Barley yellow dwarf virus (BYDV)

Challenges & Opportunities for Effective Management

> Lawrence Bramham 13/01/2025

RESEARCH OVERVIEW

- Context
 - Collaborations are key
 - Barley yellow dwarf virus
- Challenges
 - Traditional control
 - Genetic resistance/tolerance?
 - Climate change (vectors? new strains?)
 - Rothamsted Insect Survey
 - What's out there?
- Opportunities
 - Diagnostics and high-throughput testing
 - Sampling

RESEARCH Collaborations are key

UK & Ireland Yellow Dwarf Virus Network

Virologists, entomologists and modellers at key locations spanning:

- Biomathematics & Statistics
 Scotland
- University of Liverpool
- Keele University
- Harper Adams University
- Teagasc
- University of Cambridge
- AHDB
- ADAS
- Rothamsted Research
- University of Greenwich
- More and growing...

"Epidemic Preparedness" Team

Develop interdisciplinary research proposals to tackle epidemic threats

- Workshop last Thu/Fri
- >20 experts tasked with evaluating the:

"tools, technologies and policy devices required to tackle vector-borne viral and bacterial epidemics in agriculture"

Wheat-Insect-Virus Interactions **ROTHAMSTED** RESEARCH Subgroup within Wheat Pathogenomics Team Aphid resistance (RRes, PI: Prof. Kim Hammond-Kosack) work Izayana Sandoval-Carvajal SWBio DTP PhD student (RAGT, Uni of Bristol) SUSTAINABLE WHEAT Postdoc / subgroup lead Wheat

BYDV work = Wheat Genetic & SWBO Improvement Network

RESEARCH Barley yellow dwarf virus (BYDV)

- Harvest yield loss in wheat due to natural BYDV infection
 = 5 80%, average of 30%*
- Indistinct disease phenotype limits rapid diagnosis
- No practical virus-focussed chemical control
- Aphid vectors targeted, and "resistant" cultivars developed
- Interactions between aphid vector species and BYDV strains = complex

RESEARCH Barley yellow dwarf virus (BYDV)

Advice for checking BYDV symptoms:

Q1. Stronger in younger vs older tissue Q2. Discolouration in lateral 'V' shape?

"Yes" for both = characteristic BYDV

sample and test

RESEARCH Aphid viral transmission

Adapted from: Ng and Perry (2004) *Molecular Plant Pathology*, **5(5)**, 505-511. Video: UCCE San Diego (CC BY 4.0)

Challenges

Adapted from: State of the UK Climate 2023; Kendon et al., (2024) *International Journal of Climatology*, **43**, 1-83

RESEARCH Yellow dwarf virus strains

Genus	Species	Strain	Known aphid vectors*	
Luteovirus	BYDV	PAV	R. padi, S. avenae, Metapolophium dirhodum, Schizaphis graminum, Sitobion fragariae	
		MAV	S. avenae, M. dirhodum, R. padi, S. fragariae	Rhopalosiphum padi bird cherry-oat aphid
		PAS	Rhopalosiphum maidis	
		GAV	Scizaphis graminum, S. avenae	
Polerovirus	CYDV	RPV	R. padi, S. graminum	

Sitobion avenae English grain aphid *Aradottir & Crespo-Herrera (2021). Current Opinion in Insect Science., 45, 59-68

RESEARCH Climate change impacts

RESEARCH Aphids = key insecticide target

Insect targets, where stated, for foliar insecticide application to wheat in the UK*:

^{*}UK Pesticide Usage Survey Reports: 250, 263, 271, 284, 295 & 309

RESEARCH Aphids = key insecticide target

Main foliar insecticide AI formulations (most recent data available, 2022 survey¹):

RESEARCH BYDV resistance?

Adapted from: Cooper & Jones (1983). Phytopathology, 73, 127-128

RESEARCH BYDV resistance?

Genetic sources of resistance are relatively scarce...

Barley:

- Four genes linked to tolerance/resistance ("*Ryd1 Ryd4Hb"*, & 3 QTLs)
- Ryd2 = most heavily deployed¹
- Reduces viral titre in young plants, some doubt for older plants
 - Virus can still spread systemically

Wheat:

- Similarly, four BYDV-resistance linked genes ("Bdv1 - Bdv4'')²

Genserus

- Bdv2 originated from Thinopyrum intermedium
- Winter wheat developed by:

RESEARCH BYDV resistance?

Exploring RGT cv. Wolverine BYDV resistance/tolerance

RESEARCH What's out there?

- Nationwide Rothamsted insect survey (RIS)
- Started in 1964

Suction traps (12.2m)

https://www.rothamsted.ac.uk/insect-survey

RESEARCH UK aphid pressure (2023)

RESEARCH UK aphid pressure (2024)

RESEARCH ROUTINE BYDV detection

Year	<i>R. padi</i> carrying BYDV/total tested (%)	<i>S.avenae</i> carrying BYDV/total tested (%)
2020	329/1509 (22%) 77/252 (31%)
2021	231/1342 (17%) 34/224 (15%)
2022	128/980 (13%) 20/108 (19%)
2023	147/920 (16%) 29/88 (33%)
2024	153/990 (15%) 23/88 (26%)

- BYDV consistently detected UK-wide
- Highest incidence = 46% *S. avenae*, late July 2020
- lowest incidence = 5%
 S. avenae, early Aug 2021

Subset of aphids taken forward for informative CP sequencing

AHDB

ROTHAMSTED RESEARCH

RESEARCH Strain variation across the UK

RESEARCH Yellow dwarf virus strains

Genus	Species	Strain	Known aphid vectors*	
Luteovirus	BYDV	PAV	<u>R. padi</u> , <u>S. avenae</u> , Metapolophium dirhodum, Schizaphis graminum, Sitobion fragariae	
		MAV	<u>S. avenae</u> , M. dirhodum, <u>R. padi</u> , S. fragariae	Rhopalosiphum pad bird cherry-oat aphid
		PAS	Rhopalosiphum maidis, <mark>R. padi,</mark> <u>S. avenae</u>	
		GAV	Scizaphis graminum, <u>S. avenae</u>	
Polerovirus	CYDV	RPV	<u>R. padi</u> , S. graminum	
			_	Sitobion avenae

Previously unreported and <u>confirmed</u> via RIS sampling/testing

sampling/testing English grain aphid *Aradottir & Crespo-Herrera (2021). *Current Opinion in Insect Science.*, 45, 59-68

RESEARCH Better diagnostics

RESEARCH Better diagnostics

- Strain-specific Taqman, KASP, PCR & qPCR assays = established

- Can now process up to 24 discrete molecular assays vs 192 samples
- **4,608** qPCRs in ~2h
- Massive potential for higher-throughput exploration

RESEARCH Sampling for BYDV

Does sampling location impact BYDV detection?

- 1. Wheat challenged with BYDV
 - 2. Plant maintained until flag leaf developed

3. Flag leaf and BYDV-challenged leaf sampled

- Challenges do exist
 - Shifting BYDV strains, aphid populations, climate...
 - Robust resistance deployment and ensuring current resistances last requires ongoing characterisation
- Opportunities
 - The resources exist for modelling changes to this important pathosystems
 - New tools (e.g. infectious clones, higher throughout multiplexed assays) are on the horizon

Aphid vectors are one element, any and all potential wheat samples with BYDV symptoms would be gratefully received

RESEARCH Many thanks...

- For your attention and the UKCPVS Stakeholders event organisers
- Rothamsted Wheat Pathogenomics Team (PI, Kim Hammond-Kosack)
 - Wheat-Insect-Virus Interactions Subgroup (PhD student, Izayana Sandoval-Carvajal)
- Continued assistance from the wider wheat and cereals community
 - DSW & WGIN and associated funding (UKRI & Defra, respectively)

