

Annual results day

Strategic Potato Farm West

Heal Farms

Welcome and introduction

Richard Laverick, AHDB / Matthew Wallace, Heal Farms

Spot Results Day

A review of potato cyst nematode management in Great Britain

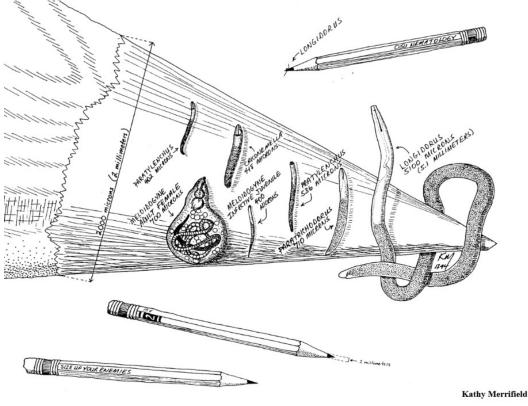
Dr Matthew Back, Harper Adams University

Harper Adams University

Outline

- Nematology Group at HAU
- Introduction: PCN
- Integrated management of PCN
- Nematicides
- Trap crops
- Biofumigation
- Variety choice
- Summary

Nematology Group at Harper Adams University



- Main research interests include potato cyst nematodes, root lesion nematodes and *Ditylenchus* spp.
- Biology (E.g. virulence, decline, interactions with fungi) and distribution
- Diagnostics
- Pest management strategies

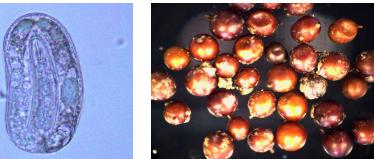
Plant parasitic nematodes (PPN)

Circa 27,000 nematode species **described** – range of feeding habits

Global losses attributed to PPNs is ca. £58 BN per annum

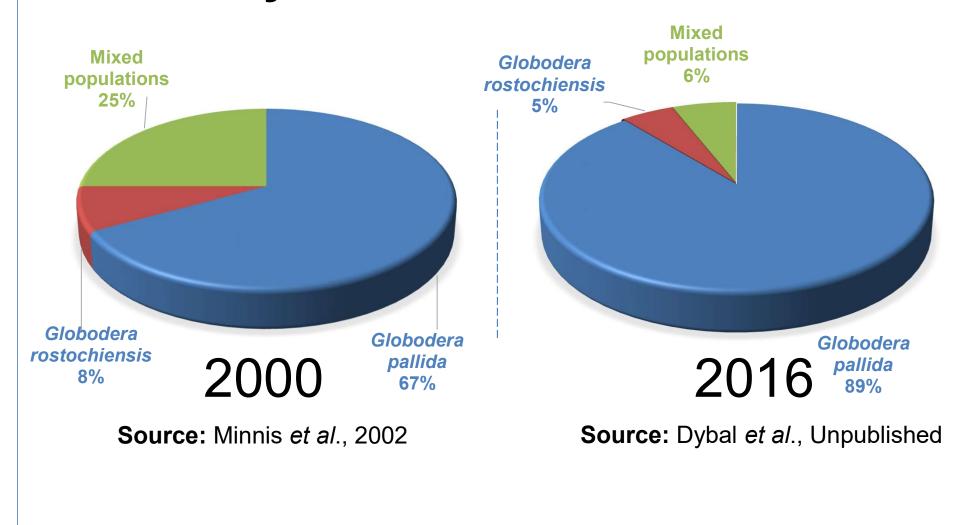
1 acre of soil from arable land contains ca. 3 x10⁹ nematodes

Sandy soils (60% + sand) have higher numbers of PPN

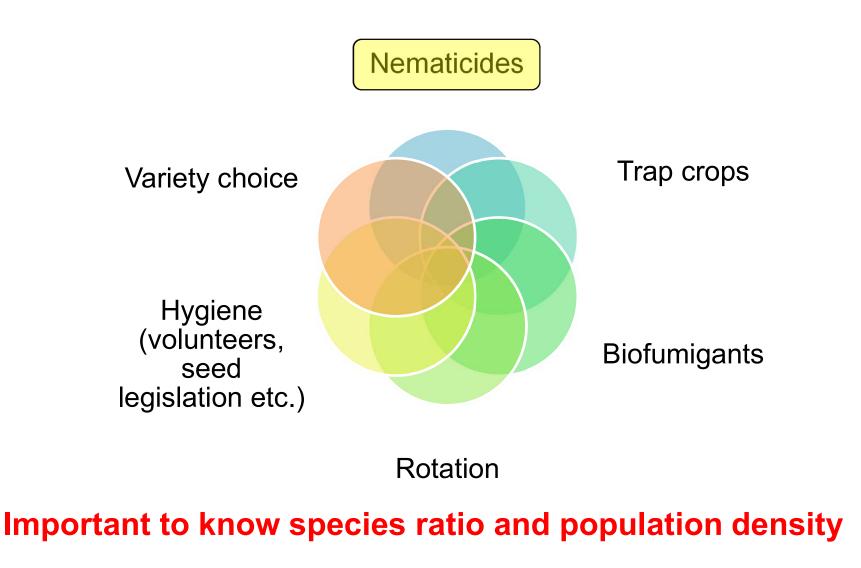


Potato cyst nematodes

9% Annual global yield loss


Crop damage equates to £26-50M each year

High cost of chemical control - c. £350 ha for granular nematicide



Potato cyst nematodes

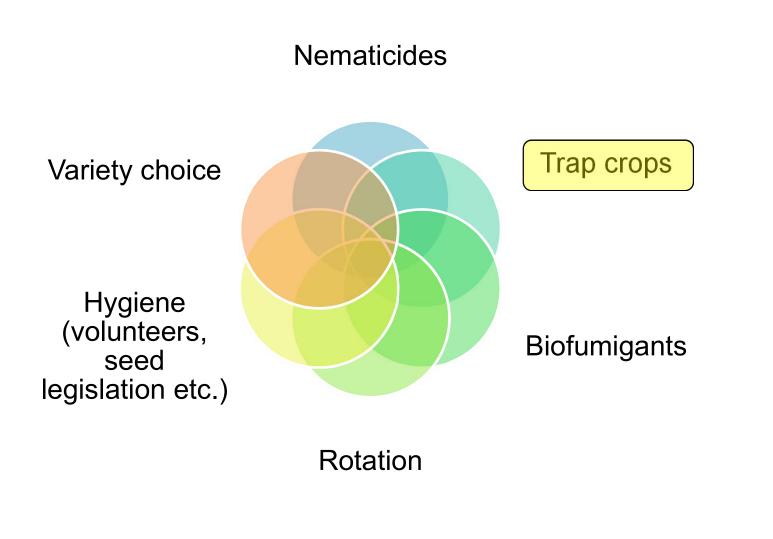
PCN: Management

Nematicides

Limited options, but new products in the pipeline E.g. fluopyram

Great Britain is still under European pesticide legislation – EC No. 1107/2009

Preservation of nematicides via Nematicide Stewardship Programme



Status of UK Nematicides

Product	a.i.	Nematode targets	Expiry date	
Vydate 10G	Oxamyl (oxime carbamate)	PCN FLN (TRV vectors)	31/12/2018	
Nemathorin 10G	Fosthiazate (organo – phosphate)	PCN FLN (TRV vectors)	30/04/2021	
Mocap 15G	Ethoprophos (organo – phosphate)	PCN (useful reduction)	31/12/2018	
Basamid	Dazomet	PCN	31/12/2021	
Metam 510	Metam sodium	PCN	31/12/2021	

PCN: Management

Trap cropping

UK: mainly Solanum sisymbriifolium (Foil-sis and DeCyst)

Main objectives

- 1. Maximise root length density
- 2. Maximise duration of cropping to encourage greater hatching of PCN

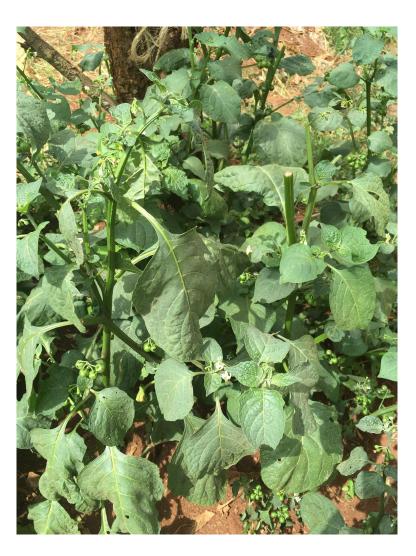
AHDB project on trap cropping completed by ADAS

- 1. Solanum sisymbriifolium less effective than seen previously
- 2. Solanum nigrum was the most effective species but agronomically challenging
- 3. Solanum melanocerasum appears to have potential

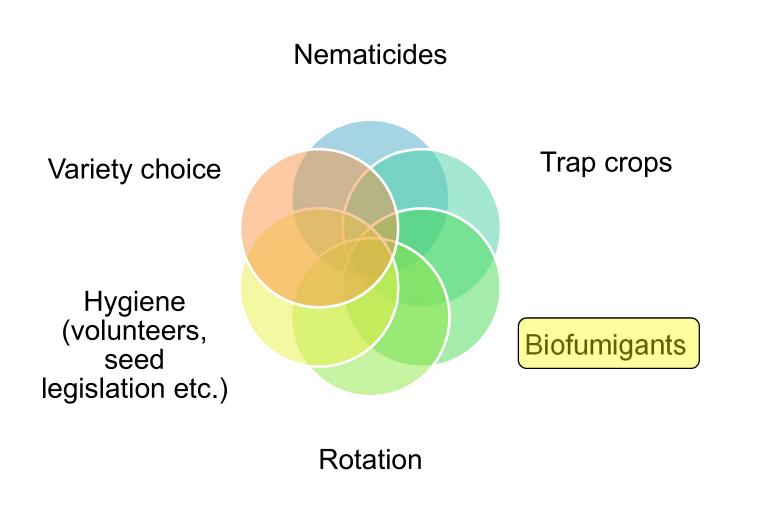
Trap crops

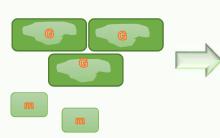
Solanum sisymbriifolium

Solanum melanocerasum

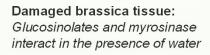


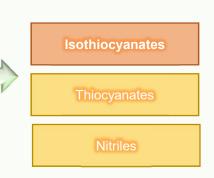
Solanum nigrum


Trap crops – cont.



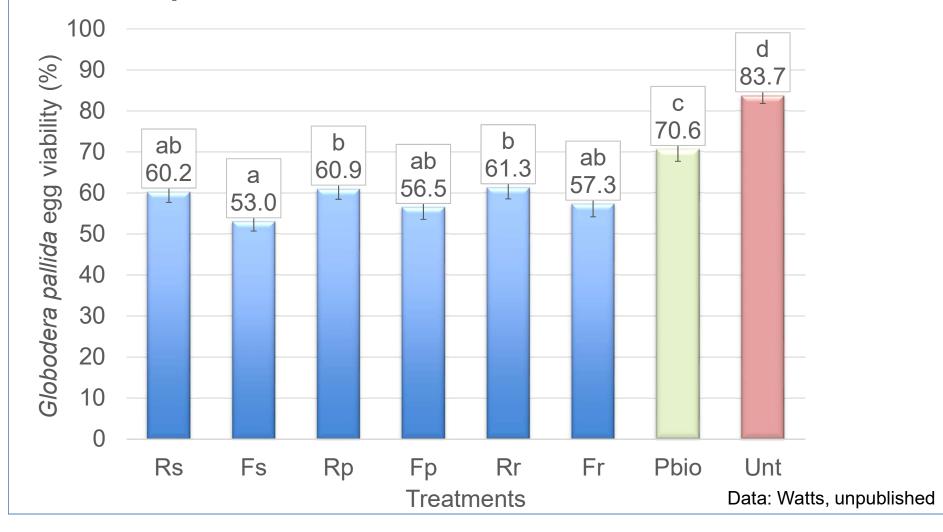
PCN: Management

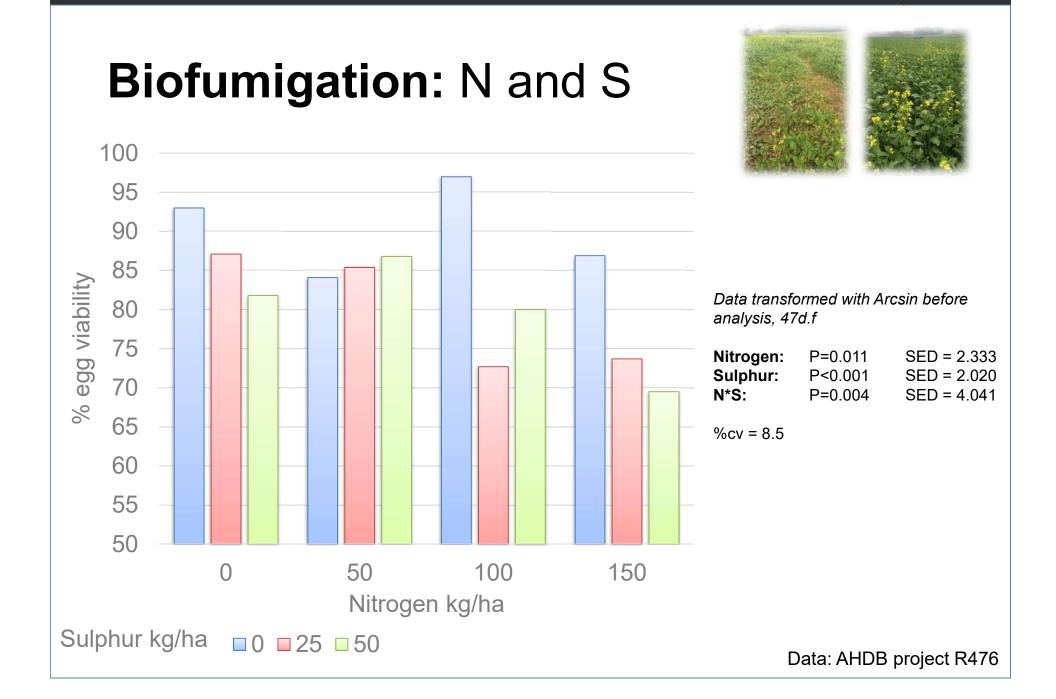




Biofumigation

Intact brassica tissue: Glucosinolates (G) and myrosinase (m) separated by plant cells




Products of hydrolysis: *Glucosinolates are hydrolysed to release an array of volatile, biocidal compounds*

Biofumigation: maceration and incorporation

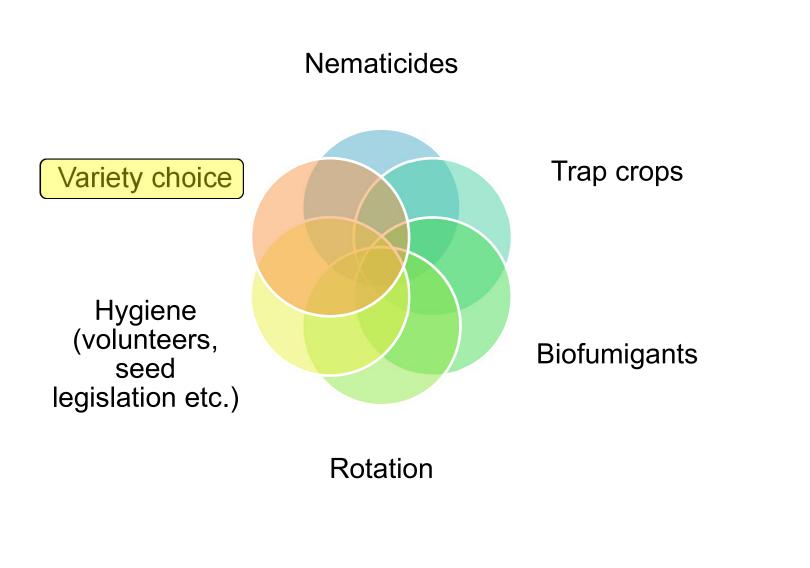
Harper Adams University

Biofumigation: key points

Choice of variety/species: Indian mustard and oilseed radish have performed well in HAU experiments

Planting: Ideally May-August

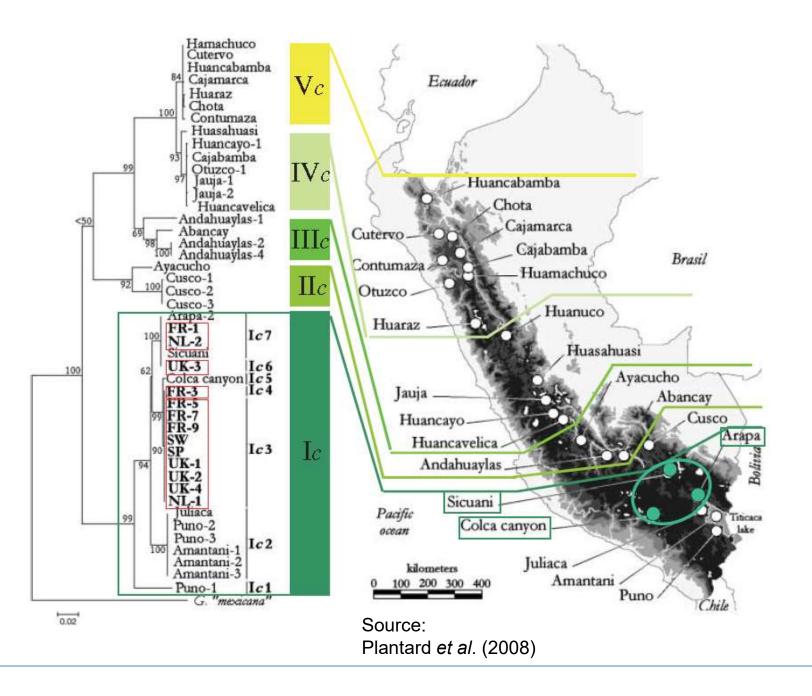
Nutrition: >50 kg/ha of N and 25-50 kg/ha S


Partial biofumigation: Observed with Indian mustard and oilseed radish **Biomass:** Ideally between 6-10 t DM ha

Crop destruction: At green bud/early flowering, flail/rotovate/roll to seal (one pass), in moist soil (c. 10-12°C)

PCN: Management

Variety choice


Image: Peter Blaylock, E. Park & Sons

Solanum multidissectum (H2 gene)

Potato Variety	Resistance status against <i>G. pallida</i> Pa2/3,1 (rating)	Resistance status against <i>G. rostochiensis</i> (Ro1)(rating)	Tolerance status	End market	
Alcander	Resistant	Resistant	-	Fries/chips	
Arieta	7	9	-	Fries/chips	
Arsenal	8-9	8-9	Moderately intolerant	Fries/chips	
Crisps4all	6	9	-	Crisping	
Camel	9	9	Tolerant	Pre-pack	
Eurostar	8-9	8-9	Moderately intolerant	Fries/chips	
Harmony	4	4	-	Ware)	
Innovator	8-9	(not resistant)	Intolerant	Fries/chips	
Lady Anna	9	9	-	Fries/chips	
Panther	8	2	Intolerant	Ware	
Performa	8-9	4-6?	Tolerant	Fries/chips	
Maritiema	5	8	-	Ware/fries	
Ramos	4	8	-	Fries/chips	
Royal	3	9	Tolerant	Fries/chips	
Rock	9	9	-	Fries & table	
Vales Everest	6	4 Detete Variety Detek	Tolerant	Processing (chips)	

Based on data from the AHDB Potatoes - Potato Variety Database, AHDB report R264 and AHDB SPot East 2016

Summary

- Limited nematicide options but new a.i available in the future
- Trap crops also require careful management further research required to follow up on the work by ADAS
- Biofumigants can be effective if used appropriately species, cultivar, crop management and incorporation
- Varietal resistance improving but more options needed for the fresh market.
- The interaction between mitotypes and resistant genes needs to be understood
- SARIC project to improve the PCN calculator

Acknowledgements

Nematology team at HAU

Collaborators: Andy Barker (Barworth Agriculture), Andy Evans (SRUC) Professor Urwin (University of Leeds)

Sponsorship: AHDB Potatoes, Frontier Agriculture, Agrovista, BBSRC/NERC

CERC: Rosie Homer, Grace Smith, Katarzyna Dybal

Local growers

Seed suppliers: Alec Roberts (Tozers seeds)

SPot West Results Day

Resistance and tolerance trial

Anne Stone AHDB

Topics in 2017

- Tolerance and Resistance
- New Bayer nematicide
- Mycorrhizal inoculation
- Trap Crops

Tolerance and resistance Site and trial design

- Designed for statistical analysis with 4 replicates
- PCN sampling 30 cores pre planting and post harvest using a 20cm hand corer
- PCN eggs/g and cysts 1kg samples analysed by Fera
- 30 kg/ha Nemathorin 10G (fosthiazate 10%) applied on bedformer/tiller as standard on this farm
- Plots hand planted at 30cm spacing
- All treatments as the field crop including drip irrigation

Plot Layout

	untreated S. sisymbriifolium untreated			fluop	fluopyram Nemathorin + fluopyram Vydate		Vydate + f	+ fluopyram	
7m 7m			grass S. nigrum		'Azo'		'KBL'		
2m			mycorrhizae		Nemathorin		mycorrhizal + nemathorin		
4.8m	Performa	Performa	Innova	itor	Innovator	Alacander	Alacander	Royal	Royal
^{2m} 4.8m	Piper	Piper	Eurost	tar	Eurostar	Peer	Peer	Arsenal	Arsenal
^{2m} 4.8m	Alacander	Alacander	Pee	r	Peer	Arsenal	Arsenal	Royal	Royal
2m 4.8m 2m	Innovator	Innovator	Pipe	r	Piper	Performa	Performa	Eurostar	Eurostar
4.8m	Peer	Peer	Arsen	nal	Arsenal	Alacander	Alacander	Piper	Piper
² m 4.8m	Performa	Performa	Roya	al	Royal	Eurostar	Eurostar	Innovator	Innovator
2m 1.8m	Piper	Piper	Arsen	nal	Arsenal	Peer	Peer	Royal	Royal
2m 4.8m	Performa	Performa	Innova	tor	Innovator	Alacander	Alacander	Eurostar	Eurostar

PCN egg counts at planting

79		63	}	65		7	73	
9	99		113	69		87		
8	88		83		91		4	
144	114	114	114	107	76	52	78	
123	99	73	97	120	71	58	62	
88	97	95	139	93	111	114	97	
131	98	104	103	104	79	143	92	
129	116	66	117	145	123	109	104	
140	124	91	113	122	138	128	125	
143	91	124	129	120	102	147	79	
129	110	128	125	89	135	119	98	

Initial cultivation

Nematicide application on bed tiller

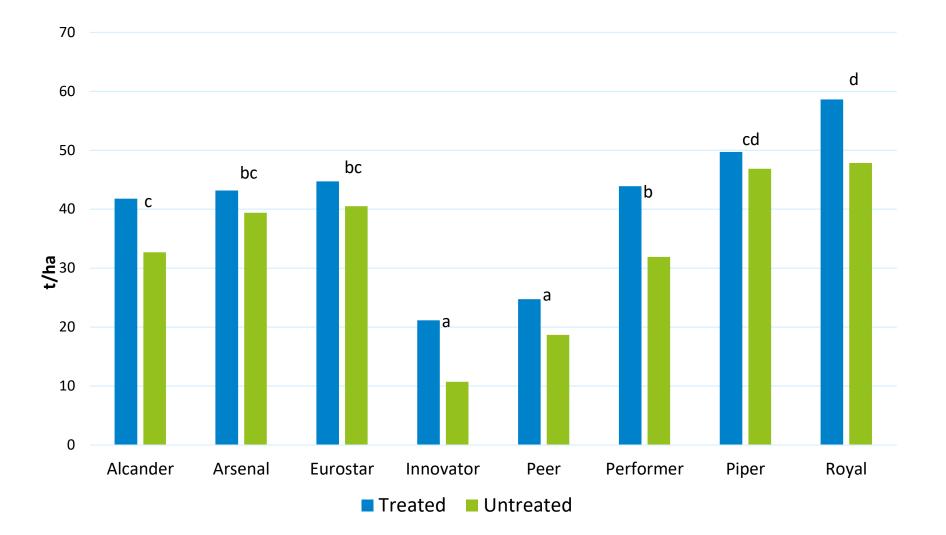
Destoning, after incorporation

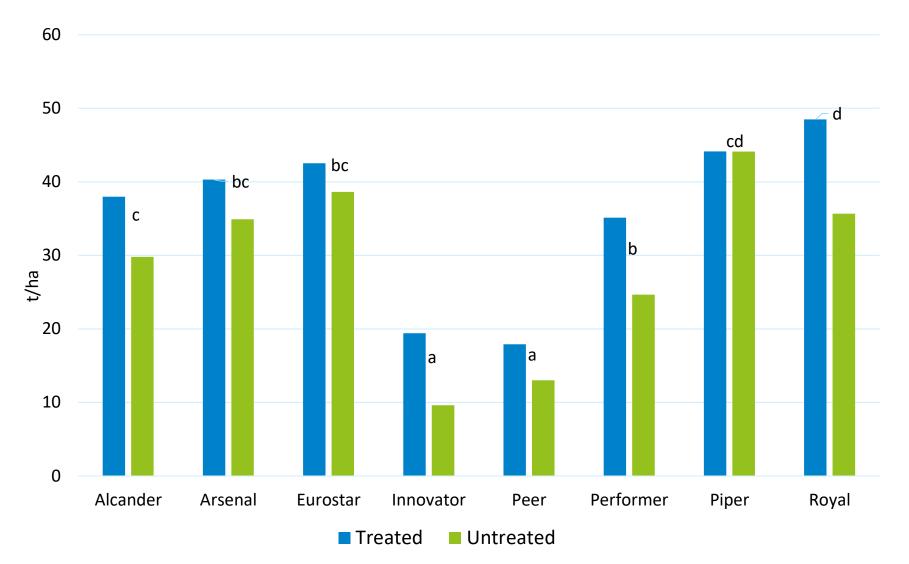


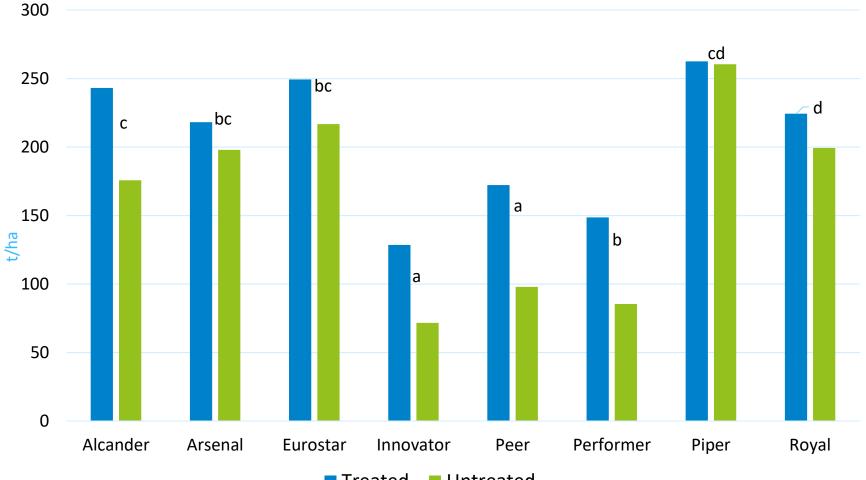
Hand planting of trial

Weeding volunteers

Tolerance varied between varieties




Innovator on left Royal on right No nematicide



Effect on yield 45-85mm of nematicide and variety

B

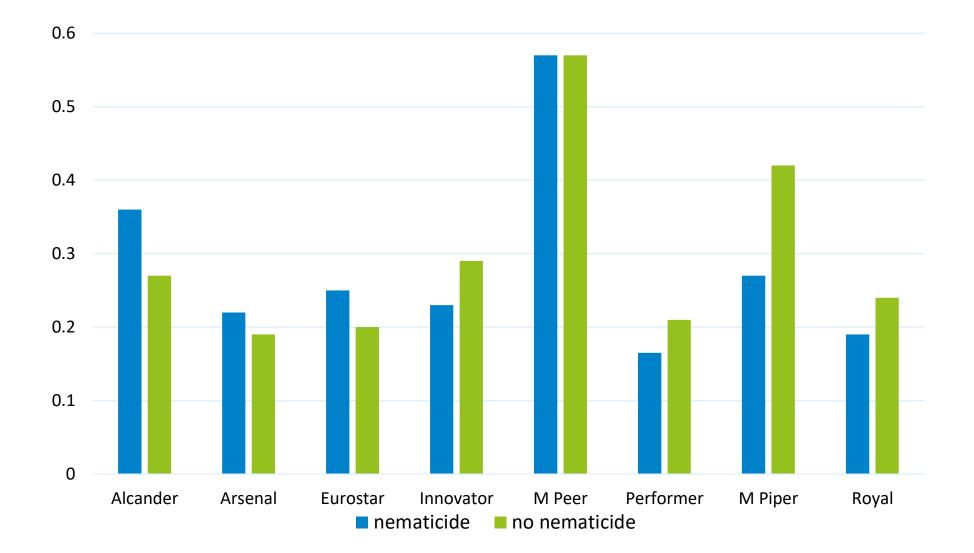
Effect on tuber number 45-85mm of nematicide and variety

)B

Untreated Treated

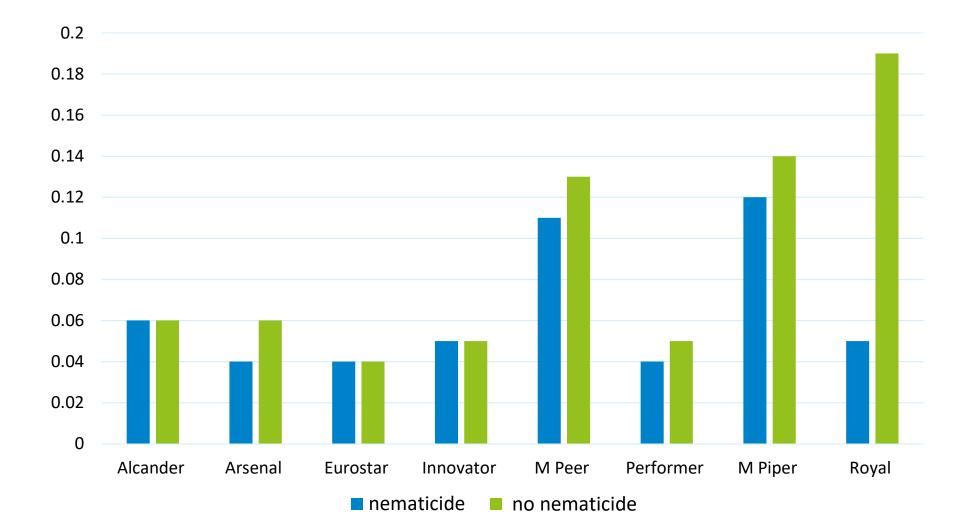
Tolerance scoring

Variety	Yield% decrease without nematicide	Untreated Yield (t/ha)	Mean Score 4 is intolerant 1 is tolerant
Alcander	22	33	3.5
Arsenal	9	39	2
Eurostar	9	41	2
Innovator	49	11	4
M. Peer	25	19	4
Performer	27	32	4
M. Piper	6	47	1.5
Royal	18	48	2.5

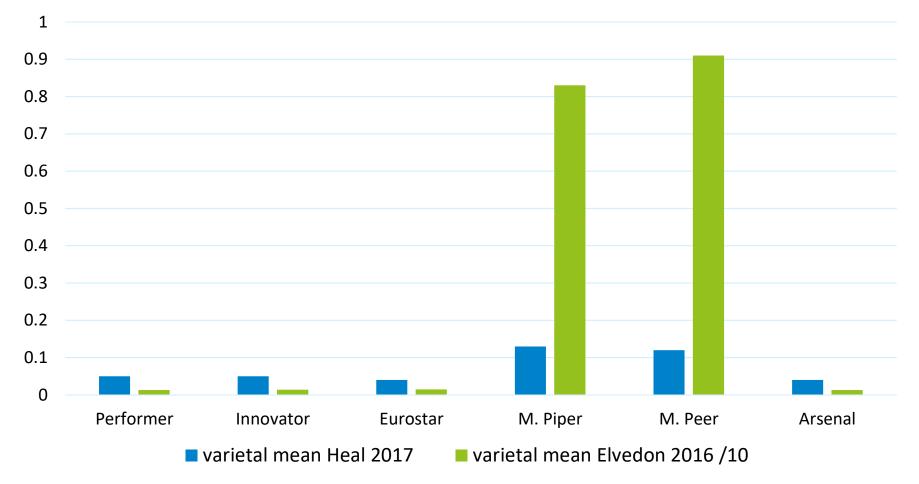


Tolerance is variable

Variety	Tolerance rating Elveden 2016	Tolerance rating Heal 2017
Arsenal	moderately intolerant	moderately tolerant
Eurostar	moderately tolerant	moderately tolerant
Innovator	intolerant	intolerant
M.Peer	moderately intolerant	intolerant
Performer	tolerant	intolerant
M. Piper	tolerant	tolerant
Royal	tolerant	moderately intolerant

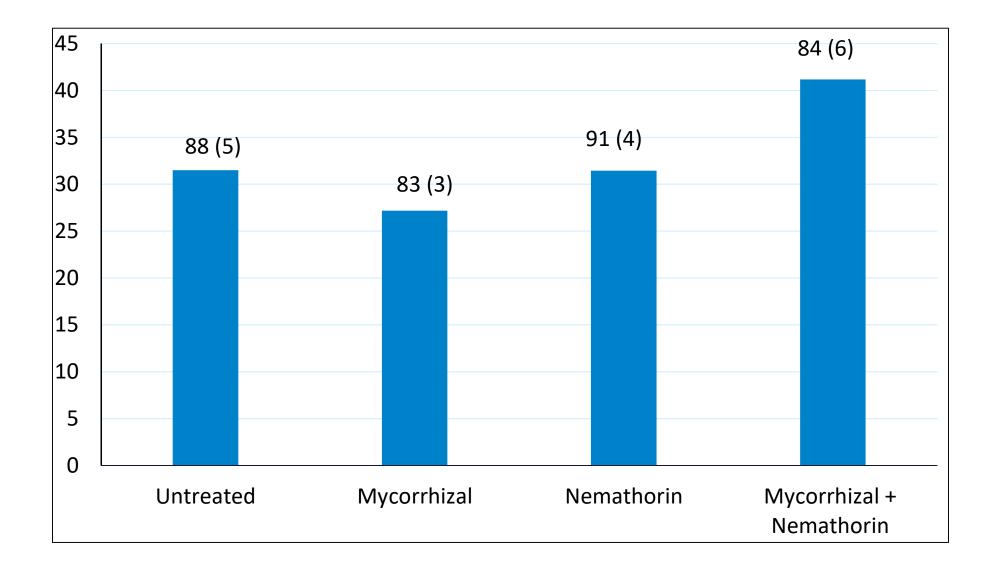

Pf/Pi cysts, effect of variety and nematicide

Pf/Pi eggs, effect of variety and nematicide



PfPi showed huge difference between Heal and Elveden

NB Data from Elveden divided by 10, for illustrative purposes


Possible reasons for low final egg counts

- Depth of cysts greater at Heal due to drip irrigation versus overhead, so the same sample sampling method cause many to be missed at Heal?
- Biological control of cysts and eggs e.g. by *Pochonia chlamydospria*, *Paecilomyces lilacinus*?

Yield of mycorrhizal demonstration

Trap crop 'KBL'

Pi 87eggs/g Pf 1eggs/g

Trap crop Solanum nigrum

Pi 113 eggs/g Pf 5 eggs/g

Тгар сгор Аzo

Pi 69 eggs/g Pf 2 eggs/g

SPot West - Control of G. pallida

Conclusions

- Nematicide gave a significant yield increase
- Nematicide had no significant effect on PCN multiplication
- Tolerance
- Tolerance of Performer and Royal relatively low at this site
- Tolerance of Eurostar maintained in challenging environment
- Trap crops grew vigorously
- Mycorrhizal inoculation may improve nematicidal effect

SPot demonstrations of *G. pallida* control

2018

- Method/depth of nematicide incorporation at SPot West
- Maximising benefit from Bayer's new nematicide at SPot West and SPot East
- Trap cropping at SPot East
- Newer varieties to be tested for tolerance and resistance at SPot East

'Inspiring our farmers, growers and industry to succeed in a rapidly changing world'

The new Bayer nematicide

Gareth Budd / Bayer Crop Science

 Slides not available for public use – please contact Bayer for details

Lunch

SPot farm results day 2018

Benchmarking: giving you a competitive edge

Carol Davis AHDB Farm Economics

Content

Why benchmark?

b

SOLUTIONS PROBLEMS

What can you do?

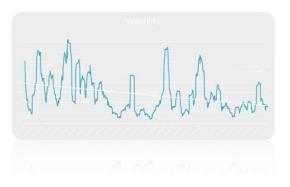
How?

Why benchmark?

"Ask yourself if what you are doing today is getting you closer to where you want to be tomorrow."

> Walt Disney (1901 - 1966)

Help with marketing decisions


Help with business decisions such as land rental

Identify strengths and weaknesses

Helping to survive volatility

How successful?

£/tonne	Grower 1
Net margin	8

What can you do?

Work out costs of production

Enabling producers to...

- Make informed decisions
- Compare performance year-on-year
- Compare with other data
- Compare with industry targets

Important to ensure that the comparison is like for like

Grower meeting option

- share experiences & best practice
- have peer review
- accept possible need to change

How?

Motivation for Farmbench

Measure & record performance
 Compare performance

Multi-enterprise benchmarking

Suckler cows and beef cattle Sheep Combinable crops Potatoes Forage enterprises Dairy – later in 2018

Business Enterprise Land Allocation & Basic Detail Output Variable Cost Fixed Cost Deprec	Business	Enterprise	Land Allocation & Basic Detail	Output	Variable Cost	Fixed Cost	Depreciatio
---	----------	------------	--------------------------------	--------	---------------	------------	-------------

Estimated Arable Output 🕄

Enterprise	Ha 😧	Budgeted yield t/ha	Budgeted tonnes produced	Budgeted £/T 😡	Total budgeted crop sales	By-products total £ (e.g. straw) 😡	Total budgeted output
Wheat (Milling Wheat)	25	9	225.00	£ 150	£33,750.00	£ 5000	£38,750.00
Wheat (Feed)	25	8	200.00	£ 110	£22,000.00	£	£22,000.00
Oilseed Rape (Oilseed Rape)	50	4	200.00	£ 220	£44,000.00	£	£44,000.00
Potatoes (packing)	30	45	4,500.00	£ 130	£585,000.00	£	£585,000.00
Potatoes (salad)	30	40	1,200.00	£	£0.00	£	£0.00
Potatoes (ware)	40	45	1,800.00	£	£0.00	£	£0.00

Notes

Add Note

Crop Protection

	На Ө		Herbicides O	Fungicides e	Insecticides e	Nematicides Ø	Molluscicides e	PGRs Ø	Other 0	Total
Total 😡	272									
Wheat (Wheat)	56	Total £	1364.72	6567.12			103.6	1188.88	632.8	9857.12
		£/Ha	24.37	117.27			1.85	21.23	11.3	176.02
Barley (spring barley)	95	Total £	2261	4899.15						7160.15
		£/Ha	23.8	51.57						75.37
Barley (winter barley)	18	Total £	471.06	1304.28	36			280.98		2092.32
		£/Ha	26.17	72.46	2			15.61		116.24
Oats (Oats) 28		Total £	803.32	1398.32	55.44			197.96		2455.04
	28	£/Ha	28.69	49.94	1.98			7.07		87.68
Oilseed Rape (Oilseed Rape)	13	Total £	372.06	1391.13	201.24		216.71		312	2493.14
		£/Ha	28.62	107.01	15.48		16.67		24	191.78
Potatoes	62	Total £	4387.12	16820.6	11878.58		2790	172.36		36048.66
(Potatoes)		£/Ha	70.76	271.3	191.59		45	2.78		581.43

Business	Enterprise	Land Allocation & Basic Detail	Output	Variable Cost	Fixed Cost	Depreciation
	A CONTRACTOR OF A CONTRACTOR					

Potato Specific Variable Costs

			Seed certification and inspection 3	Seed treatment	Fleece 😧	Sprout suppression	Store cleaning 🕄	Potato levy
	Ha 😡	Total Cost (£) 😡						
Datataan Vacabiaa)	20	Total Cost (£)	1					
Potatoes (packing)	30	£/ha						
Pototopo (colod)	20	Total Cost (£)						
Potatoes (salad)	30	£/ha						
Pototooo (wara)	40	Total Cost (£)						
Potatoes (ware)	40	£/ha						
		Non-benchmarked enterprises(£)						

Previous HSave and Next

Business	Enterprise	Land Allocation & Papia Datail	Output	Variable Cost	Fired Cost	Depressiotion	
Business	Enterprise	Land Allocation & Basic Detail	Output	Variable Cost	Fixed Cost	Depreciation	

Overheads

	Office, telephone and subscriptions	Miscellaneous business costs Θ	Professional fees O	Insurance
Total cost (£) 🚱	3000.00	1503.00	1150.00	2400.00
Benchmarked Combinable Enterprises(%)	45.00	45.00	45.00	55.00
Benchmarked Potatoes Enterprises(%)	55.00	55.00	55.00	45.00
Non-benchmarked enterprises(%)	0.00	0.00	0.00	0.00

Previous HSave and Next

Equipment Depreciation

Equipment type 😧	No. of items Ø	Name	Total second hand value at start of year (£) 🚱	Purchases this year (£) O	Sales this year (£) O	Net Value of Equipment 🚱
3 Telehandler	Ť	andler	50000	55000	20000	85000
Other self-propelle	1	forklift	15000	0	0	15000
9 Tractor	1	T6 175 Tracl	40000	0	0	40000
O Tractor	1	T6 175	50000	0	0	50000
9 Tractor	1	T6 165	30000	0	0	30000
9 Tractor	1	T7 185	40000	0	0	40000
C Ridger/Bed former	1	ridger	3000	0	0	3000
Ridger/Bed former	1	bed tiller	2700	0	0	2700
O Planting equipment	1	planter	5000	0	0	5000
Other specialist pol	1	destoner	20000	0	0	20000
9 Potato harvester	1	Potato harve	80000	0	0	80000
Other specialist pol	1	topper	2500	0	0	2500

Benefits of Farmbench

- Free to use
- Web-based
 - Always using latest version online
 - Can use on any internet enabled device
 - Data always kept confidential, secure and backed up
- Standardised methodology for consistent comparison with others
- Only view the relevant data input pages
- Easier allocation of costs
- A variety of reports and comparisons available

AHDB expertise, the energy and the passion

Regional Officer team

- 7 RBOs located around GB
- Available to help you start benchmarking
- Point of Farmbench contact for growers
- Work across sectors
- Work with grower and farmer groups

Dedicated telephone helpline

Benefits to advisors

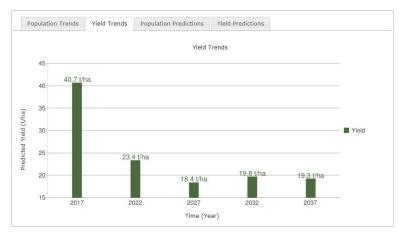
- Free to register and use themselves (e.g. virtual farm)
- Use with individuals or groups of clients
- Farmer gives advisor access via website
- No limit to number of growers
- Support from AHDB
- Ultimately, successful clients!

'Inspiring our farmers, growers and industry to succeed in a rapidly changing world'

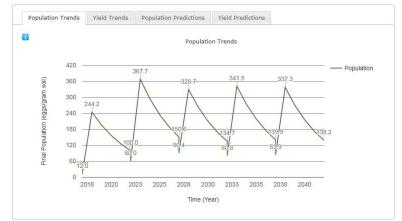
Updating the AHDB PCN calculator

William Watts, Harper Adams University

Funding for this project is being provided by the Natural Environment Research Council (NERC) and the Biotechnology and Biological Sciences Research Council (BBRSC).



The Calculator


A useful yield and PCN population prediction tool in need of new data sets

and Globodera pallid		orea	d due to its prolonged hatching				of PCN, Globodera rostochiensis d by the cultivation of many varieties
	culator replaces an earlier CD-b user friendly, allowing for greate						s available. Based on feedback, this f' scenarios
mplications of your a	support system as it does not o ctions on the level of pallida infe e levels are low, as this is when	estat	ion and the effect on your predic	ted	yield. This will demonstrate that		sion justifier. It will show you the tment of an infestation is best
ommercially harves he Pf or final popula	tion after harvest could create is	nom	y and the thinking that PCN can				nnoticeable when a crop is in the expected yield. The effect on
ingle Crop 💿	Soil Type	1	Population at 20	-	Length of rotation 5	-	Estimated maximum 50
Aultiple Crop	Sandy Loam •	2	planting (eggs/g soil)	-	(years)		yield (t/Ha)
6.9	Cultivar		Tolerance		Resistance		Treatment
	Cara •	ĺ.	Very Tolerant *	i.	2 *	i	Granular Nematicide 🔻 🚺
	% Granular Control		% Fumigant Control		% Decline Rate		
	40 🔻	i	0 🔻	i.	20 🔻	1	
							Calculate
	Field description enter field	nar	ne here				A A A A A A A A A A A A A A A A A A A

1 Disclaimer

- 5 of the top 10 varieties in the UK missing from the variety list.
- New management practices such as trap cropping and biofumigation not yet built in.
- Does not currently incorporate summer temperatures into decline rates over time.

Project aim & objectives

Project aim

• To improve the accuracy of the PCN calculator relating to tuber yield and PCN population dynamics following potato cropping

Project objectives

- Determine and model field-specific PCN decline rates associated with soil type and amend the calculator accordingly
- Incorporate the effect of summer temperatures on reproductive performance of PCN into the calculator
- Improve the calculator to include the impact on PCN decline rate of having a Brassica in the rotation
- Revise the calculator in relation to cultivar tolerance and resistance
- Update the consequence of imposing a pre-planting mortality: nematicides, biofumigation and trap-cropping
- Determine if there is a correlation between *Globodera* mitotypes and decline rates

Tolerance and resistance

What is resistance and what is tolerance?

Source: AHDB (2018)

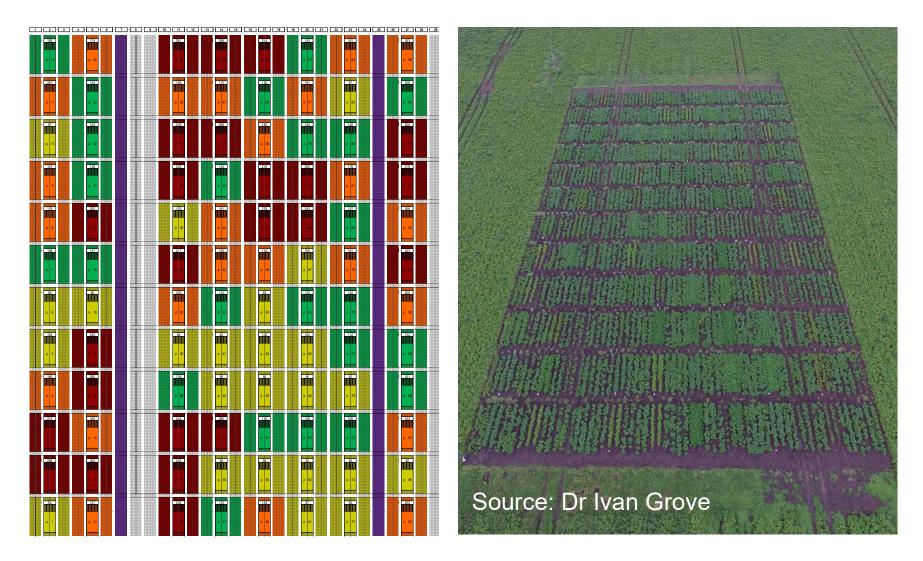
Tolerance and resistance measurements and indicators

Tolerance (plant)

- Plant emergence velocity and success
- Ground cover
- Nutrient deficiencies
- Tuber yield

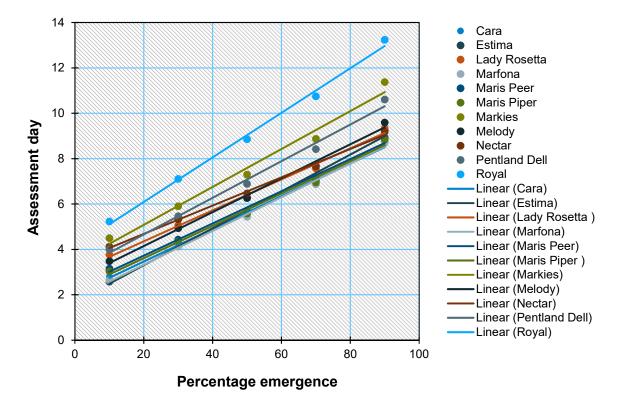
Resistance (nematode)

- Population dynamics (P_i/P_f)
- Nematode juvenile development in roots


Revising the calculator in relation to cultivar tolerance (and resistance)

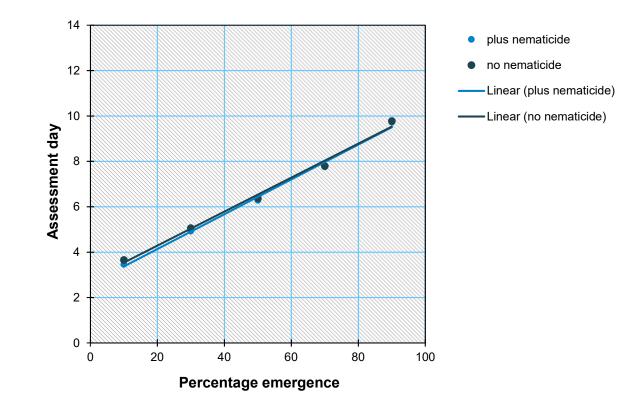
Experiment 1 (2017 season)

- 12 varieties (UK top 10 plus tolerant controls)
- Granular nematicide treated plots (+/-)
- Stratified randomized block design based on PCN density (4 blocks)
- Varieties: Cara (tolerant control), Desiree (guards), Estima, Lady Rosetta, Marfona, Maris Peer (intolerant control), Maris Piper, Markies, Melody, Nectar, Pentland Dell, Royal, Taurus
- Seed size: 25>65mm (av. 35-55mm)
- **Nematicide:** Oxamyl applied using a bed-tiller
- PCN egg density on-site: 28-304 eggs g⁻¹ soil (previously commercial testing of 2 ha zones suggested 18-109)
- Planting date: 2nd week in May
- Harvest date: 2nd week September
- Assessments: PCN in soil and roots, emergence, ground cover and tuber yield
- **NB**/ fertilizer (17: 17: 17) was applied by hand at recommended rates of nitrogen for varieties. A pre-em and two post-em herbicide applications were made. Blight spraying was performed as the field crop (Arsenal), as was irrigation which was by trickle tape.

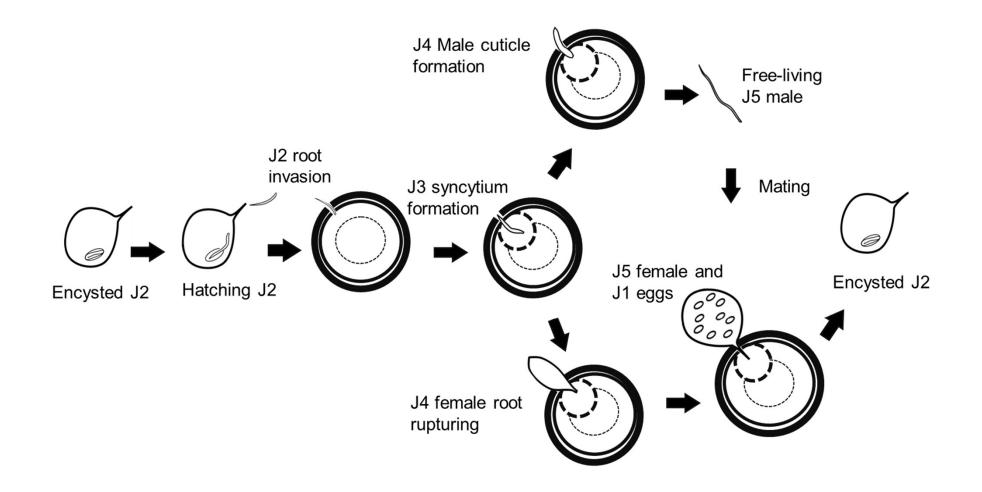

Experiment 1 (2017 season)

4 blocks: 28-104, 105-145, 151-201, 203-304 eggs g⁻¹ soil (viability 75%)

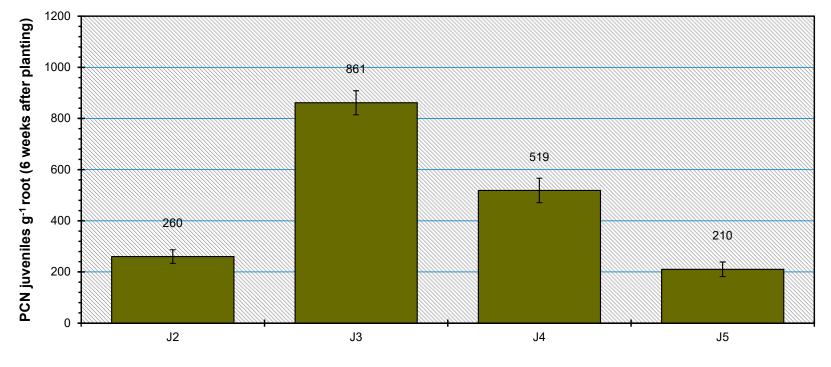
Emergence


- Grand regression P<0.001
- Percentage variance accounted for 84.0

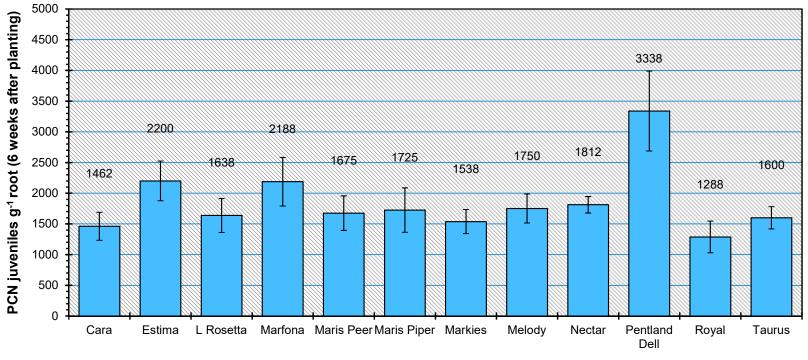
Compared to Cara reference


Estima: P = 0.450, Lady Rosetta: P = 0.039 (half a day-day behind), Marfona: P = 0.684, Maris Peer: P = 0.545, Maris Piper: P = 0.725, Markies: P = 0.003 (1 – 2 days behind), Melody: P = 0.18, Nectar: P = 0.003 (1 day behind), Pentland Dell: P= 0.030 (1-2 days behind), Royal: P < 0.001 (2-4 days behind).

Emergence

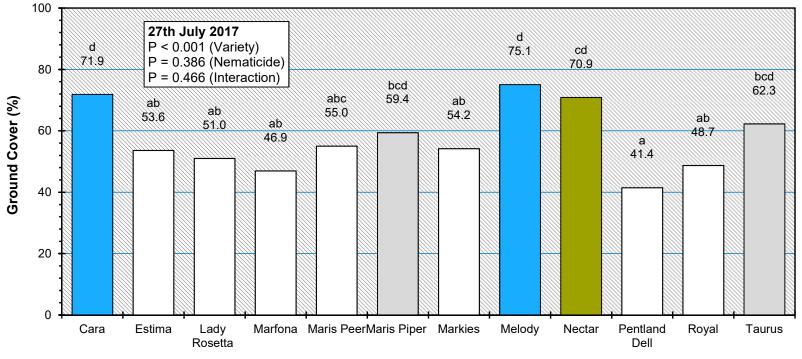

- Grand regression *P* < 0.001
- Percentage variance accounted for 69.6
- Nematicide P = 0.455

Nematode juvenile development in roots: lifecycle


Source: William Watts, Harper Adams University

Preliminary root invasion results

Potato Variety

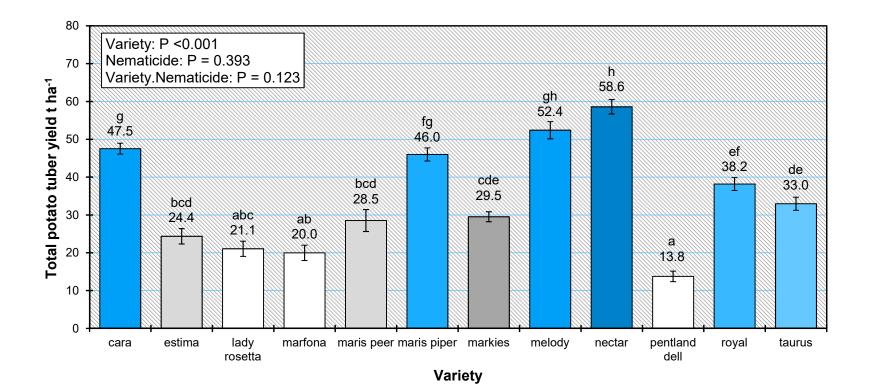

Preliminary root invasion results

Potato Variety

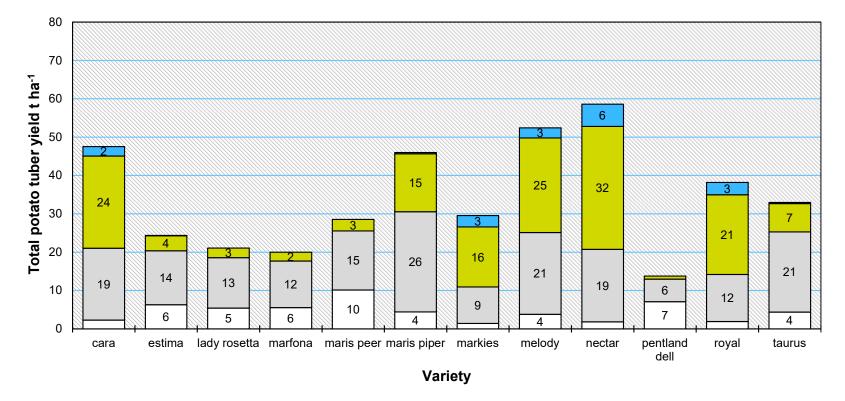
Ground cover

• 27th July (*c.* 70 days after planting)

Potato Variety


Nutrient deficiencies

• Phosphorus deficiency in Taurus


Tuber yield

 Total tuber yield is shown below in t ha⁻¹. Shading of bars indicates distinct yield groups.

Tuber yield

 Individual fractions of tuber yield are shown below in t ha⁻¹ (sizes <45, 45-65, 65-85 and >85 mm).

Tuber size fractions □<45mm □45>65mm □65>85mm □85>mm

Population dynamics (P_i/P_f)

Population final PCN soil samples are still being processed

A repeat to be set-up in April 2018.

Project team

Leeds University

Prof. P Urwin(Principal Investigator)Dr C Lilley(Post-Doc Researcher)Prof. P Urwin(Co-Investigator)

Email: P.E.Urwin@leeds.ac.uk

Harper Adams University

Dr M Back(Co-Investigator)Dr Ivan Grove(Co-Investigator)W Watts(Senior Research Assistant)S Cochrane(Research Technician)

Email: mback@harper-adams.ac.uk Twitter: @CropResearcher

Root lesion nematodes:

Pratylenchus

Valaria Orlando / HAU

Spot Results Day

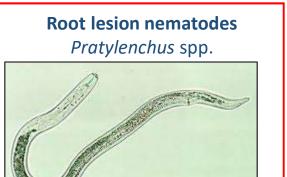
<u>PhD project</u>: "Assessing the impact of root lesion nematode (*Pratylenchus* spp.) infestations on the production of potatoes"

PhD student: Valeria Orlando HAU Supervisors: Dr. Matthew Back, Dr. Ivan G. Grove, Prof. Simon Edwards, Tom Prior (FERA), Dr. Roy Neilson (JHI)

Outline:

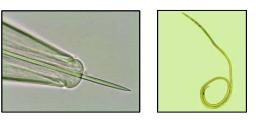
- Free living nematodes of potatoes
- Root lesion nematodes: infection on potatoes
- Root lesion nematodes on potatoes: symptoms and management
- Root lesion nematodes: potato damage thresholds
- PhD project: material and methods, preliminary results

Free living nematodes of potatoes



Free living nematodes (FLN) – all <u>plant parasitic</u> nematodes present in the soil causing damage to crops

Stubby Root Nematodes


Trichodurus spp. and Paratrichodorus spp. - vectors of tobacco rattle virus

Needle Nematodes Longidorus spp. – vector of tomato

black ring virus

Root lesion nematode – *Pratylenchus ssp.* Infection on potatoes

SYMPTOMS

ROOTS:

- Dark-coloured necrotic lesions
- Poor growth


HAULM:


- Poor growth
- Plants stunted with leaf chlorosis

TUBERS:

When high populations are present in the soil

- Wart-like protuberances
- Scabby appearance

Root lesion nematode – *Pratylenchus ssp.* Potato damage thresholds

- > Damage can be related to population densities
- > Few studies on the thresholds of RLN for potato damage:

RLN species	Damage thresholds (nematodes kg [.] ¹ soil)	Authors
P. penetrans	1000 – 2000	Olthof & Potter, 1973
P. penetrans	400	Holgado <i>et al.</i> , 2009
P. scribneri	1000 – 2000	Riedel <i>et al.,</i> 1985
P. neglectus	600	Olthof, 1990

- > Damage thresholds can vary according to:
 - cultivars
 - soil texture
 - temperature
 - moisture

Bernard & Laughlin	(1976) - <i>P. penetrans</i> :

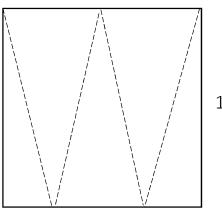
Potato Cultivars	Damage thresholds (nematodes kg [.] ¹ soil)	
Katahdin	1500 – 2000	
Kennebec	810	
Superior	380	
Russet Burbank	-	POTATOES

PhD Research project "Assessing the impact of root lesion nematode (*Pratylenchus* spp.) AHDB infestations on the production of potatoes"

Objectives:

- 1. To undertake a **survey** to determine the distribution and prevalence of *Pratylenchus* spp. in potato growing land in England and Scotland
- 2. To determine **potato damage thresholds** for *Pratylenchus* species in different soil types with a range of cultivars under controlled conditions

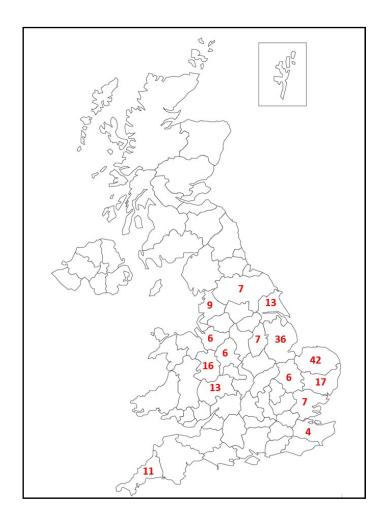
- Survey -Material and Methods



1. To undertake a **survey** to determine the distribution and prevalence of *Pratylenchus* spp. in potato growing land in England and Scotland

200 fields from England

- Time of sampling: September-November
- W pattern grid (1 ha): 60 cores 1 kg soil
- At 20 cm depth with auger
- At the gate entrance


100 m

+ 600 samples from Scotland

- Survey -Results

- 100 fields have been sampled between September and November 2017, from 7 counties (Shropshire, Staffordshire, Essex, Kent, Cambridgeshire, Norfolk and Suffolk)
- Species: P. crenatus, P. thornei and P. neglectus
- > Soil extraction and identification is still in progress!

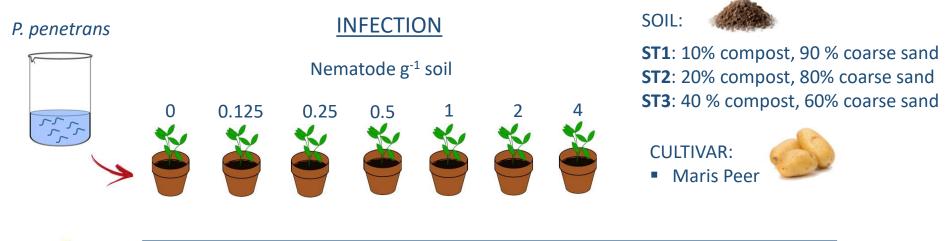
Cornwall

Cheshire

Nottinghamshire

Further work:

Sampling - Next September 2018:


Lincolnshire Yorkshire Herefordshire Lancashire

POTATOES

- Pathogenicity assay -Material and Methods

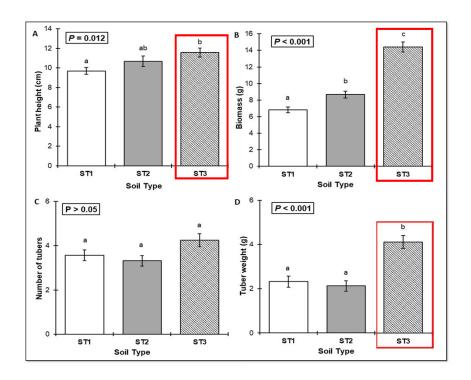
2. To determine **potato damage thresholds** for *Pratylenchus* species in different soil types with a range of cultivars under controlled conditions

- Day of emergence
- After 6 weeks: Plant height, weight of plants and roots, number and weight of tubers
- Nematode counting from soil and roots

- Pathogenicity assay -Results

Day of emergence

- Plants growing with higher nematode densities (2-4 nematode g⁻¹ soil) emerged later than the others at lower densities nematode might slow down the emergence of plants
- Soil type influenced the emergence of the plant, and plants emerged faster when growing in ST3 (with higher proportion of compost) than the other two soil types

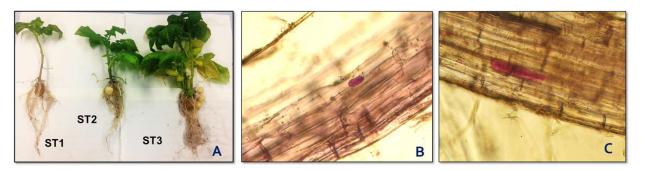


- Pathogenicity assay -Results

Plant growth and yield of potatoes

> Nematodes did not affect the development of plants and tubers in each soil type

However, plant growth and potato yield were affected by soil type:


Yield of potatoes were higher in **ST3** (with higher proportion of compost) than ST1 and ST2

- Pathogenicity assay -Results

Nematode reproduction

Root lesion nematodes inside potato roots

CONCLUSION

- > Plants growing in **ST1** had weaker roots compare to ST2 and ST3
- Root lesion nematode infected Maris Peer cultivar; however, nematode densities did not affect the yield of potatoes - not possible to determine potato damage thresholds
- Nematodes reproduced more on the soil type ST1 than the other two soil types

- Pathogenicity assay -

Further work:

Further studies are necessary to determine the damage thresholds and fully understand the pathogenicity of root lesion nematode and the effect of different soil types on Maris Peer. Other cultivars such as Maris Piper, Pentland Dell, Marfona and Nectar will be tested.

Thanks to...

Dr. Matthew Back (Director of studies) Dr. Ivan G. Grove (Supervisor) Dr. Simon Edwards (Supervisor) Dr. Roy Nielson (Supervisor) - JHI Tom Prior (Advisor) – FERA Nancy de Sutter – ILVO (Belgium) Dr. Fabio Veronesi – HAU Matyn Cox – Agronomist

Nematology group at HAU: William Watts Ahmed Moammed Katarzyna Dybal Victoria Taylor Musa Nasamu Ana Morais Natalio Alex McCormack

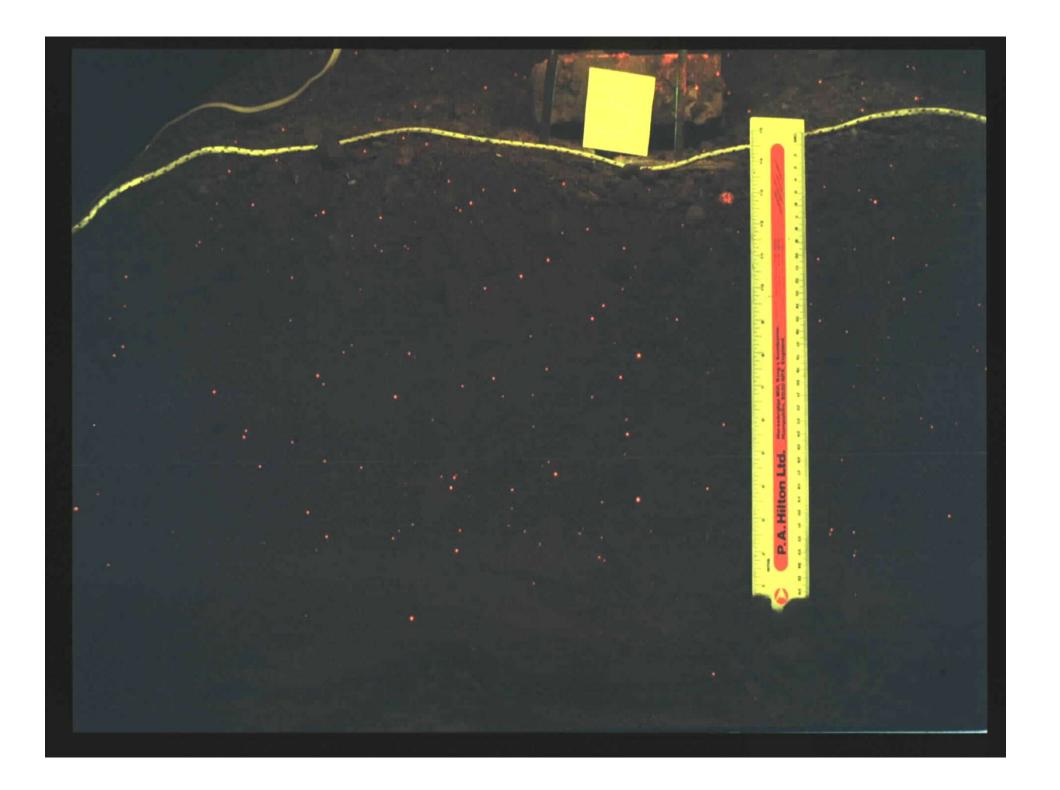
And all the farmers for helping me on my survey of potato fields across the country!

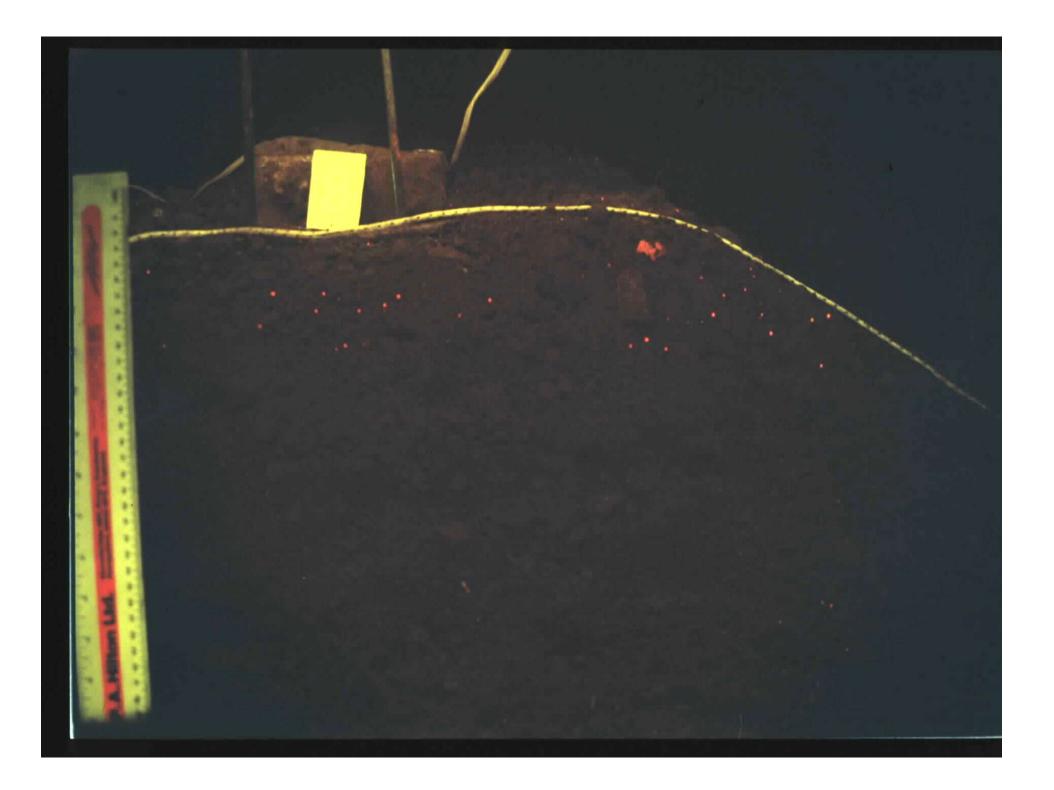
Nematicde Application

Simon Woods / HAU

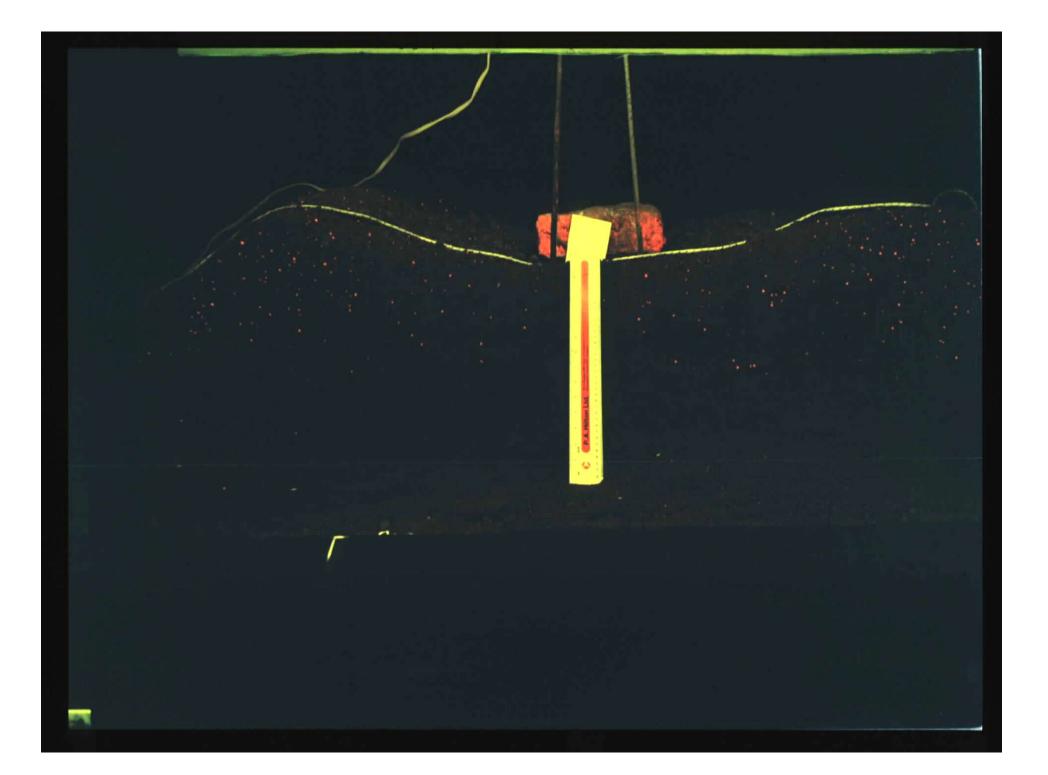
Application and Incorporation of nematicides 25 years ago

- Incorporate granules to 10-15cm depth
- Use rotary cultivator
- Use harrows making two passes at right angles
- Stone and clod separators generally not endorsed
- Metering predominantly by land wheel driven positive displacement units often hand built by the operator
- Product supplied in cardboard boxes

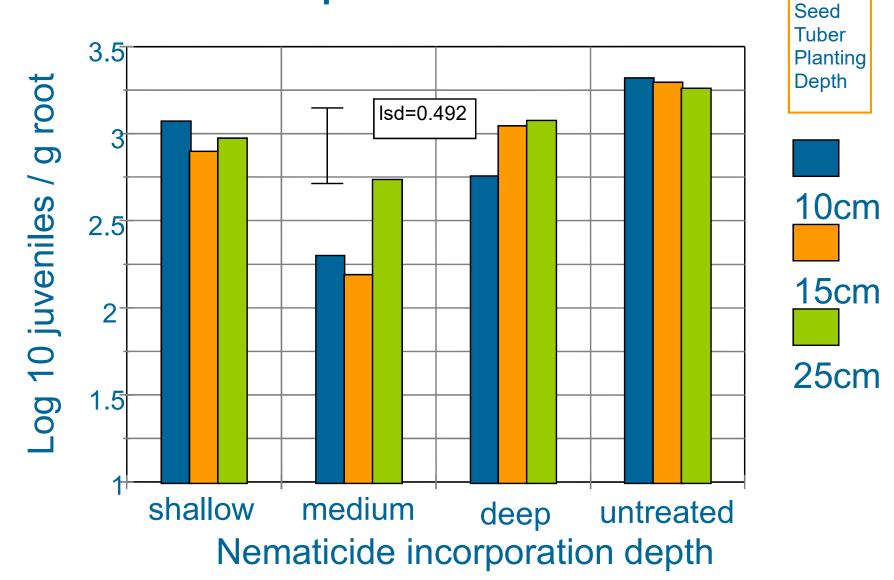



Current Situation

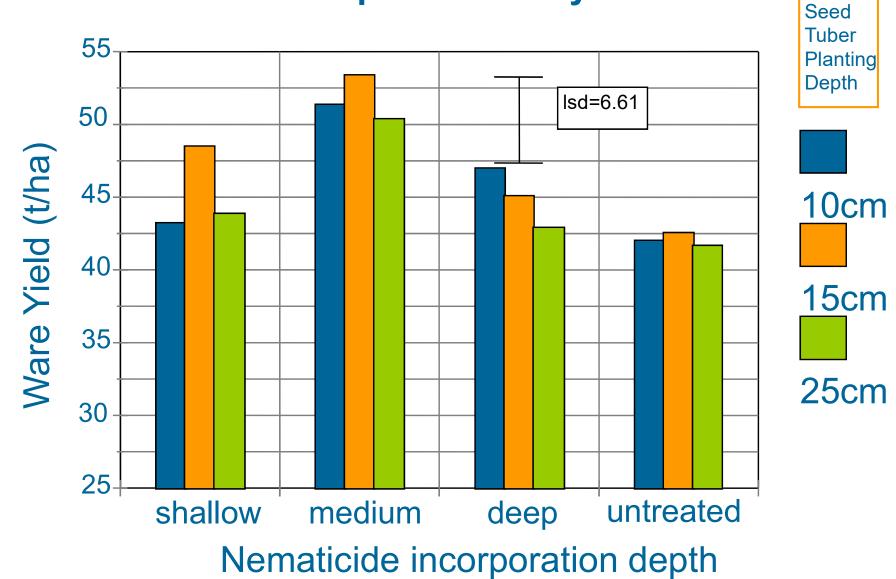

- Over the past 25 years work at Harper involving many of the nematicide manufacturers and machinery stakeholders has provided better guidance on incorporation
- Application and incorporation to 15cm by rotavation on flat ground is the most reliable method for PCN control

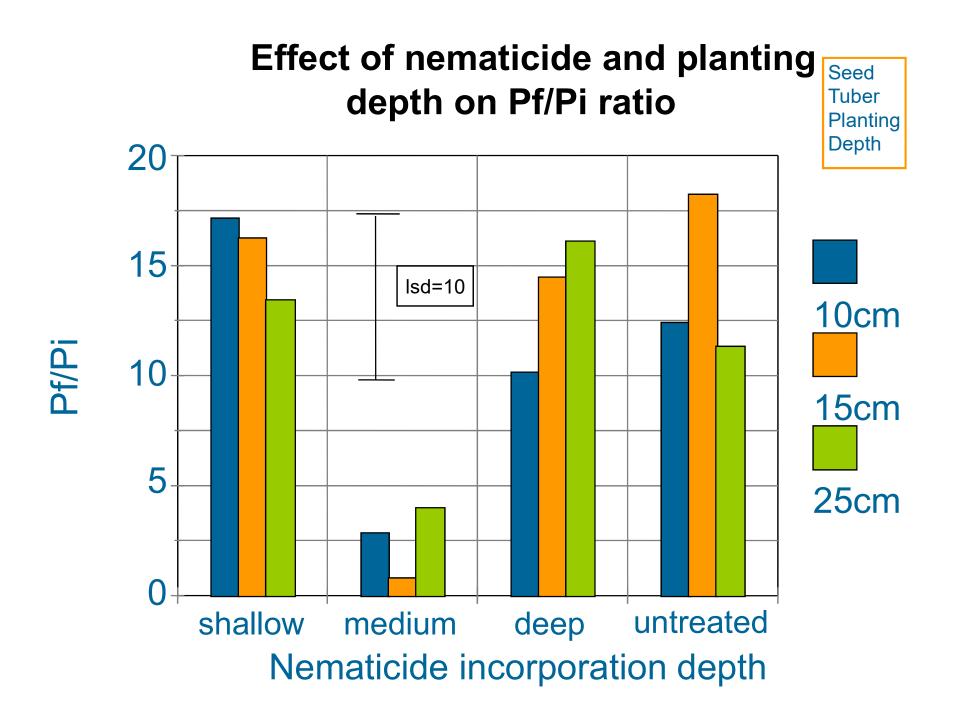

Tracer studies at Harper Adams

- Range of incorporation machinery tested
- Found that incorporation technique can be classed as:
- Too shallow; granules left on soil surface
- Too deep; granules incorporated to depths greater than 20cm
- OK; granules 15cm deep and **no** deeper than 20cm


Field experiments

- Field experiments using shallow (>5cm), medium (15-20cm) and deep (35cm)
 depth of nematicide incorporation
- Three planting depths; Shallow (10cm), medium (15cm) and deep (25cm)


Findings


- Found medium incorporation depth gave the best yields and nematode control
- Also medium planting depth in medium nematicide incorporated plots reduced root invasion by nematodes

Effect of nematicide and planting depth on root invasion

Effect of nematicide and planting depth on ware yield

- Application and incorporation during bed tilling followed by stone and clod separation using a star based separator is OK
- Application during stone and clod separation using a webbed based separator will give good results provided that application occurs towards the front of the machine
- Purpose built product specific cartridges available
- Closed transfer systems now used
- Move towards GPS (precision farming) control of metering unit rather than land wheel drive (NOT VARIABLE RATE)

Nematicide Stewardship is class leading

BUT.....

We've got to get on!

How much soil!

• 1 ha of soil to a depth of 15cm could contain As much as 1,500,000 kg of soil.

This is worth bearing in mind when we attempt to mix anywhere between 30 and 60kg of nematicide granules into it!

Forward Speeds

- 5km/hr = 1.38m/s
- 10km/hr = 2.7m/s
- 15km/hr! = 4.16m/s

Calculation of rotor speed for the Jones Veggie Tiller

PTO : Rotor gearbox ratio	= 4:1
Rotor Diameter	= 0.45m
PTO input speed	= 1000rpm
Rotor Speed	= 1000 / 4
	= 250rpm
Distance travelled by rotor tip in one revolution	=πD
	= 3.142 x 0.45
	= 1.41m
Rotor speed	= 1.41 x 250
	= 325.5 m min ⁻¹
	$= 5.88 \text{ m s}^{-1}$

Rotor speed at 540rpm

 $= 3.17 \text{ m s}^{-1}$

Calculation of rotor speed for the Jones Veggie Tiller

PTO: Rotor gearbox ratio Rotor diameter PTO input speed Rotor speed	= = = = =	4.1 0.45m 1,000rpm 1,000/4 250rpm	
Distance travelled by rotor tip in one revolution	= = 3.142 = 1.41	$= 3.142 \times 0.45$	
Rotor speed	= 325.5	= 1.41 x 250 = 325.5m min ⁻¹ = 5.88ms ⁻¹	
Rotor speed at 540rpm	= 3.17	= 3.17 ms ⁻¹	

What happens if the rotor wears down?

- A rotor diameter of 0.3m on the veggie tiller would result in a tip velocity of 3.9m/s at 1000pto
- Its feasible for the rotor to be travelling at the same speed as the tractor!
- Therefore no mixing

Can more be done?

- Rotavation needs a thorough investigation
- Forward speeds
- Rotor speeds
- Work rates and costs involved
- Energy required

Precise nematicide incorporation – A farmer's view

Andrew Webster / AW and MA Webster

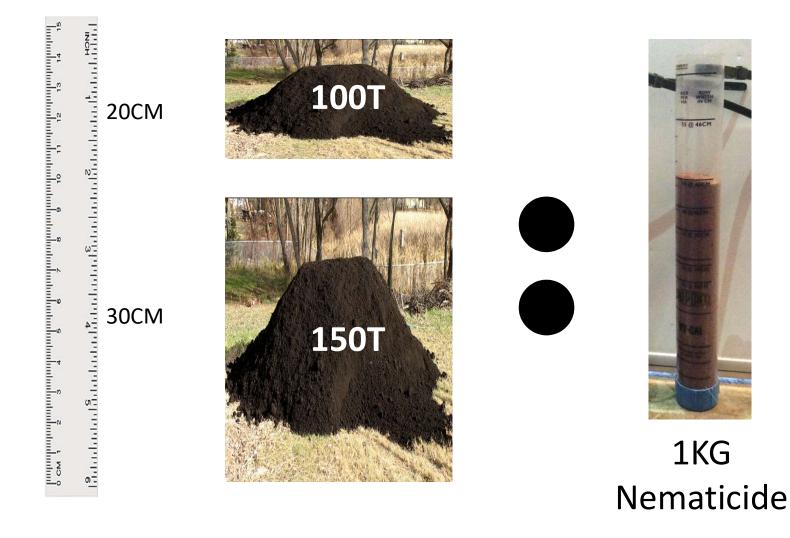
Andrew Webster

Applying Nematicide in the right place and at the right dilution....

A farmers perspective

How many tonnes of soil is the tiller moving per Ha working at the following depth?

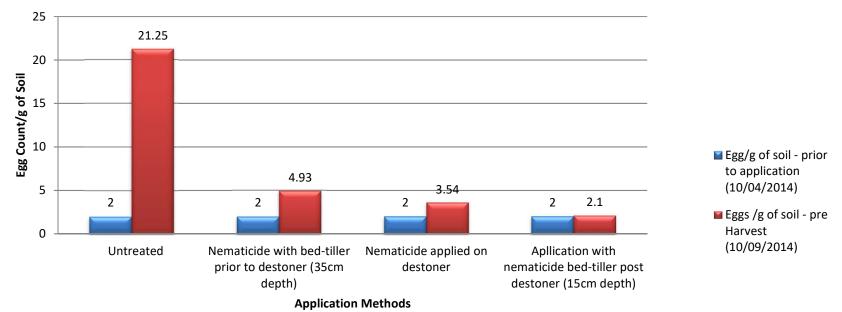
A: 20cm


B: 30cm

How many tonnes of soil is the tiller moving per Ha working at the following depth?

- A: 20cm 3000 Tonnes
- B: 30cm 4500 Tonnes

The Incorporation Challenge



•Asked to host NW Potato event in Lancashire to improve Knowledge Transfer within the industry/ region.

•Trails for the event partly focused on identifying best practice methods for Nematicide application, we believed we could improve application and wanted to trial this on our farm.

•The research formed part of a wider dissertation conducted by Myerscough College student, Tom Smith and the research has helped us to apply Nematicide more effectively.

Eggs/g of Soil Pre and Post Application



Andrew Webster

Thank You

Review of the day

Mike Storey / AHDB

'Inspiring our farmers, growers and industry to succeed in a rapidly changing world'

© Agriculture and Horticulture Development Board 2017 | All Rights Reserved