

SPot East 2018 Results

Nitrogen work over three years

Hypothesis: does N application drive yield?

Data from 556 processing crops 2010-2016 Mean ware yield at 23.3 % DM = 50.0 t/ha Mean N application rate = 201 kg N/ha

Survey data suggest otherwise

British Survey of Fertilizer Practice & AHDB

Summary of SPot N trials (2016-2018)

SPot site	Year	Variety	N treatments	Summary of N effects on yield	Yields >40 mm (t/ha)	Tuber DM (%)
East	2016	R Burbank	Split N, All N in seedbed (both 260)	No effect	68.2, 68.3	22.0, 22.1
	2017	Brooke	Split N, All N in seedbed, Placed N (all 220), 160, 180, 220, 160+30	No effect of rate or timing. Placed lower	61.0, 61.1, 55.7, 61.2, 59.2, 61.0, 62.3	24.5, 24.8, 25.0, 24.3, 24.3, 24.7, 24.3
	2018	Estima	180, 210, 240, 270	No effect	54.8, 56.9, 56.6, 55.1	18.9, 18.8, 18.4, 18.5
North	2018	M Piper	120, 150, 180, 150+30	No effect	49.7, 48.1, 49.3, 50.7	23.6, 23.4, 23.2, 23.4
South West	2017	Electra	90, 120, 150	No effect	58.7, 61.7, 61.3	17.1, 16.3, 16.4
	2018	Electra	0, 30, 60, 90, 120	No effect	72.0, 61.2, 72.4, 73.4, 72.3	16.4, 15.7, 15.6, 15.8, 16.4
Scotland	2017	M Piper	177, 147, Liquid, Injection	Injection lower	54.3, 51.2, 54.5, 49.8	19.2, 19.4, 18.5, 18.4
	2018	M Piper	176, 147, 120, Placed	ТВА	TBA	TBA

Setting the N rates for SPot East 2018

Step	Process	Factors	Outcome
1	Calculate soil nitrogen supply (SNS)	Cereal stubble, sand soil in a low rainfall area	SNS Index = 0 (soil will supply <60 kg N/ha)
2	Identify determinacy group	Estima	Variety group = 1 (determinate)
3	Calculate season length	24 May (emergence) to end August (defoliation)	Season length = 100 days
4	Calculate initial N requirement of crop		237 kg N/ha
5	Calculate supply from organic manures	Compost November 2016	0 kg N/ha (but soil OM is 2.7 %)
6	Fertilizer required		240 kg N/ha

Can we use soil tests to guide N fertilizer recommendations?

Relationship between tuber N uptake and tuber dry matter yield

Big N uptake = big yield?

Data from 402 processing crops 2010-2016 where N uptake was measured Mean ware yield at 23.3 % DM = 49.6 t/ha
Mean total N uptake = 220 kg N/ha

Effect of N on yield formation Russet Burbank, CUF 200?

AHDB

Effect of N application on ground cover development

Sampled 29 September

Nitrogen applied (kg N/ha)	Total N uptake (kg N/ha)	Integrated GC (% days)	Radiation absorbed (TJ/ha)	Total DM (t/ha)	RUE (t/TJ)	Harvest index (%)	Total FW yield (t/ha)
0	142	7843	12.78	14.22	1.12	93	56.7
125	197	8622	13.75	16.59	1.21	87	64.7
250	225	9071	14.16	17.49	1.24	87	69.1
375	308	10262	15.26	18.88	1.24	87	77.8
S.E.	25.1	318.2	0.381	1.275	0.071	2.5	3.78

Relationship between N uptake by tubers and fertilizer N application

What factors affect the amount of N taken up by the crop?

Effect of compaction and irrigation on nitrogen uptake. Maris Piper CUF 2006

What do we mean by N use efficiency?

Effect of irrigation, N application and variety on tuber yield. CUF Reference Crop 2006-2017

	Estima				Cara			
	Rain-fed		Irrigated		Rain-fed		Irrigated	
	kg	t/ha	kg	t/ha	kg	t/ha	kg	t/ha
	N/ha		N/ha		N/ha		N/ha	
Mean	146	43.6	193	65.4	87	58.0	87	70.1
Mean	± 27.6	± 4.77	± 19.5	± 3.42	± 21.8	± 3.53	± 22.5	± 4.74

Irrigation increased optimum N application rate by 47 kg N/ha in Estima and 0 kg N/ha in Cara

Data from Firman

SPot Farm East 2016 Nitrogen x Water Comparison

SPAD Meter: measuring leaf chlorophyll content for predictions of N deficiency

Soil NO₃ sensors (Tony Miller, JIC + Agrii)

Soil mineral N from soil cores Lower N in deepest profile in over-watered

Effect of rainfall and irrigation strategy on estimates of N leaching at SPot Farm East

SPot E 2018 Estima

No evidence that reduced N increases bruising

SPot N 2018 Maris Piper

Isn't it about what is sold rather than yield digs? SPot Scotland 2017 Packout (Albert Bartlett)

	Trial	1	2	3	4
Treatment	Planting Top dress	Liquid Standard (177 N)	Standard Ridge inject (175 N)	Standard No top dress (147 N)	Standard Standard (176 N)
Crop harvested	No. boxes	23	24	24	22
Graded product	Tonnes	14.24	14.70	15.88	14.12
Packout	%	64.6	62.9	67.6	64.9
Yield packed	t/ha	37.5	37.8	40.9	36.1

Financial summary of SPot N trials to date

Commercial split N	All N in seedbed	Financial	Placed/injected	Financial
61.2 t/ha	+0.1 t/ha	+£20/ha	-4.9 t/ha	-£980/ha

Commercial rate	Optimal rate	N saving	Financial
57.2 t/ha	+0.8 t/ha	-53 kg/ha	+£197/ha

Summary

- Used RB209 to calculate N requirement for crop and site and mostly found 30-60 kg N/ha lower than commercial rate being used on surrounding crop
- Experiments and strip trials showed no evidence of loss of yield from these lower rates
- Placed or injected N tended to produce lower yields than broadcast
- No evidence that much N leached out of the rooting profile during the growth period on heavily irrigated sandy soils, but canopies were paler and shorter-lived where over-watering took place
- Decreased N did not result in increased bruising
- Decreased N resulted in better skinset

Acknowledgements

- NIAB CUF would like to thank Andrew Francis and Emma Kelcher and their team at Elveden for all their help and support in conducting experiments and trials during 2018-2018
- AHDB staff involved in the SPot East programme including: Jenny Bashford, Graham Bannister and Teresa Meadows
- Nick Winmill of Agrii and Tony Miller of John Innes Centre for supplying soil nitrate-measuring probes
- Peter Raatjes of RMA for installing Adcon soil water monitoring probes

