FARMFXCFI I FNCF

Saltburn Monitor Farm Meeting Report

Micronutrients

17 January 2019 Guisborough Rugby Club

For more information, visit: <u>cereals.ahdb.org.uk/saltburn</u>

Meeting Summary – Key Messages

- Managing plant micronutrients, along with wider agronomic and farming practices, enables healthy plants to reach their yield potential.
- Look at history of nutrient deficiency and pH levels on-farm and consider whether soil sampling or tissue analysis is the best way to test for deficiency.
- Consider trying tramline trials on your farm to test for yield responses to treatments.

Micronutrients Sarah Kendall, ADAS

A balance of micronutrients is important for optimum plant growth. Healthy plants depend on effective management of all areas, including good soil structure and nutrient management.

The risk situations for micronutrient deficiencies depend on crop type, soil type and pH. The table shows the availability of micronutrients with pH.

Trials work looking at the response of crops to micronutrients is limited, but research has shown that 10% of OSR crops responded to boron with responses seen in cereals too. Responses are often found with copper (on soils with <1.0 mg/kg Cu) and manganese (soils with pH >7 and if tissue analysis is <20 mg/kg Mn) and a small yield response by using molybdenum in certain situations. Yield responses in UK cereals were not expected by the use of zinc.

Strong acid	Medium acid	Slightly acid	Very slightly acid	Very slightly alkaline	Slightly alkaline	Medium alkaline	Stro	ngly alkal	ine
			ni	trogen					
			pl	nospho	orus				
			p	otassiu	ım				
			SI	Iphur					
			Cá	alcium			and the second second		
				20000	ium				
				agnes	um				
A A A A A A A A A A A A A A A A A A A	iron	<u></u>							
	mangan	ese							
	boron								
	copper	& zinc							
			m	olybde	enum				
45 50		0 0	E 7	0 7	E 0	0 0	F 0	0 0	- 4

FARMFXCFI I FNCF

Micronutrients are used in different ways in the plant – the key micronutrients and their deficiency symptoms can be seen below:

Micronutrient	Manganese	Copper	Zinc	Boron	Molybdenum
Role in the plant	Activates enzymes involved in protein synthesis, lipid metabolism and photosynthesis	Essential component of proteins involved in metabolic pathways; important for production of viable pollen in grain production; role in maintaining cell wall structure	Component of enzymes involved in photosynthesis, sugar formation and protein synthesis.	Controls metabolic processes; structural component of cell walls; affects cell division	Required for the function of enzymes involved in redox processes
Deficiency Symptoms					
	Cereals: grey flecking/striping; pale and limp leaves OSR: yellowing and mottling; symptoms first on middle leaves, then spread to older leaves	Cereals: Pale, twisted leaves; stunted plants; blind grain sites	Cereals: Pale stripes; affected tissue dies and turns pale brown	OSR: Dieback of apical growing point; young leaves small/puckere d; brittle tissue; stem cracking; poor flowering	OSR: reduced leaf area, pale, limp leaves

Page 2 of 4 © Agriculture and Horticulture Development Board 2019. All rights reserved.

In order to diagnose micronutrient deficiencies, this can be done in three ways: visual symptoms, soil analysis or tissue analysis.

This table highlights the currently known ways of determining a risk of deficiency via soil or tissue analysis.

	Crop affected	Soil risk factors	Soil analysis	Tissue analysis
Boron	OSR	Sandy, High OM pH >7	Yes <0.8 mg/l	Yes <20 mg/kg
Copper	Cereals	Sandy, peat, Shallow chalk, High OM	Yes <1.0 mg/l	No
Manganese	Cereals & OSR	pH >7.5, sandy >6.5 Organic/peat pH >6 Fluffy seed bed	No	Yes <20 mg/kg
Molybdenum	OSR	pH < 6.5	Yes <0.1 mg/l	?
Zinc	Cereals	Sandy soils with high pH and P index	Yes <1.5 mg/l	Yes <15mg/kg

FARMFXCFI I FNCF

Tissue analysis sampling

- Early in season at stem extension Sample of at least 25 points (2–3 plants per point)
- Systematic sampling W pattern
- Sample youngest fully expanded leaf
- Take several leaves/sample
- Ensure no soil contamination, dry leaves
- Avoid sampling leaves with evidence of disease/pest damage

Once sampling has been completed there are two options depending on when the deficiency is detected. If soil analysis confirms the deficiency, correction can be made through liming, seed treatments, seedbed fertilisers or autumn applications, if possible. If tissue analysis confirms a deficiency, foliar applied fertilisers is the best way to correct the deficiency.

CHAP and CropMonitor

Richard Glass and Judith Turner

CHAP (Crop Health and Protection) is one of the four Agri-Tech centres and has the aim of facilitating industry research, speeding up the development and adoption of new technologies, targeting sustainable intensification and promoting collaboration across the UK research base.

CEREALS & OILSEEDS

The main areas through CHAP currently include centres developing research and innovations on: emerging pesticide resistance, biopesticide development, soil management, integrated pest management (IPM) programmes and new plant protection product developments.

CropMonitor, developed by Fera, has been designed to provide local growth stage information, along with current pest and disease risk based on weather data, with a decision tool to inform spray applications. More information is available at: <u>http://www.cropmonitor.co.uk/</u>

Find out more... AHDB Information and Research Links

<u>Nutrient research</u> <u>Nutrient management guide (RB209)</u> Micronutrients for cereals and oilseed rape

Further Information

For details about the Saltburn Monitor Farm and past meeting information, please visit: <u>cereals.ahdb.org.uk/saltburn</u>

Contact Details

For more information, please contact Teresa Meadows, Knowledge Exchange Manager - East Anglia

E: teresa.meadows@ahdb.org.uk

- T: 07387 015465
- 🍠 @CerealsEA

AHDB Stoneleigh Park Kenilworth Warwickshire CV8 2TL T 024 7 669 2051 E <u>info@ahdb.org.uk</u> W <u>ahdb.org.uk</u> ♥ @AHDB

© Agriculture and Horticulture Development Board 2019. All rights reserved