Farming with robots

Prof Simon Blackmore
Head of Agricultural Robotics
Simon.blackmore@harper-adams.ac.uk
www.harper-adams.ac.uk
www.agri-epicentre.com
Director of the National Centre for Precision Farming
NCPF.harper-adams.ac.uk

Twitter: ProfSBlackmore
Harper Adams University

- Founded 1901 by Thomas Harper Adams
- Crops, Animals, Food, Land and Engineering
- Circa 2500 students
- Engineering department
 - Circa 300 students, 20 academics, 10 technical staff
 - Agricultural Engineering
 - Automotive Engineering (off highway)
 - Mechanical Engineering
 - Applied Mechatronic Engineering MSc
- Research into robotic agriculture
National Center for Precision Farming

- Agricultural drone training, development & testing
- Autonomous tractor
- Laser weeding and micro droplet application
- Robotic seeding and spraying
- Robotic phenotyping and crop scouting
 - Sub canopy sensing robot
- Autonomous mower
- Robotic strawberry harvesting
- Phenotyping robot for grass
- Hands-free-hectare
Agricultural Engineering Precision Innovation Centre (Agri-EPI)

- Private company based at Harper Adams University
- £18 million government investment in new company hubs to develop Precision Agriculture
- Help the UK’s agri-food sector develop with advanced technologies that increase productivity and sustainability.
- Company to company and company to university R&D
- The Centre has hubs in Edinburgh, Harper Adams and Cranfield Universities.
- 27 instrumented satellite farms
- 130 commercial collaborating companies
- ERDF project to facilitate innovation (Marches LEP)

www.agri-epicentre.com
Farming in the future?

- Identify weaknesses in current farming system
 - Modern agriculture uses too much energy
 - Fuel in damaging and repairing the soil each year
 - Expensive chemicals being wasted by going off target and causing pollution
 - Large machines and practices are damaging the soil
 - Compaction and loosening every year
 - Intensive cultivation looses soil organic matter
 - Growth through economies of scale coming to an end
 - Machines have getting bigger due to driver costs but are now at their maximum size
 - Large machines are only good for large fields and small fields cannot use them

- Drivers for change
 - More sustainable food in a growing world population
 - Improve on-farm economic viability
 - Desire to have less environmental impact
 - Tighter legislation from EU and UK
 - Energy prices increase
 - More volatile weather due to climate change
 - More competition from world food prices

- Crop production must become more flexible and efficient
 - Intelligently targeted inputs
Future trends

- Agriculture has a 57% potential for automation
The Perfect Storm in UK agriculture after BREXIT

- No production subsidies
 - Farming subsidies cut like NZ
- Vote to restrict EU labour
 - No seasonal harvesters
 - Higher wages to attract British workers
- Devaluation of pound
 - Good for our exports
 - Bad for imported inputs
- Lower sustainability
 - Growers now planting less
 - Growers moving crops to cheap labour

- Technology alleviation
 - Some tasks can be automated
 - Significantly reduce the costs of production
 - Could be made in the UK
 - Move from Precision Farming to Robotic Agriculture
Farming systems

• Currently like an industrial production line
 – Maximising production (yield)
 – Large tractors doing the same work everywhere
 – Based on blanket application of energy (fert, spray,...)

• Need to move to flexible manufacturing
 – React to changes in real-time based on current conditions
 • Weather, growth, prices, legislation, incentives
 – More information intensive
 • Maximise gross margins
 • Manage risk
 • Minimise environmental impact
 • Automation
Economies of scale

- Big tractors and big implements
 - Increasing work rates and economies of scale reduces;
 - Driver costs
 - Cost and time per hectare
 - Large capital investment
 - Reached maximum size due to railway tunnels
 - No more savings through larger economies of scale
 - Good for large fields, cannot be used in smaller fields
 - Small to medium size farms and fields have the greatest potential for increased production with appropriate tech.
Limitations of big machines

– One size fits all
 • Large tractors often doing small work
 • Rarely using full power

– Boys toys
 • Big shiny tractors are always impressive
 • Small smart robots are also fun!

– Need for speed results in a self fulfilling prophecy
 • Small working window needs a bigger machine but the bigger the machine the smaller the working window.
 • Horsepower does not help when weight is the problem

– We cannot change the soil or the weather but we can change the tractor
Compaction

- Up to 90% of the energy going into cultivation is there to repair the damage caused by large machines.
- Repeated damage year after year:
 - Plough/damage, plough/damage, ...
- Economic cost of compaction in England and Wales: c. £0.4 bn/annum (Morris et al. Cranfield University, 2011)
- If we do not damage the soil in the first place, we do not need to repair it.
- Natural soil flora and fauna produce the ideal soil structure (let the worms do the work).
- Move towards Controlled Traffic Farming and ultra light machines.
Four phases of mechanization

Establishment

Scouting

Crop care

Selective harvesting
Robotic seeder

• Ultra light, zero draught force
 – No agronomic compaction
 – Put seed into the ground in any weather
• Micro tillage
 – Cultivate for each individual seed position
• Use vertical or rotary seeding methods
 – Punch planting
• Seeding depth to moisture
 – Improve germination rates
• Permanent planting positions
 – Same place each year
Ultra light seeding robot

- Less than 40kPa (6PSI) under the contact patch
- Does no agronomic damage even at field capacity
- Can seed the ground in any weather conditions
Crop scouting

- Working with agronomists by giving near-real-time data over the whole farm
- UGVs (Unmanned Ground Vehicle)
 - Phenotyping robots
 - Crop trials to evaluate new genotypes
 - Scouting robots
 - Targeted agronomic measurements
- UAVs (Unmanned Aerial Vehicle)
 - Rapid assessment technique
 - High resolution imagery
 - Visible: Crop cover, growth rates, flooding extent, late emergence, weed patches, rabbit damage, nutrient imbalance
 - Non-visible: NDVI, Thermal, multispectral
 - Sensor limited by weight and power
Agricultural Drone Centre

• Part of the NCPF
• Working with
 – Civil Aviation Authority
 – Chemical Regulation Directorate
 – Many drone companies
• Spray testing laboratory to accredit drones to use spray in the UK
Crop scouting; Dionysus robot

- Crop scouting robot for vineyards
- Build by Harper Adams MEng students for the University of Athens
- Software Architecture for Agricultural Robots
- Thermal camera for irrigation status
- Multispectral camera for nutrient status
- LIDAR for canopy extent and density
Sub-canopy scouting robot
Robotic Weeding

- Hand weeding costs £2000 per hectare
- 80% grass weeds in UK herbicide resistant
- Discussions to ban Glyphosate
 - Do not ban Glyphosate, ban the dumb sprayer wastes the chemical
 - Only apply chemical directly on to the target leaf
- 10 years & $250m for new active ingredients (not happening)
- Physical weeding alternatives
 - Mechanical weeding
 - Micro droplet spraying
 - Laser weeding from 3D imaging
Autonomous tractor

Steering from LIDAR

GPS to LIDAR steering test
Selective harvesting

• Between 20-60% of harvested crop is not of saleable quality
• Only harvest that part of the crop which has 100% saleable characteristics
 – Phased harvesting, immediate replacement seeding
• Pre harvest quality and quantity assessment
 – Grading / packing / sorting at the point of harvest
 • Add value to products on-farm
 – Grade for quality
 • Size, sweetness, ripeness, shelf life, protein etc
 – Minimise off farm grading and sorting
 – Add value to on-farm products
Selective harvesting and grading strawberries

- Stereo RGB vision (Colour and size, 3D position of peduncle)
- NIR for sweetness, shelf life, quality
- Packing at the point of harvest
Stereo video identifying strawberries
Picking robot; not touching the fruit
Hands Free Hectare

- Produce the world's first automated crop
- Grow one hectare of spring barley without anyone going into the field
- Crop surveyed and sampled by drone
- Soil sampled by robot
- Drilled and sprayed by robotic tractor
- Harvested by robotic combine
 - 3.5t of barley to be made into robotic beer!
Conclusions

- Mobile robots will be used commercially in the horticultural sector first
- Working with two start-up companies looking for vc
- Robots will be very disruptive but will have significant benefits
- Increased yield will come though improving smaller fields
- We are now designing the new systems and trying to understand the implications
- We are always interested in partnerships
Incorrect assumptions about robotic agriculture

• Robots are only for big fields
 – Big fields have big equipment that is very efficient.
 – Small fields cannot be currently used with the same efficiency
 – Small robots can increase the efficiency in small fields

• Robots will be too expensive
 – Current big tractors need investment of £100k+ which farmers already pay, plus driver costs
 – Cost of a robot will be about £20-50k and will not need a ‘driver’

• Robots will reduce rural workforce
 – Big tractors have already reduced the rural workforce from what they were 70 years ago.
 – We will still need a farm manager to plan the tasks
 – Still need an agronomist but will be supported by better real-time information
 – The tractor driver will need new skills to become a robot operator.
 – Seasonal labour will be significantly reduced

• Robots will do everything
 – Robots will be used in niche areas like weeding and scouting
 – Large manned tractors will still be needed for road work and heavy logistics

• Robots are not safe
 – New system has seven levels of safety
 – Driverless cars on road, why not tractors?
 – A person is always in charge of the robots via a smartphone.

• Robots are too complex and will need an operator with a PhD
 – With good design a robot should be as easy to use as a smartphone
 – Leapfrog technology
 – Embedded smarts

• Robots are for the future, not now
 – Why not now?
Robots as a service not a product

• Traditional business model
 – Build product and sell it
 – e.g. weedkiller
 • Loss of control after sale
 • Open to misuse

• New business model
 – Sell service with embedded product
 – E.g. eradication of weeds
 • Can use any technology (such as laser weeding)
 • Continual feedback on product and its use
 • Easily updated