

# How agronomists use the UKCPVS

Tuesday 16<sup>th</sup> January 2024



**CEREALS & OILSEEDS** 

### Agenda

AGRICULTURE & HORTICULTURE DEVELOPMENT BOARD

- Background
- Decision making on farm
- Managing disease
- Yellow rust
- UKCPVS
- Agrii R & D and data collection
- Final thoughts



# Background



- Worked as an agronomist for last 13 years
- Cover the central south of England, predominantly Dorset, Wiltshire and Hampshire
- Working mainly with arable and forage crops
- Involved locally with replicated field and on farm tramline trials
- Provide technical support nationally on regenerative farming



### What drives on farm decisions?



- Profitability
  - Gross margin -> lowest cost per tonne
- Farming system
  - Establishment system
- Agronomics
  - Grassweeds
  - Rotation
    - First wheat not necessarily true when root crops/veg in rotation



### What drives on farm decisions?

- Variety choice drivers
  - Rotational position drilling date
  - Market
  - Soil type
  - Farming/establishment system
  - Yield and quality
  - Standing power
  - Disease resistance
    - 1. Septoria tritici
    - 2. Yellow rust
    - 3. Brown rust/eyespot/fusarium







### What drives on farm decisions?



- Yellow rust an increasing threat outside of East Anglia?
  - Climate change?
  - Delayed drilling because of grass weeds
  - Increase in maize acreage for AD
  - Failed Oilseed rape/removal from rotation
  - Increase in 2<sup>nd</sup> wheat Zyatt? Skyfall?
  - Increase in growers choosing not to use an insecticide
    - SFI payment
    - Move to conservation agriculture or regenerative system



# Managing disease



- The challenge of balancing multiple agronomic concerns
  - Grass weeds later drilling
  - Reducing risk of Septoria through later drilling but increasing risk of yellow rust
  - Workload impossible to drill all the wheat in the optimal 10 days
  - Yield drilling earlier into better conditions often results in better yields
  - Conditions autumn 2022 vs autumn 2023



# Managing disease – yellow rust

AGRICULTURE & HORTICULTURE DEVELOPMENT BOARD

**CEREALS & OILSEEDS** 

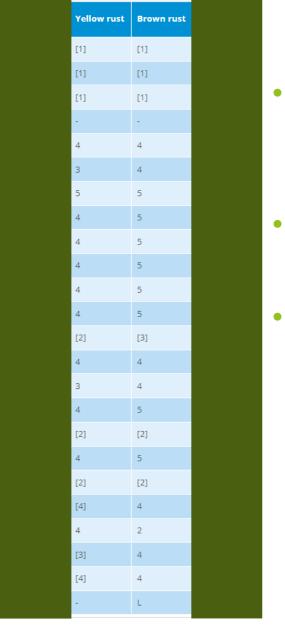
- Stacking of cultural control
  - Rotation trying to drill earlier into better conditions
  - Removing volunteers
  - Selecting resistant variety(ies) growing a mix of varieties with different resistance and parentage
  - Consideration of blends mixed data
  - Crop nutrition nitrogen amount and timing, crop health
  - Monitoring levels
- Fungicide
  - Active(s) and dose rate
  - Timing
    - +/- T0
    - On time? Weather? Travelability?



# Managing disease – yellow rust AHDB



| Active ingredient /L                    | Yellow rust | Brown rust |
|-----------------------------------------|-------------|------------|
| fenpicoxamid 50g                        | 4           | 4          |
| mefentrifluconazole 97g                 | 4           | 5          |
| isoflucypram 50g                        | 7           | 7          |
| fluxapyroxad 62.5g                      | 2           | 4          |
| benzovindiflupyr 100g                   | 8           | 7          |
| prothioconazole 160g + tebuconazole 80g | 7           | 7          |
| prothioconazole 275g                    | 3           | 3          |
| pyraclostrobin 250g                     | 7           | 7          |


Agrii data 



### Managing disease – yellow rust



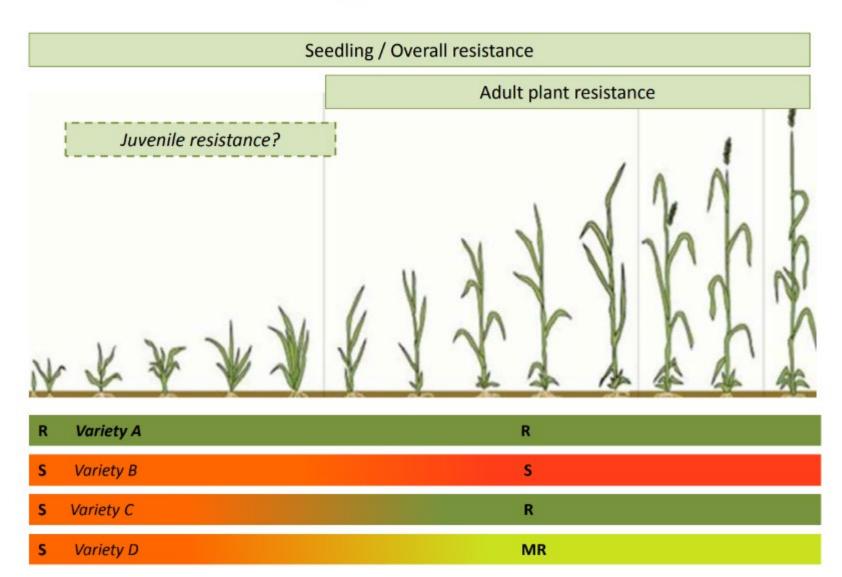
| Chemical group          | Active ingredient                     |
|-------------------------|---------------------------------------|
| Dithiocarbamate         | mancozeb***                           |
| Imidazole               | prochloraz (poraz)                    |
| Phthalimides            | folpet***                             |
| Inorganic               | sulphur                               |
| SDHIS                   | benzovindiflupyr**                    |
| 20112                   | fluxapyroxad**                        |
|                         | benzovindiflupyr + prothioconazole    |
|                         | bixafen + fluopyram + prothioconazole |
| SDHI + other \$         | bixafen + prothioconazole             |
| Som Forner 2            | fluxapyroxad + metconazole            |
|                         | fluxapyroxad + mefentrifluconazole    |
|                         | fluxapyroxad + pyraclostrobin         |
| Qil                     | fenpicoxamid                          |
| Qil + other \$          | fenpicoxamid + prothioconazole        |
|                         | azoxystrobin                          |
| Strobilurin (Qol)       | pyraclostrobin                        |
|                         | trifloxystrobin                       |
| Strobilurin mixtures \$ | fluoxastrobin + prothioconazole       |
|                         | flutriafol*                           |
|                         | metconazole                           |
| Triazole***             | prothioconazole                       |
|                         | mefentrifluconazole                   |
| (                       | tebuconazole                          |
|                         | bromuconazole + tebuconazole          |



- No resistance issues but control coming from 3 main actives
- Yellow rust not a strength of most of the new chemistry
- Tebuconazole?



### UKCPVS




- Sending samples in season for testing
- Reporting on the data 3 new isolates identified last spring
- Assist in making informed decisions
  - In season
    - High risk varieties watch list
    - Fungicide active(s)/rate/timing T0?
  - Planning for following harvest
    - Variety choices and split
    - Rotation drilling date



### UKCPVS

### **Growth-stage related resistance**





Understanding and monitoring the variation between
varietal resistance at different growth stages



### Agrii R & D



- Regular monitoring of a large set of genetics from across England, Wales and Scotland
- Particular focus on commonly used parents in current breeding



### Tussock sites 2023

1. Carnoustie, Angus, Scotland

– Final Report

- 2. Chirnside, Hexham, Northumberland
- Bishop Burton, Hull, Yorks
- 4. Boston, Lincs
- Drinkstone, Suffolk

Date 14<sup>th</sup> August 2023 | Number 19

Technical Note **H**.

**Rust Monitoring Tussocks 2023** 

- Throws Farm, Great Dunmow, Essex
- 7. Lenham, Ashford, Kent
- 8. AgriFocus, Swindon, Wiltshire
- 9. SW iFarm, Saltash, Cornwall
- 10. Bridgend, South Wales
- 11. Ludlow, Shropshire
- 12. Glenrothes, Fife, Scotland

### Agrii R & D





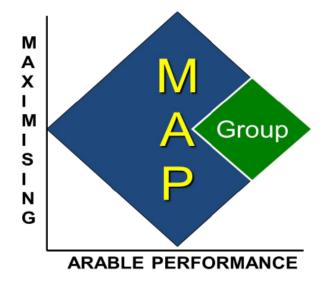
- Data collection in season from treated and untreated replicated varieties
- Varieties selected based upon area in the ground nationally and locally



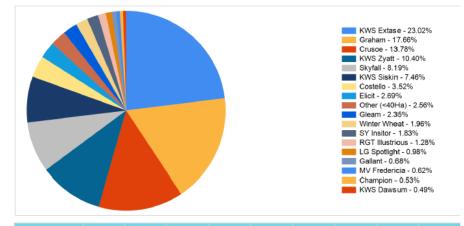
### Agrii MAP group



ii.


Agrii




All Winter Wheat Varieties

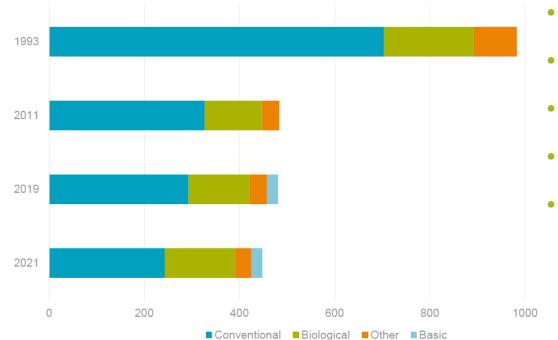
Achieving your full arable potential MAP Group Additional Reports Harvest 2015

### **Strictly Confidential for Participating Farmers**



Agrii would like to thank all participating farmers and agronomists for their support of the MAP group




|                 |      |       |     |      |       |       |      | Total<br>Variable<br>Costs | Gross<br>Margin |
|-----------------|------|-------|-----|------|-------|-------|------|----------------------------|-----------------|
| KWS Zyatt       | 949  | 10.86 | 289 | 73.4 | 381.2 | 152.5 | 15.9 | 806.4                      | 2332.5          |
| Crusoe          | 1258 | 10.21 | 289 | 65.0 | 277.7 | 139.1 | 11.9 | 642.9                      | 2303.7          |
| RGT Illustrious | 117  | 10.76 | 295 | 78.6 | 480.9 | 154.9 | 18.8 | 908.8                      | 2261.4          |
| SY Insitor      | 167  | 10.85 | 263 | 73.0 | 207.5 | 170.6 | 14.1 | 602.6                      | 2253.4          |
| KWS Extase      | 2101 | 10.50 | 253 | 76.5 | 252.4 | 110.2 | 11.9 | 591.3                      | 2067.9          |
| Graham          | 1612 | 10.59 | 250 | 70.0 | 256.7 | 124.5 | 12.9 | 597.5                      | 2055.1          |
| Elicit          | 245  | 9.85  | 265 | 70.0 | 184.5 | 122.7 | 11.8 | 568.4                      | 2041.8          |
| Gleam           | 214  | 10.62 | 245 | 73.5 | 216.7 | 139.2 | 13.8 | 604.4                      | 1998.2          |
| Costello        | 321  | 10.17 | 248 | 76.1 | 203.9 | 108.4 | 11.2 | 546.6                      | 1974.6          |
| KWS Siskin      | 681  | 9.85  | 249 | 61.1 | 238.6 | 102.5 | 13.1 | 571.1                      | 1884.1          |
| Skyfall         | 748  | 8.21  | 287 | 86.1 | 229.2 | 109.8 | 8.5  | 582.1                      | 1775.1          |
| Winter Wheat    | 179  | 9.45  | 245 | 91.6 | 253.6 | 127.6 | 12.9 | 708.7                      | 1606.0          |



### AI Approvals in the EU

1





- Loss of epoxiconazole
- Tebuconazole the end is near?
- Further revocations?
- New chemistry?

۲

1200

- Rust control likely to get more expensive
  - Vital to have up to date accurate data









- Increase in regenerative farming and direct drilling
  - Increased effort to reduce fungicides – especially early on when the soil is not covered
  - Big move into faster tillering varieties – Skyfall (2<sup>nd</sup> most susceptible RL variety) and Extase (most sampled variety in UKCPVS last spring)
  - Earlier drilling?
    - BYDV?
    - Grassweeds?





- Desire to reduce reliance of fungicides
  - Can nutrition play a bigger role?
  - Biologicals?
- Increase in later drilling?
- Increased focus on breeding
  - Varietal breakdown enough genetic variation?
  - Hybrid wheat? GE? GM?





### Graphic showing variety area (size of circle), wheat parent lines (arrows) and yellow rust risk (colour) **KEY - Yellow rust risk** Diversification group 1 (low risk) Crusoe 1.1 Ketchum Diversification group KWS Kingdom 0 0.1 2a (moderate risk) Gallant Sterling Diversification group 2b (high risk) 4 0.3 Unclassified Numbers = % area Solstice entered in 2012 seed Panorama Cordiale 6.4 Xi19 certification (source: 2.3 Cocoon NIAB TAG] as at 22/2/12 0.4 0.3 **KWS Podium** Grafton Warrior 0.3 4.4 1.0 Beluga Duxford 1.2 Viscount 4.4 Torch 2.4 Tuxedo 0.9 Conqueror ROBIGUS ................ RACT 3.6 **KWS Santiago** Gladiator KWS Target 2.4 11.4 0.2 0.1 Oakley Invicta 5.9 Gravitas Scou Relay 0.4 2.4 Different centres **KWS Gator** Claire 2.1 0.1 JB Diego 11.9 Consort Istabrag Horatio Alchemy 2.8 1.0 Stigg 0.2 0.1 0.3 Denman 0.1 Cassius 0.4 **KWS Solo** Battalion Einstein 0.3 Humber 0.1 1.4 0.1 Glasgow 0.1 .

### Is there enough genetic diversity in wheat?

Dominant wheat parent lines Produce positive characteristics Leave vulnerabilities Address through better genomic knowledge

variety can potentially expose related By Mike Abram varieties

But just because a parent is

That's because other sources of

The increased understanding

of the wheat genome is helping to

helps breeders incorporate genes

that can introduce more resistance

to a disease, for example, or help

overcome other weaknesses of a

the current variety pool, he says.

also helps drive yield forward, he

says. "The trick is incorporating the

useful genes and leaving behind the

use within our crosses."

deleterious ones"

mike.abram@rbi.co.uk

"We're looking at historic varieties or

those from other geographical areas to

Bringing in new sources of genetics

Those genes can come from outside

parent variety.

breed in extra resilience, Mr Flatman

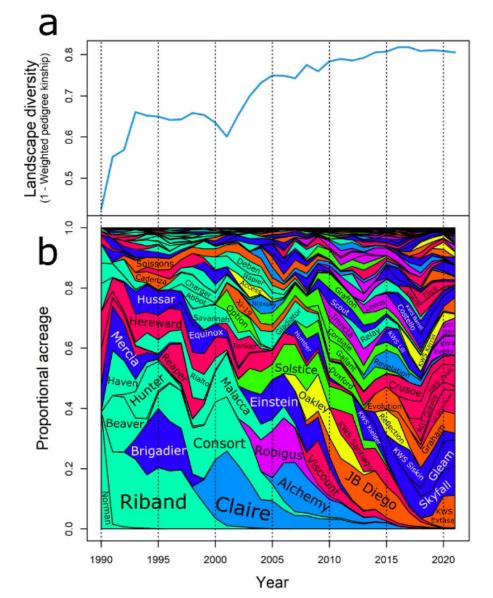
points out. The use of genetic markers

Around 60% of this season's winter susceptible doesn't necessarily mean wheat has come from just four genetic a progeny variety will be at risk. As the graphic illustrates, some varieties can parent lines, only one of which is low risk for yellow rust after the still have good yellow rust resistance emergence of new strains in the past even if one parent has become two seasons susceptible. It emphasises the potential vulnerability from using just a few key resistance have been bred into the parent lines as sources of the next variety, which means if one source generation of wheat varieties. But it is broken, another still gives good doesn't tell the whole story, stresses resistance.

Ed Flatman, senior wheat breeder for Dominant parent lines typically emerge on the back of that variety making a step-change in some

characteristic, usually yield, but occasionally for something more specific, such as the orange wheat blossom midge resistance found relatively recently, he explains. "If there is a major new variety breakthrough, all breeders will use

that in its programmes." Using those varieties brings a good chance of success, particularly when crossing within a Nabim group, but it can lead to an increased vulnerability. That is most obvious with disease resistance, particularly rusts, where a breakdown in the resistance within a


|                       | Robigue                                                              | Seletice                                       | XI19                                               | Oakley                          |
|-----------------------|----------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------|---------------------------------|
| % Market share [2013] | 8.85                                                                 | 13.2                                           | 8.9                                                | 18.4                            |
| Positive              | High yield<br>OWBM<br>Septoria<br>resistance<br>Tillering<br>Quality | Duality<br>Stiff straw<br>Yield<br>consistency | Ouality<br>Yellow rust<br>resistance<br>High yield | High yield<br>OWEM<br>Tillering |
| Negative              | Yellow rust<br>Second wheat<br>performance<br>Sprouting              | Yellow rust<br>Disease<br>resistance           | Weak straw<br>Low protein                          | Yellow rus<br>Eyespot           |

### Source - Crops 2012

Robigus yellow rust weakness coming through in many breeding lines







a - Trends in landscape diversity of wheat grown in England since 1990

*b* - Proportional area of wheat varieties based on data from NIAB SeedStats service





### Autumn 2023 C2 seed purchases

|    | Variety Name  | MS % | Agrii % sales | Group |
|----|---------------|------|---------------|-------|
| 1  | KWS Dawsum    | 20   | 14            | 4H    |
| 2  | KWS Extase    | 13   | 17            | 2     |
| 3  | Champion      | 9    | 5             | 4H    |
| 4  | Crusoe        | 6    | 8             | 1     |
| 5  | LG Skyscraper | 6    | 4             | 4S    |
| 6  | Skyfall       | 6    | 10            | 1     |
| 7  | Graham        | 5    | 8             | 4H    |
| 8  | LG Typhoon    | 5    | 5             | 4H    |
| 9  | Gleam         | 4    | 3             | 4H    |
| 10 | KWS Palladium | 4    | 5             | 2     |

- + Group 1 = 15.1%
- + Group 2 = 18.7%
- + Group 3 = 1.5%
- + Group 4S = 11.1%
- + Group 4H = 52.1%
- + Yellow rust concerns @ T0 = 35%
  + Brown rust below at 4.6 = 41%



| Variety       | Parent Parent                                      |              |  |  |
|---------------|----------------------------------------------------|--------------|--|--|
| KWS Dawsum    | KWS Kerrin                                         | Costello     |  |  |
| KWS Extase    | Boisseau                                           | Solheio      |  |  |
| Champion      | DSV20122                                           | Reflection   |  |  |
| Crusoe        | Cordiale                                           | Gulliver     |  |  |
| LG Skyscraper | Cassius x NAWW29                                   | KWS Santiago |  |  |
| Skyfall       | C4148                                              | Hurricane    |  |  |
| Graham        | Expert                                             | Premio       |  |  |
| LG Typhoon    | Garrus                                             | LGW88        |  |  |
| Gleam         | KWS Kielder                                        | Hereford     |  |  |
| KWS Zyatt     | Quartz                                             | Hereford     |  |  |
| KWS Palladium | KWS Zyatt                                          | KWS Trinity  |  |  |
| Firefly       | Cougar                                             | Rowan        |  |  |
| Elicit        | Cassius                                            | Viscount     |  |  |
|               |                                                    |              |  |  |
|               | Robigus parentage                                  |              |  |  |
|               | Parent very susceptible to one of the key diseases |              |  |  |
|               | Parent less used and a lower risk                  |              |  |  |



- Breakdown of Robigus line to yellow rust and Septoria well documented
- Hereford and Timaru lines also under scrutiny





- More accurate and up to date information = better decision making on farm
- Can the UKCPVS provide detailed in season updates?
- Opportunity for improved cross industry partnership to increase the level of data





### Thank you for listening, any Questions?