Monitoring Irish Zymoseptoria tritici populations for virulence to STB resistance

Steven Kildea Teagasc, CELUP, Oak Park Crops Research

Presentation Outline

Cellule June 2019

- Why we should monitor Z. tritici
- Why we shouldn't monitor Z. tritici
- Our (Teagasc) attempts at monitoring the Irish
 Z. tritici population

Zymoseptoria tritici

The Pathogen: Zymoseptoria tritici

• Extremely large populations

The Host: Wheat

• Moderately resistance at most

The Environment: Northern Europe

- Damp & Mild
- Winter cropping

Costello 2022*

*Knockbeg 06.07.2022

Why we should monitor Z. tritici

Costello 2022*

8.8 t/ha

12.4 t/ha

- Most economically destructive disease of wheat in north-western Europe
- Fungicide resistance & increased regulation on pesticides posing serious concerns to future control
- Varietal resistance represents a key means of future STB control
- The ability of pathogen to adapt means it will develop virulence – growers can adjust fungicides

Why we shouldn't monitor Z. tritici

WHAT RESISTANCES TO MONITOR?

AHDB RECOMMENDEDLISTS

Winter wheat 2024/25

AHDB																																		
RECOMMENDED	KWS Zyatt	SY Cheer	Skyfall	Crusoe	RGT Illustrious	KWS Extase	KWS Ultimatun	KWS Paladum	Mayflower	Bamford	RGT Wilkinson	KWS Brium	RGT Rashid	Amara	LG Illuminate	LG Astronomer	LG Redwald	Blackstone	KWS Zealum	RGT Bairstow	LG Skyscraper	RGT Slokes	Swalow	LG Beowulf	Champion	SY Insitor	Oxford	KWS Dawsum	Gleam	Graham	KWS Cranium	LG Typhoan	RGT Wolverine	Costello
End-use group		UKI	FM Group	1			UKFM	roup 2				UK	(FM Group	3					s	Soft Group 4								Ha	rd Group 4					
Scope of recommendation	UK	UK	UK	UK	UK	UK	UK	UK	UK	UK	UK	UK	E	N	UK	UK	E&W	UK	N	UK	UK	N&W	N	UK	UK	UK	E&W	UK	UK	UK	UK	UK	Sp	UK
Variety status		NEW	С			С				NEW		•		NEW	•			NEW			С		•	NEW					с					
Fungicide-treated grain yield (% treated control)																																		
United Kingdom (11.0 t/ha)	99	97	96	95	95	101	101	100	97	106	100	100	99	99	98	98	106	103	102	102	102	101	96	106	106	104	104	103	103	102	102	100	99	98
East region (10.9 Vha)	98	97	96	95	95	101	101	99	97	105	101	100	100	98	98	98	105	103	103	102	103	100	96	106	106	104	104	103	103	101	102	100	99	99
West region (11.2 t/ha)	99	98	96	96	96	102	101	101	97	107	99	99	98	99	99	98	107	101	102	103	101	103	96	106	106	105	104	104	103	104	100	100	100	98
North region (11.3 t/ha)	97	(98)	95	94	94	99	101	99	96	[105]	99	100	98	[102]	100	97	104	[103]	102	102	101	103	100	[107]	103	105	101	105	103	102	102	101	99	99
Untreated grain yield (% treated control))																																	
United Kingdom (11.0 t/ha)	71	84	66	75	82	93	90	90	91	92	83	80	78	87	83	85	89	87	84	84	83	83	76	91	90	79	88	91	80	89	79	89	72	83
Disease resistance																																		
Mildew (1–9)	7	[8]	6	7	6	7	7	8	7	[6]	7	7	3	[6]	5	4	5	[7]	7	6	7	6	6	[6]	7	7	5	8	6	6	5	7	6	8
Yellow rust (1–9)	3	7	3	8	7	7	9	9	9	7	7	9	8	8	7	8	7	9	9	8	7	7	7	9	8	4	8	9	5	7	9	9	4	9
Yellow rust (young plant)	s		s	s	s	5	- F	1 E .	- F		s	s	r		r	r i	5		r	r i	s	r i	r i		- F	s	r i	r	s	s	r I	r i	s	r r
Brown rust (1–9)	7	6	9	3	5	6	6	5	6	6	5	5	5	6	6	7	7	6	5	6	5	5	5	5	5	6	6	7	6	5	4	6	7	5
Septoria tritici (1-9)	6.3	6.0	5.8	6.3	5.9	7.4	6.5	7.3	8.9	6.7	5.5	5.7	6.1	6.0	5.6	5.9	6.5	6.2	6.1	5.9	4.9	6.0	5.1	6.7	7.9	6.4	6.6	6.3	5.7	6.6	5.8	7.2	6.0	5.8
Eyespot (1-9)	6@	4	6@	5	6@	4	6	6	5@	6@	6@	5	5	4	5	5	4	5	5	4	5	4	4	6	4	5	5	5	5	4	5	5	6	5
Fuserium cer blight (1-9)	6	[7]	7	7	6	6	6	6	6	[5]	6	6	7	[8]	6	6	6	[8]	7	6	6	6	6	[6]	6	7	6	7	6	6	7	6	6	7
Orange wheat blossom midge	-	-	R	1.1				1.1	1.1				R	R	R	R	R	R	R	R	R		R	R	R	R	R		R		R	R		

- 17 Varieties STB rating 6-7
- 4 Varieties STB rating 7-8
- 1 Variety STB rating > 8

Why we shouldn't monitor Z. tritici

ORIGINAL ARTICLE

utionary Applications WILEY

How large and diverse are field populations of fungal plant pathogens? The case of *Zymoseptoria tritici*

Bruce A. McDonald¹ | Frederic Suffert² | Alessio Bernasconi¹ Alexey Mikaberidze³

	Levels of disease intensity									
	Low	Moderate	High							
Number of unique Z. <i>tritici</i> genotypes per hectare (in millions)	3.1 ±0.2	7.6 ±0.6	14.0 ±1.0							
Number of Z. tritici pycnidiospores per hectare (in trillions)	2.1 ±0.3	5.3 ±0.6	9.9 ±1.0							
Number of adapted mutant pycnidiospores of Z. tritici per hectare (in millions)	27 ±3	67 ± 8	126 ±15							

Is virulence inevitable anyhow?

https://doi.org/10.1111/eva.13434

There is a benefit to monitoring

Increased vulnerability of upcoming wheat varieties to Irish septoria strains confirmed

Researchers in Teagasc have confirmed that Irish strains of septoria are able to overcome a source of genetic resistance present in a range of near-market winter wheat varieties. This is the conclusion of a significant study led by Dr Steven Kildea, Teagasc crops researcher, and accepted for publication in the journal Plant Pathology.

Septoria blotch is the primary disease of the Irish wheat crop and requires judicious chemical treatment to ensure the crops yield potential is realised. In 2020, unexpected levels of the disease were observed on a selection of winter wheat varieties in a number of locations, each with the variety Cougar in their background, which has reported

Increased vulnerability of upcoming wheat varieties to Irish septoria strains confirmed

"This risk is greatly increased in regions where septoria pressures is traditionally high, such as the South of the country. Here, even with well-timed fungicide programmes, there is a concern that adequate disease control would not be achieved and growers should consider alternative varieties".

We avoided a major commercial "bust"

Fungicide treated RL trial Cork July 14th 2021

We are responsive – explaining what we are seeing

Breakdown in Cellule (Stb16q) in 2019

*DAFM NL & RL trials at Moorepark

We are responsive – explaining what we are seeing

Kildalton 2019

Cork 2020

Similar breakdown in Cougar material

Source: CR • non-CR

Cork 2020

Cork 2021

How widespread were these strains?

- Glasshouse inoculations
- Screening in mixes of 4 isolates
- Three seasons selected (48 isolates per season)
- Isolates selected from routine pathogen sampling

How widespread were these strains?

RGT Saki

- Isolates virulent to "Cougar" present in 2019
- Virulence present in variety trial sites
- Need to focus virulence screens on these sites?

Can we screen Z. tritici populations?

Follow this preprint

Estimating the frequency of virulence against an Stb gene in Zymoseptoria tritici populations by bulk phenotyping on checkerboard microcanopies of wheat NILs

Prédéric Suffert, Stéphanie Le Prieur, Sandrine Gélisse, Emmie Dzialo, D Cyrille Saintenac,

Thierry C. Marcel

New Results

doi: https://doi.org/10.1101/2023.12.18.572116

This article is a preprint and has not been certified by peer review [what does this mean?].

Figure 3. Experimental steps in the BPC method. A. Application, with an atomizer, of a *Z. tritici* blastospore suspension on a microcanopy 16 days after sowing. B. Bagged checkerboard microcanopy. C. A checkerboard microcanopy 21 days after inoculation. D. Disease assessment on both the 5-cm section and the whole second leaf of each seedling. E-F-G. Three leaves with STB lesions, from the least to the most coalescent, representative of the symptoms observed.

Molecular approaches

Avrstb 6 Profile

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

Monitoring Zymoseptoria tritici virulence will not be simple

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

Going forward – what should we do

- What should we actually monitor?
- Phenotypic v Genotypic?
- When is a problem a problem?

Acknowledgements

Deirdre Doyle Liam Sheppard Fiona Hutton Jim Grace Stephen Byrne

KRA-W

An Roinn Talmhaíochta, Bia agus Mara Department of Agriculture, Food and the Marine

John Joe Byrne Seamus Kearney Eleanor O'Gorman Angela Ryan

