

Rust management in the context of UK agronomy

1 March 2023

Dr Aoife O'Driscoll (NIAB)

@allohexaploid @niabgroup

Factors affecting disease risk

Risk of the crop being exposed to infection

- Location
- Climate
- Previous crop
- Cultivation method
- Sowing date
- Variety choice (surrounding fields)

Ability of the crop to resist or tolerate infection

- Weather
- Variety choice (this field)
- Sowing date
- Nitrogen management / soil fertility
- Crop health

Prioritising according to risk

Drilling date and variety	Yellow rust 'watchlist' rating	Yellow rust RL resistance rating	Adjusting risk due to drilling date
Late-September sown KWS Extase	8*	8	-
Late-September sown Graham	7*	8	-
Mid-October sown Skyfall	3*	3	†
Mid-October sown Crusoe	9*	9	Ļ
Late-October sown KWS Zyatt	4*	3	1
Late-November sown LG Skyscraper	7*	7	1
Late-November sown KWS Extase	8*	8	†
Late-November sown Champion	8*	8	†
Late-November sown Dawsum	9	9	Ļ

Weather effects

Wheat

Yellow rust

- Cold winters with several frosts below
- -5°C reduce survival

Brown rust

- High temperatures in early summer
- Infection needs high humidity / leaf wetness
 Mildew
- Warm, humid (but not wet) conditions

Barley

Yellow rust

 Cool, wet weather in spring before fungicides applied

Brown rust

- Warm, humid weather, ~ from April to June
 Mildew
- Warm, breezy conditions with short periods of high humidity
- Temperatures >25°C or rain inhibit disease

Agronomic impacts

Nitrogen

 Excessive nitrogen fertiliser / fertile sites favour mildew and to a lesser extent rusts

Micronutrients

 Several micronutrients (boron, copper and manganese) have a role within disease resistance in plants. For example, manganese deficiency increases mildew susceptibility

Trophic status of the pathogen

 Biotrophs thrive on living, healthy 'well-fed plant', necrotrophs (e.g. net blotch) thrive on stressed crops

Fungicide timings

Latent periods

- Septoria 14–28 days. Up to 6 cycles in a season
- YR 10–12 days. Up to 12 cycles in a high-pressure season
- Brown rust and mildew 4–5 days
- Crops may be at risk at 'T0' or 'T1.5'

Treatment decisions must consider:

- Maximum number of applications per season
- Total dose
- Growth stage limitations
- Intervals between treatments
- Good FRAG compliance

Yellow rust 2020–22 (4 trials)

Product	Curative	Protectant	Persistence
Univoq	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark \checkmark \checkmark \checkmark$
Revystar XE	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark \checkmark \checkmark$
Ascra Xpro	\checkmark	$\checkmark\checkmark$	$\checkmark\checkmark$
Elatus Era	$\checkmark\checkmark$	$\checkmark \checkmark \checkmark \checkmark$	$\checkmark \checkmark \checkmark$
Aviator			
Librax			
Triazole (older)	$\checkmark \checkmark \checkmark$	444	$\checkmark\checkmark$
Folpet/mancozeb		✓	✓

- For rusts, Elatus Era remains the most effective protectant and persistent product
- Tebuconazole remains the best eradicant

Further IPM approaches

- Variety mixtures to reduce or delay development of windborne diseases, especially in organic situations
- Intercropping, for example with legumes, can reduce disease pressure by dilution or acting as a physical barrier*
- Grazing?
- Where possible, these could contribute to an integrated approach

KWS Zyatt full fungicide programme

KWS Zyatt in 4-way mixture. Untreated

IPM for yellow rust: assessing the risk

Risk of being exposed to infection and ability to resist infection

- Monitoring and surveillance tools
- >Understanding the agronomic impacts of on-farm decisions
- >Making good use of all the tools in the toolbox
 - >Varieties (diversity and resistance ratings)
 - General agronomy matching situation to risk, no blueprint
 - Fungicide programmes appropriate products at appropriate timings

