian
18/014	LG Rhythm	May 2018		East Yorkshire
18/046	Maris Dove	June 2018		Kent
18/133	Moro	July 2017		Cambridgeshire
18/016	Myriad	May 2018	4	Fife
18/029	Myriad	May 2018	4	Lincolnshire
18/043	Myriad	June 2018	4	Herefordshire

lsolate Number	Host Variety	Date Sampled	RL Rating 2018/19	Location
18/053	Myriad	June 2018	4	Roxburghshire
18/111	Myriad	June 2018	4	East Lothian
18/002	Reflection	February 2018		Norfolk
18/005	Reflection	April 2018		Cambridgeshire
18/081	Relay	June 2018		Lincolnshire
18/095	Relay	June 2018		Lincolnshire
18/030	Revelation	May 2018	9	Lincolnshire
18/049	Revelation	May 2018	9	Norfolk
18/050	RGT Gravity	June 2018	8	Essex
18/109	RGT Gravity	June 2018	8	East Yorkshire
18/123	RGT Gravity	June 2018	8	East Yorkshire
18/066	RGT Universe	June 2018		Cambridgeshire
18/112	RGT Universe	June 2018		East Lothian
18/020	Robigus	May 2018		Fife
18/079	Robigus	June 2018		Lincolnshire
18/094	Robigus	June 2018		Lincolnshire
18/132	Robigus	July 2018		Lincolnshire
18/008	Shabras	April 2018	8	Lincolnshire
18/051	Shabras	June 2018	8	Essex
18/104	Shabras	June 2018	8	Leicestershire
18/107	Shabras	June 2018	8	East Yorkshire
18/122	Shabras	June 2018	8	East Yorkshire
18/130	Shabras	June 2018	8	Gloucestershire
18/013	Skyfall	May 2018	6	Cambridgeshire
18/031	Skyfall	May 2018	6	Suffolk
18/056	Skyfall	June 2018	6	Warwickshire
18/114	Skyfall	June 2018	6	East Lothian
18/128	Skyfall	June 2018	6	Herefordshire
18/039	Solstice	June 2018		Lincolnshire
18/082	Solstice	June 2018		Lincolnshire
18/098	Solstice	June 2018		Lincolnshire
18/011	Spyder	May 2018	7	Oxfordshire
18/012	Spyder	April 2018	7	East Yorkshire
18/058	Spyder	June 2018	7	Oxfordshire
18/078	Spyder	June 2018	7	Lincolnshire
18/086	Spyder	June 2018	7	Lincolnshire
18/116	Spyder	June 2018	7	East Lothian
18/129	Spyder	June 2018	7	Norfolk
18/047	Sterna	June 2018		Kent
18/067	Stigg	June 2018		Lincolnshire
18/068	Victo	June 2018		Lincolnshire

lsolate Number	Host Variety	Date Sampled	RL Rating 2018/19	Location
18/087	Victo	June 2018		Lincolnshire
18/063	Viscount	June 2018	6	Angus
18/003	Vuka/victo	March 2018		Cambridgeshire
18/084	Warrior	June 2018		Lincolnshire
18/092	Warrior	June 2018		Lincolnshire
18/019	Zulu	May 2018	5	Fife
18/026	Zulu	May 2018	5	Shropshire
18/028	Zulu	May 2018	5	Lincolnshire
18/033	Zulu	May 2018	5	Suffolk
18/102	Zulu	June 2018	5	Essex
18/117	Zulu	June 2018	5	East Lothian
18/125	Zulu	June 2018	5	Herefordshire

2018 Wheat brown rust isolate register

Isolate		Dete Osmulad	RL Rating	
Number	Host Variety	Date Sampled	2018/19	Location
18/026	Bennington	June 2018	7	Cambridgeshire
18/030	Buster	June 2018		Lincolnshire
18/049	Costello	June 2018	5	Norfolk
18/012	Cougar	June 2018		Cambridgeshire
18/024	Crusoe	June 2018	3	Cambridgeshire
18/037	Crusoe	June 2018	3	Hampshire
18/040	Crusoe	June 2018	3	Hampshire
18/051	Crusoe	June 2018	3	Norfolk
18/007	Dunston	June 2018	6	Lincolnshire
18/032	Dunston	June 2018	6	Northamptonshire
18/029	Elicit	June 2018	7	Cambridgeshire
18/023	Evolution	June 2018	7	Cambridgeshire
18/046	Evolution	June 2018	7	Lincolnshire
18/015	Freiston	June 2018	7	Cambridgeshire
18/010	Graham	June 2018	6	Lincolnshire
18/011	Graham	June 2018	6	Cambridgeshire
18/055	Hereford	July 2018		Scottish Borders
18/002	Jaidor	February 2018		Cambridgeshire
18/008	KWS Barrel	June 2018	6	Lincolnshire
18/036	KWS Barrel	June 2018	6	Hampshire
18/014	KWS Firefly	June 2018		Hertfordshire
18/048	KWS Firefly	June 2018		Gloucestershire
18/016	KWS Kerrin	June 2018	7	Cambridgeshire
18/025	KWS Lili	June 2018	4	Cambridgeshire
18/033	KWS Lili	June 2018	4	Essex
18/052	KWS Lili	July 2018	4	Cambridgeshire
18/005	KWS Santiago	June 2018	5	Lincolnshire
18/041	KWS Santiago	June 2018	5	Hampshire
18/001	KWS Siskin	November 2017	5	Warwickshire
18/003	KWS Siskin	February 2018	5	Norfolk
18/006	KWS Siskin	June 2018	5	Lincolnshire
18/013	KWS Siskin	June 2018	5	Cambridgeshire
18/027	KWS Siskin	June 2018	5	Cambridgeshire
18/050	KWS Siskin	June 2018	5	Norfolk
18/053	KWS Siskin	July 2018	5	Lincolnshire
18/019	KWS Trinity	June 2018	7	Cambridgeshire
18/044	KWS Trinity	June 2018	7	Lincolnshire
18/038	KWS Zyatt	June 2018	6	Kent
18/020	LG Motown	June 2018	7	Cambridgeshire
18/045	LG Motown	June 2018	7	Lincolnshire

Isolate Number	Host Variety	Date Sampled	RL Rating 2018/19	Location
18/034	LG Sundance	June 2018	6	Hampshire
18/009	Moulton	June 2018	7	Lincolnshire
18/017	Moulton	June 2018	7	Cambridgeshire
18/047	Myriad	June 2018	5	Roxburghshire
18/018	Revelation	June 2018	8	Cambridgeshire
18/039	Revelation	June 2018	8	Hampshire
18/022	RGT Illustrious	June 2018	6	Cambridgeshire
18/031	RGT Universe	June 2018		Northamptonshire
18/042	Robigus	June 2018		Cambridgeshire
18/043	Robigus	June 2018		Cambridgeshire
18/035	Skyfall	June 2018	9	Hampshire
18/021	Spyder	June 2018	7	Cambridgeshire
18/028	SY Medea	June 2018		Cambridgeshire
18/004	Unknown	May 2018		Hertfordshire
18/054	Unknown	July 2018		Cambridgeshire

2018 Wheat powdery mildew isolate register

lsolate Number	Host Variety	Date Sampled	RL Rating 2018/19	Location
18/048	AWCSW1	June 2018		Cambridgeshire
18/021	Barrel	June 2018	6	Lincolnshire
18/041	Basset	June 2018		East Lothian
18/038	Detroit	June 2018		East Lothian
18/019	Dunston	June 2018	5	Lincolnshire
18/028	Dunston	June 2018	5	East Northamptonshire
18/040	Dunston	June 2018	5	East Lothian
18/031	Elation	June 2018	7	East Lothian
18/011	Elicit	December 2017	6	Cambridgeshire
18/020	Freiston	June 2018	6	Lincolnshire
18/029	Freiston	June 2018	6	Cambridgeshire
18/042	Freiston	June 2018	6	East Lothian
18/015	Gleam	May 2018	6	Shropshire
18/043	Gleam	June 2018	6	East Lothian
18/037	Gravity	June 2018		East Lothian
18/039	Hardiwcke	June 2018	6	East Lothian
18/046	Hardwicke	June 2018	6	Shropshire
18/032	Jigsaw	June 2018		East Lothian
18/010	KWS Barrel	December 2017		Cambridgeshire
18/009	KWS Lili	December 2017	8	Cambridgeshire
18/018	KWS Santiago	June 2018	6	Lincolnshire
18/001	KWS Siskin	November 2017	9	Warwickshire
18/012	KWS Siskin	February 2018	9	Norfolk
18/013	KWS Siskin	January 2018	9	Suffolk
18/007	KWS Trinity	December 2017	8	Cambridgeshire
18/035	KWS W308	June 2018		East Lothian
18/006	KWS Zyatt	December 2017	7	Cambridgeshire
18/014	Leeds	April 2018	3	East Yorkshire
18/023	Leeds	June 2018	3	East Yorkshire
18/027	Leeds	June 2018	3	Fife
18/036	Leeds	June 2018	3	East Lothian
18/026	LG Rhythm	June 2018		Roxburghshire
18/047	LG Sundance	June 2018	7	Roxburghshire
18/034	LG Rhythm	June 2018		East Lothian
18/016	LG Rhythm	May 2018		Shropshire
18/022	Moulton	June 2018	7	Lincolnshire
18/008	RGT Illustrious	December 2017		Cambridgeshire
18/033	Sabertooth	June 2018		East Lothian
18/030	Shabras	June 2018	6	East Lothian
18/002	Skyfall	November 2017	5	Cambridgeshire

lsolate Number	Host Variety	Date Sampled	RL Rating 2018/19	Location
18/025	Skyfall	June 2018		Lincolnshire
18/024	SY Medea	June 2018		Shropshire
18/044	SY115590	June 2018		East Lothian
18/045	Viscount	June 2018	7	Herefordshire
18/017	Zulu	May 2018	7	Shropshire

lsolate number		Data Sampled	RL Rating 2018/19	Location
	Host Variety	Date Sampled	2010/19	
18/004	Amistar	Nov 2017		Cambridgeshire
18/023	Bazooka	Jun 2018	4	Roxburghshire
18/003	Belmont	Nov 2017	6	Cambridgeshire
18/002	Coref	Nov 2017	5	Cambridgeshire
18/001	Craft	Nov 2017	6	Cambridgeshire
18/025	Flagon	Jun 2018		Norfolk
18/018	KWS Cassia	May 2018	4	East Yorkshire
18/020	KWS Creswell	Jun 2018	4	Fife
18/009	KWS Infinity	Nov 2017	4	Cambridgeshire
18/027	KWS Infinity	Jun 2018	4	Aberdeenshire
18/008	KWS Orwell	Nov 2017	3	Cambridgeshire
18/021	KWS Orwell	Jun 2018	3	East Yorkshire
18/022	KWS Orwell	Jun 2018	3	Herefordshire
18/017	KWS Orwell	May 2018	3	East Yorkshire
18/016	KWS Tower	May 2018	5	East Yorkshire
18/010	LG Mountain	Nov 2017		Cambridgeshire
18/007	SY Venture	Nov 2017	6	Cambridgeshire
18/013	SY Venture	Apr 2018	6	Kent
18/005	Unknown	Nov 2017		Cambridgeshire
18/006	Unknown	Nov 2017		Cambridgeshire
18/011	Unknown	Apr 2018		Cambridgeshire
18/012	Unknown	Apr 2018		Cambridgeshire
18/014	Unknown	May 2018		Cambridgeshire
18/015	Unknown	May 2018		Cambridgeshire
18/019	Unknown	Jun 2018		Cambridgeshire
18/024	Unknown	Jun 2018		Lincolnshire
18/026	Unknown	Jun 2018		Cambridgeshire

2018 Barley powdery mildew isolate register

7. References

- Ali, S. et al. 2014. "Origin, Migration Routes and Worldwide Population Genetic Structure of the Wheat Yellow Rust Pathogen Puccinia Striiformis f.Sp. Tritici." *PLoS Pathogens* 10(1):e1003903.
- Ali, S. et al. 2017. "Yellow Rust Epidemics Worldwide Were Caused by Pathogen Races from Divergent Genetic Lineages." *Frontiers in Plant Science* 8:1057. Retrieved (http://journal.frontiersin.org/article/10.3389/fpls.2017.01057).
- Hovmøller, M. S. et al. 2016. "Replacement of the European Wheat Yellow Rust Population by New Races from the Centre of Diversity in the Near-Himalayan Region." *Plant Pathology* 65:402–11. Retrieved (http://dx.doi.org/10.1111/ppa.12433).
- Hovmøller, M. S., A. F. Justesen, and J. K. M. Brown. 2002. "Clonality and Long-Distance Migration of Puccinia Striiformis f.Sp. Tritici in North-West Europe." *Plant Pathology* 51(1):24–32. Retrieved (http://dx.doi.org/10.1046/j.1365-3059.2002.00652.x).
- Hubbard, A. J. et al. 2015. "Field Pathogenomics Reveals the Emergence of a Diverse Wheat Yellow Rust Population." *Genome Biology* 16:23.
- Hubbard, A., L. Pritchard, and S. Holdgate. 2016. United Kingdom Cereal Pathogen Virulence Survey 2016 Annual Report Part 1: Wheat Yellow Rust, Wheat Powdery Mildew and Barley Powdery Mildew.
- Hubbard, A., S. Wilderspin, and S. Holdgate. 2017. *United Kingdom Cereal Pathogen Virulence Survey 2017 Annual Report*.
- Kolmer, J. A., A. Hanzalova, H. Goyeau, R. A. Bayles, and A. Morgounov. 2013. "Genetic Differentiation of the Wheat Leaf Rust Fungus Puccinia Triticina in Europe." *Plant Pathology* 62:21–31.