

What is ergot: The challenges and solutions

Speaker: Dr Lesley A. Boyd

Numerous people involved in research over a number of years

AHDB RICULTURE & HORTICULTUR DEVELOPMENT BOARD

- Anna Gordon
- Eleni Tente
- Donal O'Sullivan
- Rosemary Bayles
- Jane Thomas
- And many more

Ergot

- What is ergot?
- Ergot infection Sources of infection primary, ascospore and secondary, conidia.
- Ergot management on farm.
- Ergot resistance in wheat.
- Ergot alkaloid synthesis and contamination of grain: Physical and i*n-planta* transfer.

What is ergot?

- Fungal disease of flowers.
- In cereals and grasses ergot is caused by the fungus Claviceps purpurea
- A fungal mass filling the ovary cavity, replacing the seed.
- Asexual stage produces conidia suspended in honeydew.
- Overwinter structures, ergot sclerotia, produce sexual structures in early spring.
- Ergot sclerotia contain high levels
- of toxic alkaloids.

The leading tip of the fungal hypha grows to the base of the ovary, 14 days replacing the ovule with fungal mycelium – sphacelial stage (7 days).

By 14 days the sphacelial produce spores suspended in a sugary liquid honeydew.

(NIAB

Defra LINK project between NIAB, ADAS, Limagrain, RAGT, Velcourt

With financial support from AHDB (HGCA) and in-kind from a number of industry members.

HGCA Report No. 456

Claviceps purpurea infection: Source of infection

To establish to what extent grass-margins act as a source of ergot infection for wheat on farm margins were surveyed (2005-2007)

- Ergot found on 37 grass species, with most ergots found on couch grass, Italian ryegrass, black-grass, perennial ryegrass, cocksfoot, tall oat grass, timothy, tall fescue and Yorkshire fog.
- Ergot isolates from black-grass, couch grass, Italian ryegrass and perennial ryegrass were able to infect wheat.

The same isolates of *Claviceps purpurea* can infect cereal and wild grass species.

Claviceps purpurea infection: Cycle of infection

No conclusive evidence that grass margins were the main source of ergot infection. Grass weeds within the crop thought to be primary source.

- Primary infection: Ascospores release from stroma believed to peak in May, infecting wild grasses.
- Secondary infection: Honeydew produced by infected grasses transferred to cereals.

Stroma produced from ergot sclerotia

Arvalis, France: Ergot Risk Management Tool 2021

1. Risk of ergot inoculum being present in your field

Ergot found in last 2 years	Tillage before sowing this season's crop		Ergot in seed	Risk of inoculum
	< 10 cm	>10cm		
Νο	\checkmark		No	LOW
		\checkmark	No	LOW
	\checkmark		Yes	MEDIUM
		\checkmark	Yes	MEDIUM
Yes		\checkmark	No	MEDIUM
	\checkmark		Νο	HIGH
		\checkmark	Yes	HIGH
	\checkmark		Yes	HIGH

2. Risk of ergot infection:

Risk of ergot	Grass weed control	Favourable climate for ergot development	
inoculum		No	Yes
LOW	Satisfactory	Low	Medium
	Unsatisfactory	Low	Medium
MEDIUM	Satisfactory	Low	Medium
	Unsatisfactory	Medium	High
HIGH	Satisfactory	High	High
	Unsatisfactory	Very High	Very High

2. Factors that will increase the level of ergot infection:

Grass weed control: Poor control of wild grasses within the crop will increase honeydew inoculum levels and spread the disease.

Weather conditions between flag leaf unfolding and pollen shed: Temperatures below 4°C and/or more than 40 mm of rain.

Ergot control measures:

1) An effective year-round weed control strategy for a minimum of 2 years can minimize the risk of ergot.

2) The ergot inoculum in the field must be controlled by a deep tillage after harvest followed by a shallow tillage the following year, and the use of ergot free seed.

3) Adapt rotation, avoid growing straw cereals for at least 2 years.

4) Harvest ergot infected areas separately.

Ergot resistance

Project (BB/G020418/1): Integrated transcriptome and genetic analysis of early events determining tissue susceptibility in the Claviceps purpurea – wheat interaction

With financial support from Biotechnology and Biological Sciences Research Council (BBSRC) and the Department for Environment Food and Rural Affairs (Defra) Government Partnership Award

Sources of ergot resistance in wheat

At NIAB we have developed a system for assesses the level of ergot infection, and have used these scales to look for natural ergot resistance in wheat

Honeydew scores on a scale of 1 to 4, scored 14 days after inoculation. (1) No honeydew; (2) Honeydew is confined within the glumes; (3) Small droplets of honeydew exuded from the floret; (4) Large droplets of honeydew exuded from the florets.

MARVIN seed analyser used to obtain average sclerotia weigh and the number of sclerotia within each size category.

Quantitative Trait Loci (QTL) for ergot resistance in the Robigus x Solstice

QTL for sclerotia size were identified on chromosomes 2A, 4B, 4D and 6A.

2A and 4B - Robigus 4D and 6A - Solstice

The QTL on 4B and 4D co-located with the dwarfing alleles *Rht-B1b* (Robigus) and *Rht-D1b* (Solstice).

The role of the Reduced height genes in ergot resistance

A general trend towards increased resistance to *C. purpurea*, with smaller and lighter sclerotia, was observed on the NIL *Rht-B1b*, *Rht-D1b*, *Rht-B1c* and *Rht-D1c* compared to Mercia.

Mercia NIL: carrying the gibberellic acid (GA)-insensitive semidwarf alleles *Rht-B1b* and *Rht-D1b* and the severe dwarf alleles *Rht-B1c* and *Rht-D1c*.

Our results suggest that GA-mediated degradation of the DELLA proteins supports infection of wheat by *C. purpurea*.

QTL in the durum wheat variety Greenshank

Four QTL identified on chromosomes 1B, 2A, 5A and 5B.

The QTL on 2A was particularly interesting as it was associated with a large reduction in honeydew production.

NIAB world-class experience, skills and resources

Grain contamination with ergot alkaloids

Financial support from AHDB: Project report 603 (2019)

Ergot Alkaloids (EAs) produced by Claviceps purpurea

Ergot alkaloid contamination of healthy grain

• To determine whether ergot alkaloids can be transferred from *C. purpurea* infected flowers onto healthy grain developing within the same ear.

• To determine to what extent ergot alkaloids are transferred to healthy grain during direct, physical contact with whole, partial and sclerotia dust.

The levels of ergot alkaloids in different *C. purpurea* tissues, comparing honeydew, sphacelia and sclerotia. Honeydew

Wheat variety Mulika

■ Honeydew ■ Sphacelia ■ Sclerotia

world-class experience skills and resources

2.7 x 10²

To determine whether ergot alkaloids are transferred from C. purpurea infected flowers onto healthy grain within the same ear.

Using a single isolate: 04-97.1

inoculation site

inoculation site

NIAB world-class experience skills and resource

Total ergot alkaloids on grain that formed above and below an ergot

(axis capped at 1000 ppb)

Wheat: 0.2 to 160mg/kg Barley: 0.3 to 77 mg/kg Rye: 0.2 to 8.1 mg/kg

Grain at top of ear Grain at Bottom of ear

EU Regulation 2021/1399: 0.1 mg/kg

A high level of variation in total ergot alkaloid between replicates.

world-class experience skills and resources

NIAB

Physical transfer of ergot alkaloids onto grain

To determine to what extent ergot alkaloids are transferred to healthy grain during direct, physical contact with whole, partial and sclerotia dust.

Physical transfer of ergot alkaloids onto grain

Wheat: 3.2 mg/kg Barley: 5.0 mg/kg

Whole ergot and broken ergot sclerotia 0.5g or 5g of sclerotia per kg grain

vorld-class experience skills and resources

Take home message:

As ergot alkaloids are able to contaminate otherwise clean seed before harvest it is imperative that ergot disease management is focussed on farm.

> world-class experience skills and resources

Thank-you

