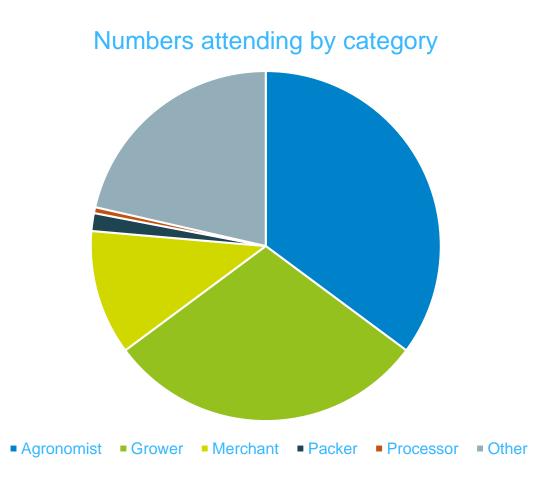
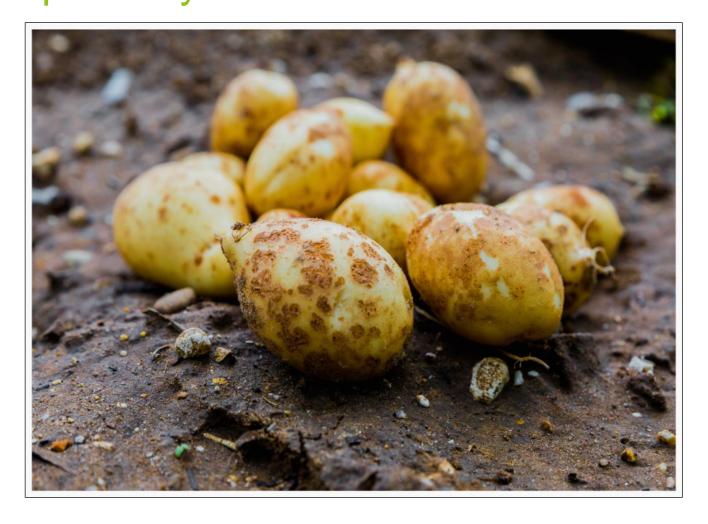


SPot East Results Day 11 January 2018

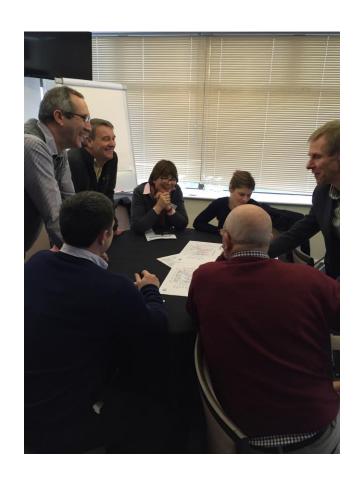
Welcome


Housekeeping


Attendance at SPot East in 2017, Elveden Estate.

- 62% of visitors to Spot East would make significant, some or minor changes to their working practices.
- 48% of visitors would adopt new technologies.
- 75% would attend another SPot Farm event.

Video SPot East Open Day -



POTATOES

Audience participation

Workshop

Graham Tomalin, Herbicides

AHDB SPot Farm East -Herbicide Demonstration

Demonstration Objective 1- Residual

VCS Potatoes Ltd was commissioned to demonstrate the performance residual herbicide combinations in a medium sand soil site. The demonstration compared the performance of combinations and individual active substances to a standard application containing Linuron, pendimethalin and metribuzin.

AHDB SPot Farm East -Herbicide Demonstration

Demonstration Objective 2- Post Emergence Contact Herbicide

The demonstration compared the performance of post emergence application of two rates of metribuzin and in combination with rimsulfuron on 23 varieties.

Background

Following changes to pesticide approval system to a new Regulation regime in 2009 – 'Regulation (EC) No. 1107/2009' all new active substances or renewal of approvals of current active substances would need to comply with the new regulations

- > Hazard not risk assessments
- Candidates for substitution list 77 active substances inc Linuron, Pendimethalin, Metribuzin and Flufenacet (7 year approvals)

Linuron

Linuron Now Revoked End of use 3rd June 2018

Residual Demonstration Design

Varieties

Category	Varieties
Dun anning Veninting	R. Burbank, Royal, Daisy, Performer, Challenger, Shepody,
Processing Varieties	Innovator, Forza Lanorma, Soraya, Jelly, Marfona, Nectar, Vales sovereign,
Prepack Varieties	Saxon, Melody
Crisping Varieties	Brooke
Salad Varieties	Maris Peer, Leontine
Ware Varieties	Maris Piper, Eurostar, Rooster, Markies

- > 13 non replicated plots with different residual herbicide applications
- ➤ All plots Diaquat @ 3l/ha + NI Wetter at same timing to allow residual not contact comparison

	Block A
Planting Date	11 th May
Application date	5 th June
Weed counts Assessment 1	16 th June
Weed counts Assessment 2	3 rd July
Weed counts Assessment 3	31 st August

Demonstration Design

Trt	Water	Herbicide Application	Cost
No.	Volume		£/ha
1		UNTREATED	£0
2	200 l/ha	VCS 1717 (aclonifen) 2.5l/ha	TBC
3	200 l/ha	Stomp Aqua (pendimethalin 455g/l) 2.8 l/ha	£22
4	200 l/ha	Praxim (metobromuron 500g/l) 4l/ha	£72
5	200 l/ha	Gamit 36SC (clomazone 360 g/l) 200ml/ha	£15
6	200 l/ha	No Product (flufenacet 500g/l) 600g/ha (maximum rate within Artisit)	TBC
7	200 l/ha	Artist (metribuzin 17.5% + flufanacet 24%) 1.2 kg/ha + Stomp Aqua (pendimethalin 455g/l) 2 l/ha	£45
8	200 l/ha	Praxim (metabromuron 500g/l) 2.5 l/ha + Stomp Aqua (pendimethalin 455g/l) 2 l/ha + Shotput (metribuzin 70%) 200 g/ha	£66
9	200 l/ha	Praxim (metabromuron 500g/l) 2.5 l/ha + Defy (prosulfocarb800g/l) 3l/ha + Shotput (metribuzin 70%) 200g/ha	£71
10	200 l/ha	Stomp Aqua (pendimethalin 455g/l) 2 l/ha + Shotput (metribuzin 70%) 400 g/ha	£26
11	300 l/ha	STANDARD Afalon (linuron 500g/l) 1.35l + Stomp Aqua (pendimethalin 455g/l) 2.2 l/ha + Shotput	£33
		(metribuzin 70%) 200g/ha	
12	200 l/ha	Shotput (metribuzin 70%) 600g/ha	£14
13	200 l/ha	Shotput (metribuzin 70%) 600g/ha (irrigate 15mm 20 hours post application)	£14

Other Products are available with identical active substances!

Phytotoxicity

Application of the residual active substances can lead to phytotoxic effects particularly

- Metribuzin veinal yellowing/chlorosis stunting varietal variation (label "do not use Shoput on sands")
- Clomazone chlorosis- whitening varietal variation (label "do not use Gamit 36EC on sands or very light soils")
- Pendimethalin slight yellowing of leaf margins, leaf distortions (label Stomp Aqua "on stony or gravely soils there is a risk of crop damage especially if heavy rain falls soon after application")
- Linuron (label Afalon " Use on all soil types except very light soils and sands")

Phytotoxicity

Application of the residual active substances can lead to phytotoxic effects particularly

➤ Metribuzin - veinal yellowing/chlorosis - stunting - varietal variation (label "do not use Shoput on sands")

Phytotoxicity

Application of the residual active substances can lead to phytotoxic effects particularly

Clomazone - chlorosis- whitening - varietal variation (label "do not use Gamit 36EC on sands or very light soils"

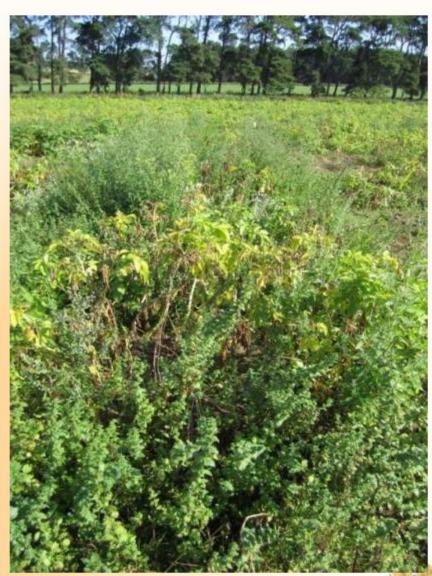
Phytotoxicity

Application of the residual active substances can lead to phytotoxic effects particularly

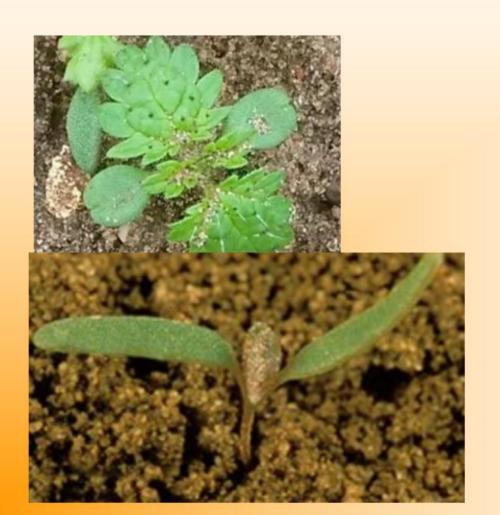
➤ Pendimethalin — slight yellowing of leaf margins, leaf distortions (label Stomp Aqua "on stony or gravely soils there is a risk of crop damage especially if heavy rain falls soon after application")

Weeds Present on site

Present- Groundsel, S.nettle, Fat Hen, Runch, Fools parsley, AMG, cranesbill


Missing (expected)- B.bindweed, Mayweed, Knotgrass

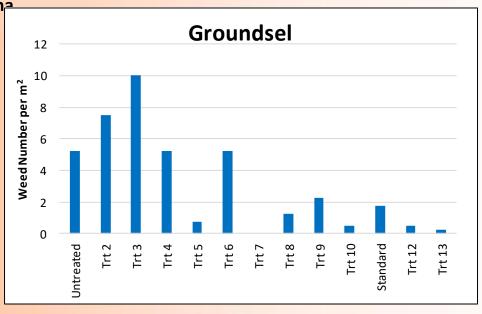
Missing (not expected) – Redshank, Pale persicaria, W.oats, Blackgrass



Weeds Present on site

Present (High levels)- Groundsel & S.nettle

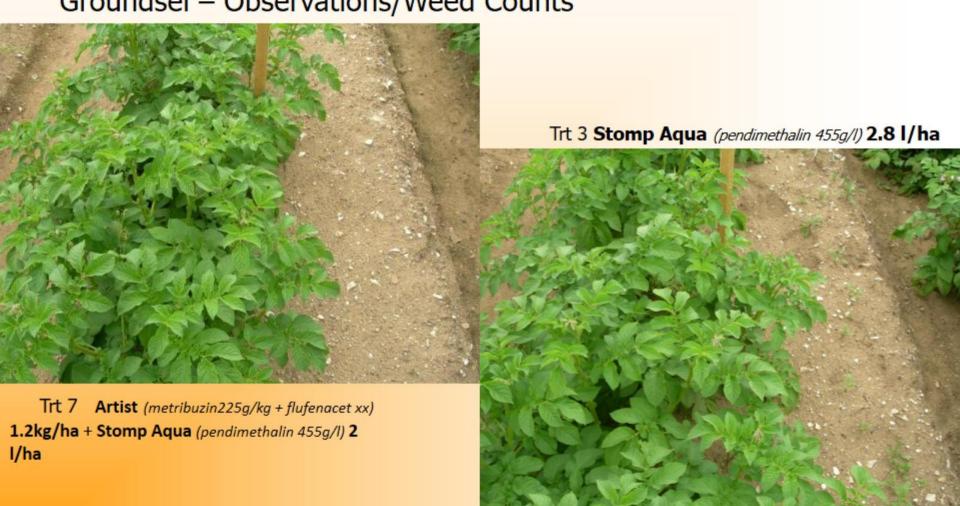
Moderate level - Fat Hen & Runch


Groundsel – Observations/Weed Counts

High Control

- •Trt 7 Artist (metribuzin175g/kg + flufenacet 240g/kg) 1.2kg/ha + Stomp Aqua (pendimethalin 455g/l) 2 l/ha
- •Trt 13 Shotput (metribuzin70%) 600g/ha
- •Trt 12 Shotput (metribuzin70%) 600g/ha

Low Control

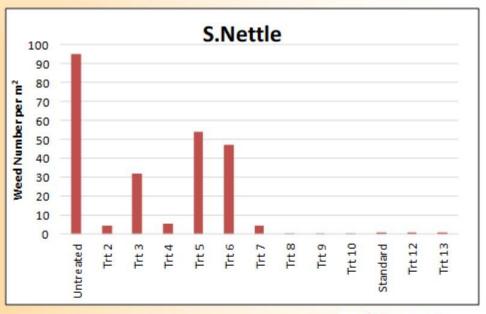

- •Trt 3 Stomp Aqua (pendimethalin 455g/l) 2.8 l/ha
- •Trt 2 No Product VCS1717 (aclonifen xxq/l) 2.5 l/h=
- Trt 6 No Product (flufenacet 500g/l) 600g/ha
- Improved control with increasing rates of a.i. Metribuzin
- Good activity linuron/clomazone
- Low moderate activity metobromuron

Groundsel – Observations/Weed Counts

S.Nettle – Observations/Weed Counts

High Control

>Trt 8 Praxim (metobromuron 500g/l) 2.5l/ha + Stomp Aqua(pendimethalin 455g/l) 2.2 l/ha + Shotput (metribuzin70%) 200g/ha


>Trt 9 Praxim (metobromuron 500g/l) 2.5l/ha + Defy (prosulfocarb 800 g/l) 3l/ha + Shotput (metribuzin70%) 200g/ha

>Trt 10 Stomp Aqua (pendimethalin 455g/l) 2 l/ha + Shotput (metribuzin70%) 400g/ha

Low Control

➤ Trt 5 Gamit 36CS (clomazone 360 g/l) 200ml/ha
 ➤ Trt 6 No Product (flufenacet 500g/l) 600g/ha
 ➤ Trt 10 Stomp Aqua (pendimethalin 455g/l) 2.8 l/ha

- · Good control within 3 way mixes
- Moderate activity metobromuron/metribuzin/pendimethalin/aclo nifen
- Poor activity clomazone, flufenacet

S.Nettle – Observations/Weed Counts

Trt 8 Praxim (metobromuron 500g/l) 2.5l/ha + Stomp Aqua(pendimethalin 455g/l) 2.2 l/ha + Shotput (metribuzin70%) 200g/ha

Fat Hen – Observations/Weed Counts

High Control

- •Trt 7 Artist (metribuzin175g/kg + flufenacet 240 g/kg) 1.2kg/ha + Stomp Aqua (pendimethalin 455g/l) 2 l/ha
- •Trt 2 No Product VCS1717 (aclonifen xxg/l) 2.5 I/ha
- •Trt 8 Praxim (metobromuron 500g/l) 2.5l/ha + Defy (prosulfocarb 800 g/l) 3l/ha + Shotput (metribuzin70%) 200g/ha

Low Control

- Trt 5 Gamit 36CS (clomazone 360 g/l) 200ml/ha
- Trt 6 No Product (flufenacet 500g/l) 600g/ha
- Good activity VCS 1717
- Moderate activity pendimethalin, linuron, metribuzin & metobromuron
- Poor activity clomazone & flufenacet

Note - weed counts full strip

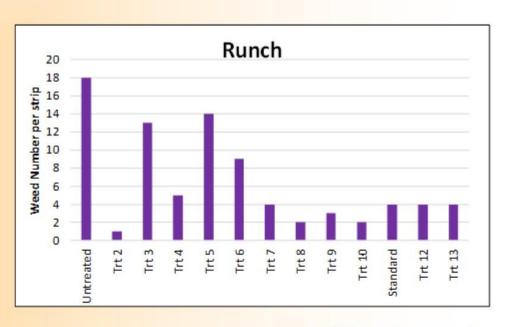
Fat Hen – Observations/Weed Counts

Trt 7 Artist (metribuzin175g/kg + flufenacet 240 g/kg)

1.2kg/ha + Stomp Aqua (pendimethalin 455g/l) 2 l/ha

Trt 5 Gamit 36CS (clomazone 360 g/l) 200ml/ha

Runch – Observations/Weed Counts


High Control

- Trt 2 No Product VCS1717 (aclonifen xxg/l) 2.5 l/ha
- •Trt 8 Praxim (metobromuron 500g/l) 2.5l/ha + Defy (prosulfocarb 800 g/l) 3l/ha + Shotput (metribuzin70%) 200g/ha
- •Trt 10 Stomp Aqua (pendimethalin 455g/l) 2 l/ha + Shotput (metribuzin70%) 400g/ha

Low Control

- Trt 3 Stomp Aqua (pendimethalin 455g/l) 2.8 l/ha
- Trt 5 Gamit 36CS (clomazone 360 g/l) 200ml/ha
- Trt 6 No Product (flufenacet 500g/l) 600g/ha
- Good activity metribuzin, VCS 1717
- Moderate activity metobromuron
- Poor activity pendimethalin, clomazone, flufenacet

Note - weed counts full strip

Runch – Observations/Weed Counts

Trt 2 No Product VCS1717 (aclonifen xxg/l) 2.5 I/ha

Trt 3 Stomp Aqua (pendimethalin 455g/l) 2.8 I/ha

Overall- Observations - Residuals

Stomp Aqua (pendimethalin 455g/l)2l/ha +Shotput (metribuzin 70%) 400g/ha – Trt 10 £26/ha

Praxim (metobromuron 500g/l)

2.5l/ha + Defy (prosuflocarb 800g/l) 3

l/ha +Shotput (metribuzin 70%)

200g/ha - Trt 8 £71/ha

- Commercially acceptable performance from Trt 7,8,9,10,11 STD,12,13
- The level of metribuzin within
 7,10,12,13 high for some varieties on this soil type
- 3 active substance combinations provided broader(and better on this site) control
- VCS 1717 aclonifen useful contribution Fat Hen, Runch and S.nettle
- Post Linuron the cost of residual herbicide applications will increase – sand/sandy loams
- Maximising the control using safe levels of remaining active substances targeting the components for the expected weed spectrum.

Post emergence Herbicide

Trt	Water	Herbicide Application	Cost
No.	Volume		£/ha
14	200l/ha	Shotput (metribuzin 70%) 200g/ha	£4.70
15	200 l/ha	Shotput (metribuzin 70%) 500g/ha	£11.70
16	200 l/ha	Shotput (metribuzin 70%) 200g/ha +Titus (rimsulfuron) 30g/ha + NI Wetter 200ml/ha	£20

- ➤ Application @ 15-20cm crop height 20th June
- > Significantly reduced level of scorch than anticipated, all treatments

Other Products are available with identical active substances!

Post emergence Herbicide

Trt 15 - Shotput 500g/ha

Severe Scorch - Innovator

Moderate Scorch - Eurostar

Post emergence Herbicide

Trt 15 - Shotput 500g/ha

Slight Scorch - Lanorma

No Scorch - Challenger

AHDB SPot Farm East Residual Herbicide Demonstration

Post emergence Herbicide

Trt 15 - Shotput 500g/ha

	Phytotoxicity Score (0 none – 9 severe) – post emergence treatments assessed 30 th June						
Variety	Treatment 14 200g/ha Shotput	Treatment 15 500g/ha shotput	Treatment 16 200g/ha Shotput + 30g/ha Titus+200ml NI Wetter				
Maris Piper	2	6	4				
Performer	1	44	3				
Eurostar	2	5	2				
Lanorma	1	2	2				
Challenger	0	0	0				
Shepody	2	4	3				
Maris Peer	2	5	4				
Leontine	0	3	1				
Royal	0	2	1				
Soraya	0	1	2				
Rooster	0	1	2				
Jelly	1	2	1				
Markies	0	1	1				
Melody	2	4	4				
Innovator	4	7	5				
Russet Burbank	1	2	2				
Daisy	1	3	2				
Forza	4	8	6				
Marfona	0	0	0				
Nectar	1	4	3				
Brooke	0	0	1				
Vales sovereign	0	0	1				
Saxon	0	0	0				

AHDB SPot Farm East Residual Herbicide Demonstration

Post emergence Herbicide

Trt 15 - Shotput 500g/ha

Tollerant	Low Sensitivity	Moderate Sensitivity	High Sensivity
V.Sovereign	Royal	M.piper	Forza
Brooke	Daisy	Leontine	Innovator
Marfona	Lanorma	Eurostar	M.Peer
Saxon	R.Burbank	Melody	
Rooster	Jelly	Nectar	
Challenger		Performer	
Soraya		Shepody	
Markies			

2017 Demonstration Results – Caution not Recommendation!

AHDB SPot Farm East Residual Herbicide Demonstration

2018

- Continue to Assess Residual herbicides VCS 1717
- Continue weed spectrum comparisons target site Praxim B.Bindweed Knotgrass & Mayweed (earlier application)
- Further investigations metribuzin/clomazone, application rates sands, variety interactions

VCS Potatoes Ltd would like to thank Elveden Estates and AHDB potatoes for their assistance with this demonstration

Coffee and networking opportunity

Dr. Mark Stalham, Common Scab Irrigation

Key questions under investigation:

- What is the best irrigation regime to control common scab on different soil types for varieties differing in susceptibility to scab?
- How does a grower identify the ideal scab control period for maincrop and salad varieties?
- When is the scab control period over?

Maximum SMD (mm) for common scab control in different varietal scheduling groups (AHDB R448)

Notes:

SMD for top 25 cm of ridge and stone-free ridge profile. This can be calculated by water balance ('model'), directly measured or converted from soil water tension.

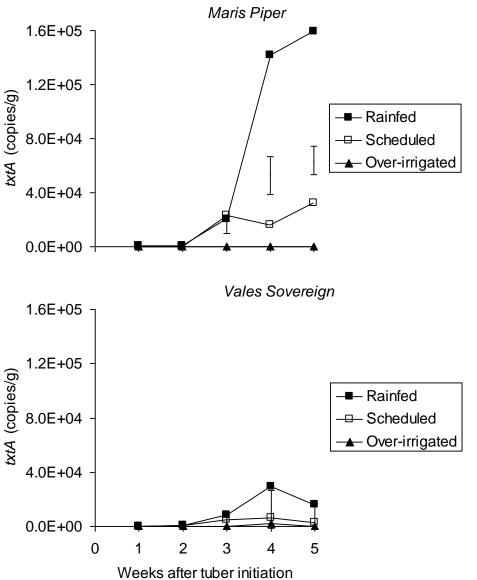
†Marabel and Safari: tentative.

‡Excessively cloddy soils may need to be maintained at a smaller SMD.

Values in () are the rankings for common scab resistance in Potato Council Variety Database. 1 = most susceptible, 9 = fully resistant.

	Group	1. Susceptible	2. Intermediate	3. Resistant
		Maris Piper(1)	Charlotte (4)	Bute (4)
		Maris Peer (5)	Desiree (4)	Electra (8)
			Estima (6)	Elfe
			Exquisa	Jelly (6)
			Flair	Lanorma (7)
			King Edward (7)	Orchestra (8)
			Marabel†	Perline
			Melody (7)	Regina
			Nectar (6)	Vales Sovereign (7)
			Rooster (6)	Volare (5)
			Sylvana (7)	
			Safari† (4)	
			Venezia	
			Vivaldi (5)	
Sand		9.8	14.6	18.8
Loamy Sand		12.0	17.9	23.1
Sandy Loam		13.4	20.0	25.8
Sandy Silt Loam		14.4	21.5	27.7
Silt Loam		16.3	24.3	31.4
		14.4	21.5	27.7

Tuber initiation (TI)



Pathogenic *Streptomyces* populations: the key to timing?

Recommendations

- Ensure that the soil is moist to wet throughout the ridge from 1 to 3 weeks after TI
- Pathogenic Streptomyces multiply rapidly as the soil dries out
- Don't stop after 2 weeks!
- Irrigation outside this period is mainly for:
 - Wetting up ridges following dry periods (a single irrigation is often inadequate)
 - Very susceptible varieties (e.g. Maris Piper for pre-pack)
 - Maintaining wet conditions where tubers develop/expand more slowly (e.g. salads)

Background

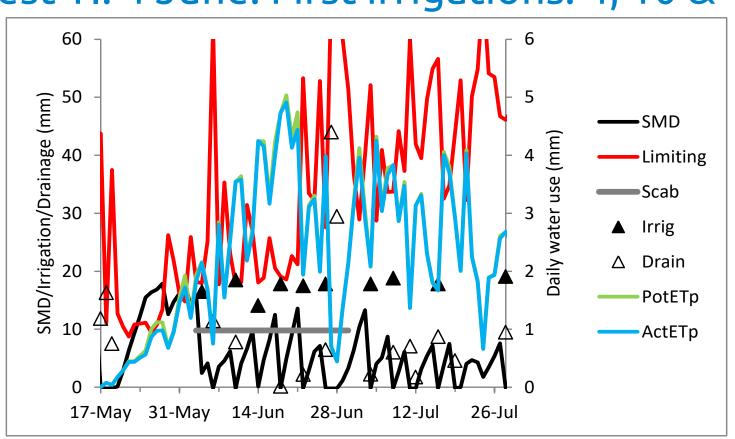
- Scab control for packing crops (15 varieties)
- Sand (91 % S, 5 % Z, 4 % C, 2.2 % OM)
- Irrigation regimes
- Standard: 10 mm SMD in bed from TI for 4 weeks, 18 mm application
- Half-frequency 20 mm SMD in bed, 27 mm application
- Irrigation scheduled by Elveden
- Surrounding crop: Red Fantasy
- Planting date (hand): 18 April

2017: emergence / TI

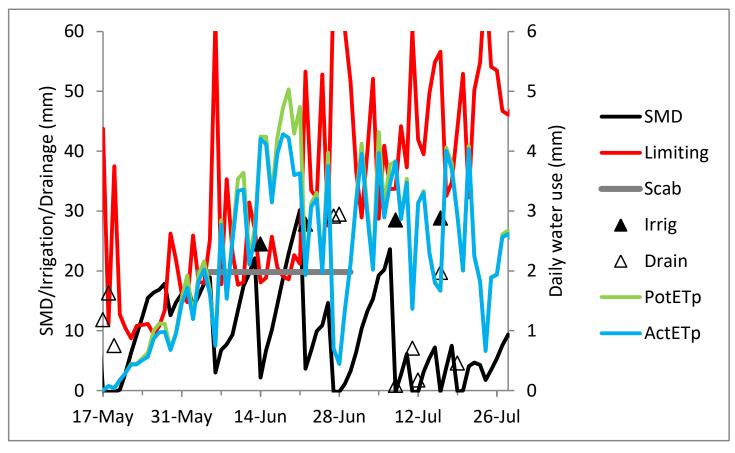
AH	DB

Planted	Emergeno	e date		Emergenc	e (days afte	r planting)	TI	TI (days after emergence)	2016
18-Apr	First	50%	90%	50%	First-50 %	First-90%	50%	50%	50%
Bute	18-May	22-May	24-May	34	4	6	10-Jun	19	n/a
Estima	22-May	24-May	26-May	36	2	4	11-Jun	18	15
Jelly	20-May	23-May	25-May	35	3	5	12-Jun	20	19
Juliette	19-May	23-May	25-May	35	4	6	11-Jun	19	19
Lanorma	19-May	22-May	25-May	34	3	6	06-Jun	15	15
Leontine	18-May	21-May	27-May	33	3	9	04-Jun	14	12
Maris Peer	14-May	17-May	21-May	29	3	7	05-Jun	19	16
Maris Piper	18-May	22-May	25-May	34	4	7	11-Jun	20	17
Melody	19-May	21-May	23-May	33	2	4	09-Jun	19	18
Nectar	18-May	21-May	23-May	33	3	5	09-Jun	19	19
Red Fantasy	20-May	23-May	25-May	35	3	5	11-Jun	19	22
Rooster	20-May	23-May	25-May	35	3	5	10-Jun	18	18
Saxon	20-May	23-May	25-May	35	3	5	09-Jun	17	15
Soraya	20-May	23-May	25-May	35	3	5	08-Jun	16	18
Vales Sovereign	21-May	24-May	26-May	36	3	5	10-Jun	17	18
Mean	19-May	22-May	24-May	34	3	6	09-Jun	18	17

- Emergence occurred over short period (c. 6 days from first to 90 % emergence)
- Emergence to TI = 18 days (1 day longer than in 2016)
- Red Fantasy and Leontine not as extreme as in 2016, but still an 8-day variation in date of TI across varieties


Timings 2016/2017

	Emer	Emer	Emer-TI
	First-50 %	First-90%	50%
Bute	4	6	19
Estima	3	5	17
Jelly	3	5	20
Juliette	4	7	19
Lanorma	4	7	15
Leontine	4	8	13
Maris Peer	4	7	18
Maris Piper	4	7	19
Melody	2	5	19
Nectar	3	5	19
Red Fantasy	4	7	21
Rooster	3	6	18
Saxon	4	6	16
Soraya	3	5	17
Vales Sovereign	5	16	18
Mean	3	7	18


- Key is to know what time lapse is between emergence and TI: 18 ± 2 days
- Varieties with a short period are at a greater risk from delayed start and failure to wet up ridge

Scab 2017: soil moisture deficits a) Standard 18 mm Earliest TI: 4 June. First irrigations: 4, 10 & 14 June

Scab 2017: soil moisture deficits b) Infrequent 27 mm Earliest TI: 4 June. First irrigation: 14 June

Common scab data

Treatment	Variety	Proportion packable (%)	Severity (% SA)	Cracking (%)	Powdery scab (%)
Standard	Bute (7)	71	4.4	10	0
Infrequent	Bute	94	2.0	0	0
Standard	Estima (3)	97	1.8	9	58
Infrequent	Estima	97	1.6	8	47
Standard	Jelly (5)	93	1.3	1	63
Infrequent	Jelly	100	0.8	0	54
Standard	Juliette (6)	88	3.0	2	0
Infrequent	Juliette	99	1.2	2	0
Standard	Lanorma (4)	96	1.2	0	17
Infrequent	Lanorma	99	1.1	1	4
Standard	Leontine (8)	93	2.4	0	29
Infrequent	Leontine	74	4.1	0	22
Standard	M Peer (6)	82	2.9	0	7
Infrequent	M Peer	78	4.1	0	8
Standard	M Piper (3)	80	4.9	0	0
Infrequent	M Piper	21	18.1	0	0
Standard	Melody (5)	97	1.7	0	0
Infrequent	Melody	96	1.5	3	0
Standard	Nectar (4)	87	2.6	0	75
Infrequent	Nectar	70	4.7	1	45
Standard	R Fantasy (6)	99	1.0	0	2
Infrequent	R Fantasy	80	3.6	1	2
Standard	Rooster (6)	90	2.4	1	2
Infrequent	Rooster	87	2.9	1	2
Standard	Saxon (6)	95	1.7	0	1
Infrequent	Saxon	55	7.7	1	0
Standard	Soraya (7)	90	2.7	0	0
Infrequent	Soraya	96	1.7	2	0
Standard	V Sovereign (3)	100	0.9	0	4
Infrequent	V Sovereign	94	2.0	0	1
Standard		91	2.3	1	17
Infrequent		83	3.8	1	12

Maris Piper 10 mm SMD

Jelly 10 mm SMD

Juliette 10 mm SMD

Leontine 10 mm SMD

Maris Peer 10 mm SMD

Red Fantasy 10 mm SMD

Soraya 10 mm SMD

Summary

- Incidence of common scab much worse than 2016
- Maris Piper bad common scab with infrequent irrigation
- Why was scab bad if initial irrigation timing correct?
- Infrequent regime: worse scab in Leontine, Maris Peer, Nectar, Red Fantasy and Saxon
- Powdery scab increased with Standard (frequent) irrigation, but confined to certain varieties

Common scab control in different varietal scheduling groups (revised table)

Notes:

Soil moisture deficit (SMD) for top 25 cm of stone-free ridge profile. This can be calculated by water balance ('model'), directly measured or converted from soil water tension.

†Excessively cloddy soils may need to be maintained at a smaller SMD.

Values in () are the rankings for common scab resistance in AHDB Potato Variety Database. 1 = most susceptible, 9 = fully resistant.

Varietal scheduling group

Sand	9.8	12.7	15.6	18.8
Loamy Sand	12.0	15.9	19.3	23.1
Sandy Loam	13.4	17.8	21.5	25.8
Sandy Silt Loam	14.4	19.0	23.0	27.7
Silt Loam	16.3	21.5	26.2	31.4
Clay Loam/Clay†	14.4	19.0	23.1	27.7

Thank you

Reducing Runoff

Ed Bramham-Jones CamEO Farm Advisor Norfolk Rivers Trust

Joanna Niziolomski Cranfield University

Background

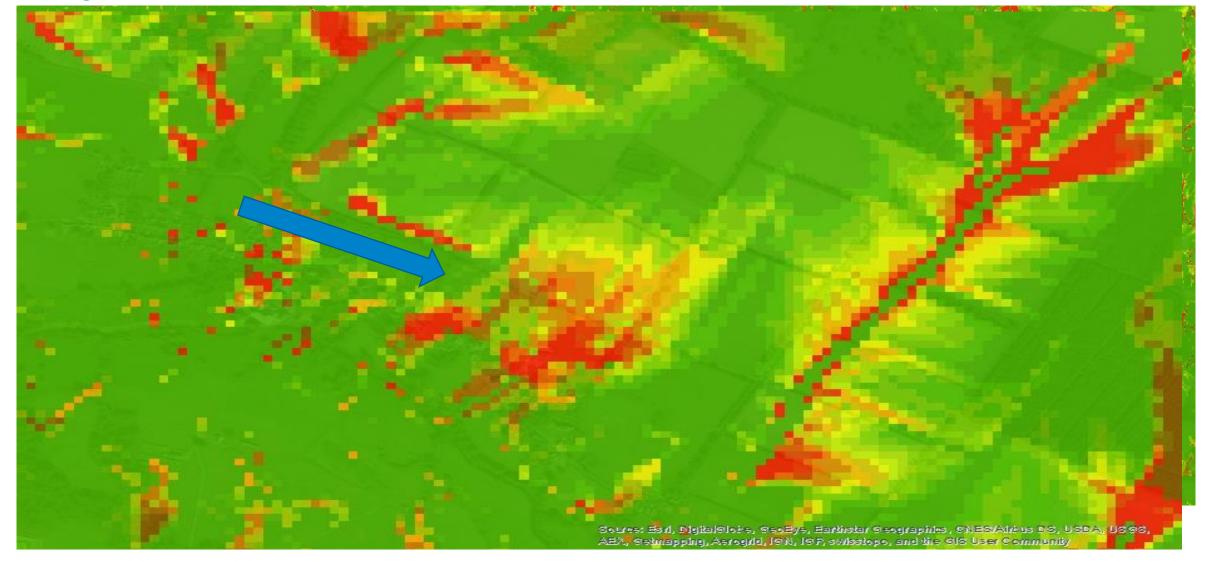
- Elveden Estate sits within the Cam and Ely Ouse Catchment (CamEO), with land across two river catchments of the Lark and Little Ouse.
- Water and environmental Stewardship is key to the Farm as a part of it's land management commitments.
- Runoff from Potatoes and other crops have previously occurred on gently sloping fields.

Key question under investigation: How effective are various mitigation techniques at helping prevent Diffuse Pollution.

Aims:

Practical in-field solutions to:

- Reduce runoff of sediments, nutrients and pesticides
- More efficient use of water within beds and wheelings
- Reduction in standing water in wheelings to improve trafficking



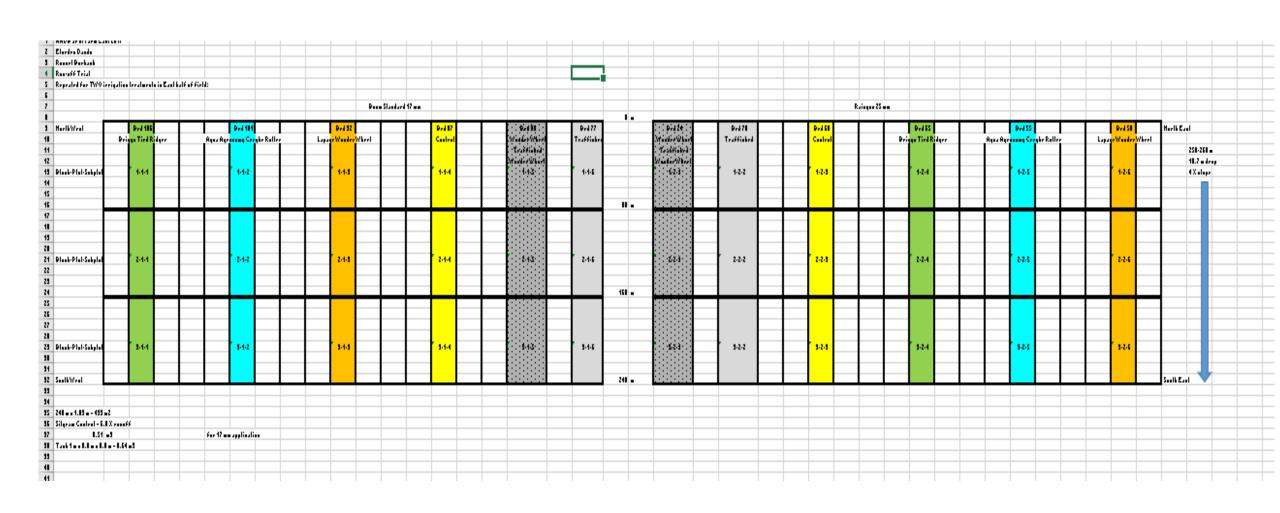
SCIMAP Opportunity runoff mapping

AHDB

Dando Field – 4% slope Length of Field – 250m

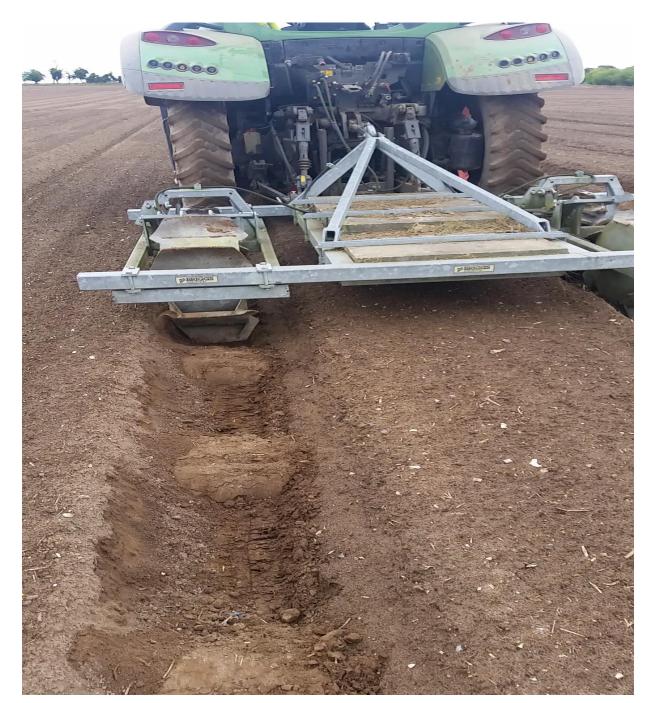
Field Layout

- 36 Plots
- 6 Treatments
- Each Treatment with 1 replicate of Boom and Rain gun irrigation @ 15mm


Treatments

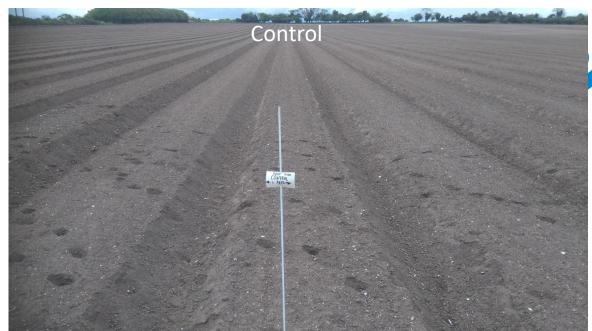
- Creyke Aqua Agronomy Wheeltrack Roller
- Briggs Tied Ridger
- Bye Engineering Wonderwheel
- Control
- Trafficked Implemented 23rd May
- Trafficked (4 passes with 14 tonne sprayer) with Bye Engineering Wonderwheel Implemented 24th May

Implemented 13th April

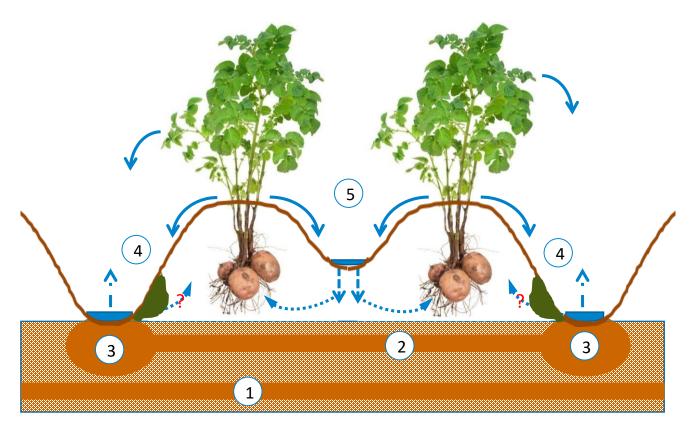


Creyke Wheeltrack Roller

Briggs Tied Ridger



Bye Engineering Wonderwheel

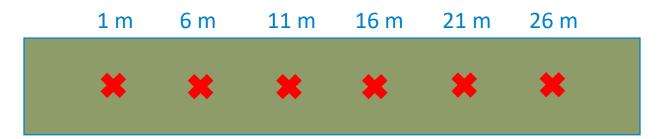


Soil and water management challenges in AHDB potatoes

- 1: Plough plan: Tillage operation under wet soil conditions
- 2: Compaction caused by bed-tiller
- 3: Wheeling compaction
- 4: Compaction/smearing at base of ridge
- 5: Capping at the soil surface

Russet Burbank Sandy Loam 3.18 % organic matter

Treatment soil characteristics


Treatment	Bulk density (BD) 0-5 cm	Moisture content 0-5cm
	(g cm ⁻³)	(%)
Tied ridger	1.30a	15.38a
Wheel track roller	1.33ab	15.25a
Wonder wheel	1.30a	14.32c
Control	1.28a	15.06a
Wonder wheel trafficked	1.37bc	16.66b
Trafficked	1.40c	16.62b

- Control, tied ridger and wonder wheel treatments had significantly higher BD values as compared to the wonder wheel trafficked and trafficked treatments.
- Wonder wheel lowest moisture content as compared to all other treatments.
- Control, Tied ridger and Wheel track roller had significantly lower moisture content (0-5 cm) as compared to the wonder wheel trafficked and trafficked treatments.

Plot wheeling (30m)

- Measurements recorded at 1 cm intervals
- Average depths reached: 24 45 cm due to stone layer.

Treatment	Penetrative resistance (MPa)*				
	Median	Maximum	Minimum		
Tied ridger	2.21	2.88	1.44		
WTR	2.38	2.93	1.34		
Wonder wheel	2.41	3.05	1.66		
Control	2.35	3.05	1.48		
Wonder wheel trafficked	2.58	2.93	1.87		
Trafficked	2.72	3.24	1.96		

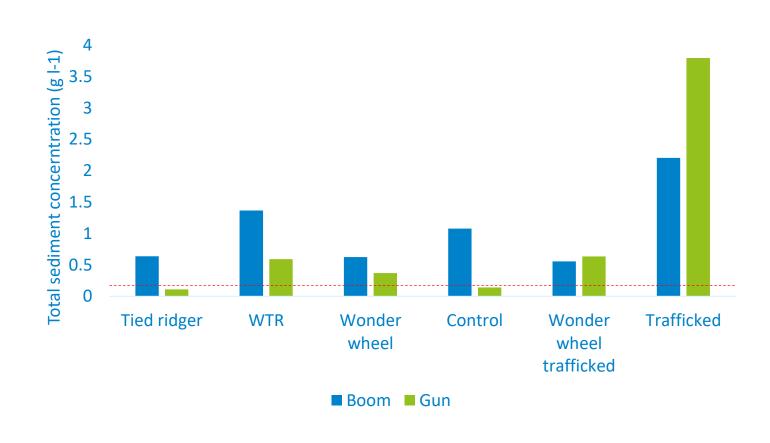

Sample Event	Collection Period	Rainfall received (mm)	Irrigation applied (mm)	Ground cover
1	26 th – 30 th Jun	50.8	15	100
2	1 st – 13 th Jul	27.2	30	100
3	14 th – 26 th Jul	27	0	100
4	27 th Jul – 30 th Aug	69.4	30	100
5	31 st Aug – 25 th Sep	48.8	15	<100
6	26 th Sep – 9 th Oct	13.6	0	Minimal

AHDB

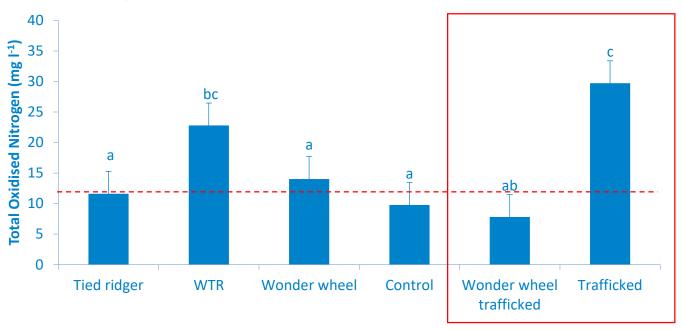
Treatment effectiveness tested for...

- Runoff volume
- Total soil loss
- Sediment concentration
- Total oxidised Nitrogen
- Orthophosphate

Mean (n=6) Runoff volume across all samplimed events

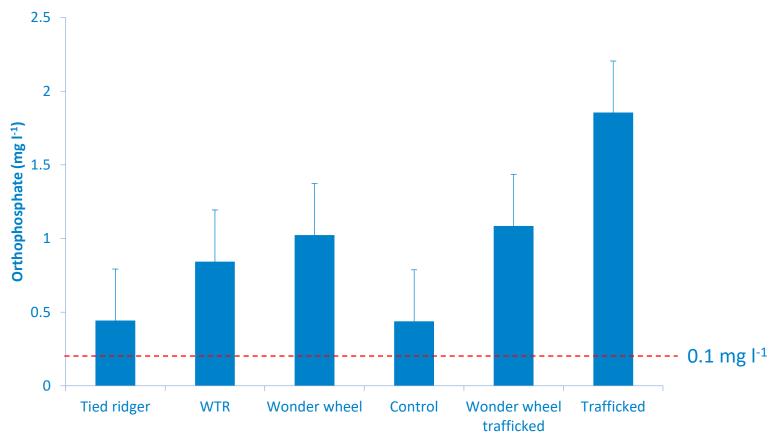

Trafficked treatments generated significantly higher runoff as compared to all other treatments.

Mean (n=5) Total soil loss across all samplingHDB events



- Trafficked treatments generated significantly higher total soil loss as compared to all other treatments.
- Wonder wheel trafficked total soil loss was not significant from all non-trafficked treatments.

Mean (n=5) sediment concentration in runo AHDB across all sampling events



Mean (n=5) TON concentration in runoff acres all sampling events

- The Trafficked treatment irrespective of irrigation generated significantly higher TON than the Control, Wonder wheel, Wonder wheel trafficked and tied-ridger.
- The tied-ridger, wonder wheel and control generated the least TON but was not significantly different from the wonder wheel trafficked.

Mean (n=5) Orthophosphate concentration AHDB runoff across all sampling events

 No significant difference between treatments irrespective of irrigation type.

Irrigation effects irrespective of treatments

	Full	SE1	SE2	SE3	SE4	SE5	SE6
Runoff volume							
Total soil loss	Boom ▲ 43 %		Boom ▲ 68 %				
Sediment concentration						Boom ▲ 69 %	
TON	Boom ▲ 47 %				Boom ▲ 49 %		
Orthophosphate							

Sample Event	Collection Period	Rainfall received (mm)	Irrigation (mm)	Ground cover
1	26 th – 30 th Jun	50.8	15	100
2	1 st - 13 th Jul	27.2	30	100
3	$14^{th} - 26^{th}$ Jul	27	0	100
4	27 th Jul – 30 th Aug	69.4	30	100
5	31st Aug – 25th Sep	48.8	15	100
6	26 th Sep – 9 th Oct	13.6	0	Minimal

Yield: Means per tramline treatment

Tramline management	Plants (000/ha)	Stems (000/ha)	Total no. tubers (000/ha)	Tubers >40 mm (000/ha)	Total yield (t/ha)	Yield >40 mm (t/ha)	DM (%)	DM yield (t/ha)	Tubers >90 mm length (%)
Control	33	78	420	304	74.4	71.5	20.9	15.5	87
Briggs	33	83	397	293	73.1	70.3	21.4	15.7	80
Creyke	33	91	426	322	74.2	71.4	21.6	16.0	82
Wonder Wheel	34	83	458	358	80.3	77.9	21.3	17.1	84
Trafficked	33	73	387	290	70.5	68.0	21.1	14.8	86
Trafficked Wonder Wheel	33	87	440	335	77.5	74.9	21.3	16.5	82
S.E. (20 D.F.)	0.57	5.1	30.5	18.1	3.03	2.87	0.40	0.80	3.1

Yield: Means per irrigation type

Irrigation	Plants (000/ha)	Stems (000/ha)	Total no. tubers (000/ha)	Tubers >40 mm (000/ha)	Total yield (t/ha)	Yield >40 mm (t/ha)	DM (%)	DM yield (t/ha)	Tubers >90 mm length (%)
Boom	33	78	414	307	72.8	70.1	21.3	15.5	84
Gun	33	86	429	327	77.2	74.6	21.2	16.4	84
S.E. (2 D.F.)	0.29	2.7	7.0	4.8	1.70	1.52	0.15	0.46	1.2

Quality: Means per tramline treatment AHDB

Tramline management	Greening (%)	Brown centre (%)	Hollow heart (%)	Secondary growth (%)	Fry colour (-1 = USDA 00)
Control	4.2	2.5	4.2	5.8	-0.22
Briggs	3.3	12.5	8.3	9.2	-0.11
Creyke	4.2	5.8	0.8	8.3	-0.14
Wonder Wheel	2.5	6.7	6.7	6.7	-0.17
Trafficked	3.3	6.7	11.7	10.0	-0.21
Trafficked Wonder Wheel	5.8	5.0	7.5	4.2	-0.18
S.E. (20 D.F.)	1.23	2.60	3.26	2.17	0.031

Quality: Means per irrigation type

Tramline management	Greening (%)	Brown centre (%)	Hollow heart (%)	Secondary growth (%)	Fry colour (-1 = USDA 00)
Boom	4.4	7.2	7.8	8.3	-0.16
Gun	3.3	5.8	5.3	6.4	-0.18
S.E. (2 D.F.)	1.11	1.75	0.68	2.55	0.028

Conclusions

- Tramline disruption (Wonder wheel trafficked) significantly decreased runoff volume, total soil loss, sediment concentration and TON.
- Trafficked treatments significantly increased runoff volume, total soil loss, sediment concentration and TON.
- Boom irrigation showed some significant increases in total soil loss, sediment concentration and TON.
- No significant difference in yield or quality between treatments at 95 % confidence.
- Results only relevant to tested conditions full canopy, gentle slope, soil type, variety.

Laura Tippin, Leaf

Potato Trial Opportunities

The problem...

Increased rainfall variability and reduced availability of nitrogen (N) and phosphorus (P) in soils)

Increasing combined water and N or P stresses

Higher variability in rainfall

Increased risk of water shortage during summers

The European Commission has pledged to reduce the use of P fertilizers significantly in the future.

Socio-economic projections suggest a steady increase and volatility of fertilizers' prices .

Current N and P flows are negatively contributing to environmental change

SOIACE

Solutions for improving Agroecosystem and Crop Efficiency for water and nutrient use

Four year European project funded by the European Commission covering 14 countries and 25 partners

Focussing on three major European Crops:

Potato

Bread Wheat Durum wheat

SolACE is looking to create solutions to combined water and nutrient stress in crops by combing crop genotypes and management innovations to improve efficiency.

This project has received funding from the European Union's Horizon 2020 researc and innovation programme under grant agreement No 727247 (SoIACE)

Trials

Bread wheat:

Conventional production- Sweden

Organic, warm summer continental climate- Switzerland

Onventional production, Mediterranean climate- spain

Durum wheat:

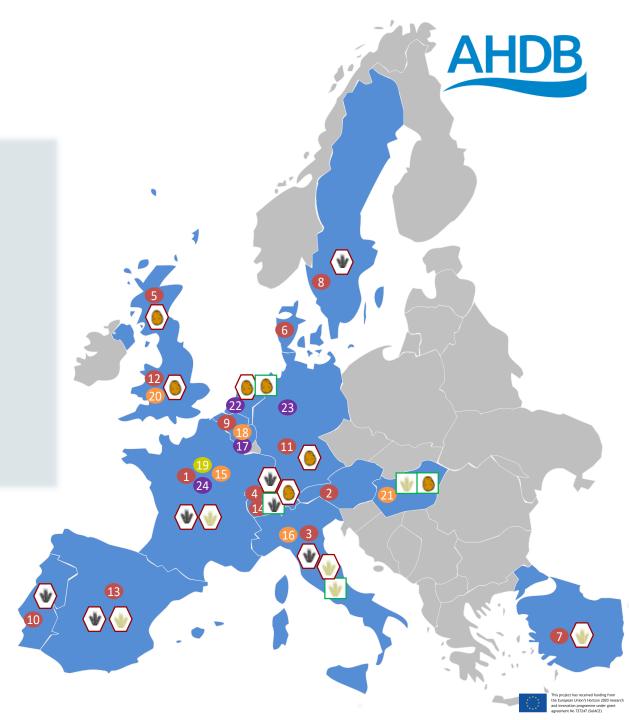
Conventional production, Mediterranean climate, france Organic production, Mediterranean climate Italy.

Potato

Conventional production, oceanic climate UK

Organic production, warm summer continental climate, Hungary.

Experimental sites


Organic

Conventional

Bread Wheat

Durum Wheat

Potato

UK Potato Trials

Workshop

- Workshop hosted at Elveden Estates on the 8th February:
- Chance to talk through the innovation that you want to test out and how the project can help to facilitate this
- The traits you look for in potato crops, influencing the genotypes chosen for trial
- The challenges you face currently in potato production and how the project can help to address these.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 727247 (SolACE)

UK Potato Trials

The Network:

- Looking for <u>4 commercial potato farms</u> to trial innovations and crop mixes, starting late 2018 for 2-3 years
- Trial farms chosen by October 2018
- We are also looking for a group of farms to take part in the 'baseline' data collection (typical inputs, yields, soil type, climate etc.)

The trial:

- The trial plot can be as big or as small as the farmer would like
- Data will be collected by the University of Newcastle
- Small nuisance fee of up to £1,000

Why be involved?

- Opportunity to contribute to solutions to new upcoming challenges
- Be part of a European project looking for solutions across a range of countries in Europe
- Trial innovative approaches on farm and discuss with other like-minded farmers

Lunch

Benchmarking: Giving you a competitive edge

Mark Topliff

AHDB Farm Economics

Content

Why benchmark?

What can you do?

How?

Why benchmark?

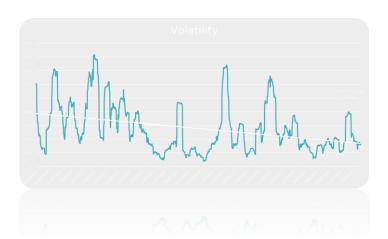
"You can't stop the waves, but you can learn to surf."

Jon Kabat-Zinn

The issue

£/tonne	Grower 1
Net margin	8

Knowing COP can help with marketing decisions


Help with business decisions such as land rental

Identify the strengths and weaknesses

Helping to survive volatility

What can you do?

Working out your costs of production

enables you to...

- Make informed business decisions
- Compare performance year-on-year
- Compare with other data
- Compare with industry targets

Important to make sure that the comparison is like for like

Grower meeting option

Help to

- share experiences & best practice
- have peer review
- accept possible need to change

How?

Farmbench.ahdb.org.uk

- Measure & record performance
- Compare performance

Multi-enterprise benchmarking

Suckler cows and beef cattle Sheep

Combinable crops

Potatoes

Forage enterprises

Dairy - in 2018

Business Enterprise Land Allocation & Basic Detail Output Variable Cost Fixed Cost Depreciation

Estimated Arable Output ②

Enterprise	На 🕢	Budgeted yield t/ha ?	Budgeted tonnes produced	Budgeted £/T 🚱	Total budgeted crop sales	By-products total £ (e.g. straw) •	Total budgeted output
Wheat (Milling Wheat)	25	9	225.00	£ 150	£33,750.00	£ 5000	£38,750.00
Wheat (Feed)	25	8	200.00	£ 110	£22,000.00	£	£22,000.00
Oilseed Rape (Oilseed Rape)	50	4	200.00	£ 220	£44,000.00	£	£44,000.00
Potatoes (packing)	30	45	4,500.00	£ 130	£585,000.00	£	£585,000.00
Potatoes (salad)	30	40	1,200.00	£	£0.00	£	£0.00
Potatoes (ware)	40	45	1,800.00	£	£0.00	£	£0.00

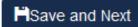
Previous

HSave and Next

Notes

Add Note

Crop Protection


	Ha €		Herbicides	Fungicides	Insecticides	Nematicides 9	Molluscicides	PGRs	Other •	Total
Total 😝	272									
1875 A (1875 A)	50	Total £	1364.72	6567.12			103.6	1188.88	632.8	9857.12
Wheat (Wheat)	56	£/Ha	24.37	117.27			1.85	21.23	11.3	176.02
Barley (spring	0.5	Total £	2261	4899.15						7160.15
barley)	95	£/Ha	23.8	51.57						75.37
Barley (winter	40	Total £	471.06	1304.28	36			280.98		2092.32
barley)	18	£/Ha	26.17	72.46	2			15.61		116.24
0-1- (0-1-)	00	Total £	803.32	1398.32	55.44			197.96		2455.04
Oats (Oats)	28	£/Ha	28.69	49.94	1.98			7.07		87.68
Oilseed Rape	40	Total £	372.06	1391.13	201.24		216.71		312	2493.14
(Oilseed Rape)	13	£/Ha	28.62	107.01	15.48		16.67		24	191.78
Potatoes		Total £	4387.12	16820.6	11878.58		2790	172.36		36048.66
(Potatoes)	62	£/Ha	70.76	271.3	191.59		45	2.78		581.43

Business Enterprise Land Allocation & Basic Detail Output Variable Cost Fixed Cost Depreciation

Potato Specific Variable Costs

			Seed certification and inspection ?	Seed treatment ?	Fleece ?	Sprout suppression	Store cleaning @	Potato levy
	На 😝	Total Cost (£) •						
Potatoes (packing)	30	Total Cost (£)						
rotatoes (packing)		£/ha						
Potatoes (salad)	30	Total Cost (£)						
rotatoes (salau)		£/ha						
Potatoos (wara)	40	Total Cost (£)						
Potatoes (ware)	40	£/ha						
	N	Non-benchmarked enterprises(£)						

Previous


Business Enterprise Land Allocation & Basic Detail Output Variable Cost Fixed Cost Depreciation

Overheads

Overhead Allocation

	Office, telephone and subscriptions	Miscellaneous business costs	Professional fees	Insurance •
Total cost (£) ?	3000.00	1503.00	1150.00	2400.00
Benchmarked Combinable Enterprises(%)	45.00	45.00	45.00	55.00
Benchmarked Potatoes Enterprises(%) (3)	55.00	55.00	55.00	45.00
Non-benchmarked enterprises(%)	0.00	0.00	0.00	0.00

Previous

Equipment Depreciation

Equipment valuation ?

Equipment type	No. of items	Name ②	Total second hand value at start of year (£)	Purchases this year (£)	Sales this year (£)	Net Value of Equipment
• Telehandler	1	andler	50000	55000	20000	85000
Other self-propelled	1	forklift	15000	0	0	15000
⊙ Tractor ▼	1	T6 175 Trad	40000	0	0	40000
● Tractor ▼	1	T6 175	50000	0	0	50000
● Tractor ▼	1	T6 165	30000	0	0	30000
● Tractor ▼	1	T7 185	40000	0	0	40000
Ridger/Bed former	1	ridger	3000	0	0	3000
Ridger/Bed former	1	bed tiller	2700	0	0	2700
Planting equipment	1	planter	5000	0	0	5000
Other specialist pol	1	destoner	20000	0	0	20000
O Potato harvester	1	Potato harve	80000	0	0	80000
Other specialist pol	1	topper	2500	0	0	2500

Add Equipment 9

Benefits of Farmbench

- Free to use
- Web-based
 - Always using latest version online
 - Can use on any internet enabled device
 - Data always kept confidential, secure and backed up
- Standardised methodology allowing you to compare consistently with others
- Only view the relevant data input pages
- Easier allocation of costs
- A variety of reports and comparisons available to help decision making

AHDB expertise, the energy and the passion

A Regional Benchmarking Officer team

- 7 RBOs located around GB
- Available to help you start benchmarking
- Point of Farmbench contact for growers
- Work across sectors
- Work with grower and farmer groups

Also, a dedicated telephone helpline will be available

SPot Farm East Results Nitrogen and Irrigation

Marc Allison and Mark Stalham

- Variety: Brooke (crisping)
- Nitrogen
 - Standard Split N
 - All N applied to top of bed pre-planting
 - All N placed on-planter
- Irrigation
 - Standard (18 mm @ 18 mm SMD)
 - Over-water (27 mm @ 18 mm SMD)
- Sand (91 % S, 5 % Z, 4 % C, 1.9 % OM)
- Destoned: 3 April Planted: 24 April Emerged: 24 May

Do you think the following statement about splitting N applications is still true?

"splitting the dressing was inferior to applying it all to the seedbed in practically all experiments on medium and heavy soils.....there were (very small) advantages from splitting the dressing on half the experiments on light soils"

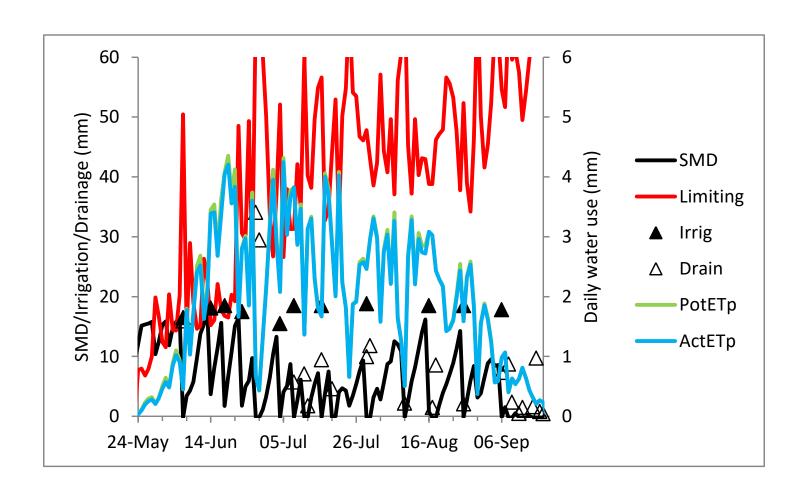
Cooke *et al.* (1957)

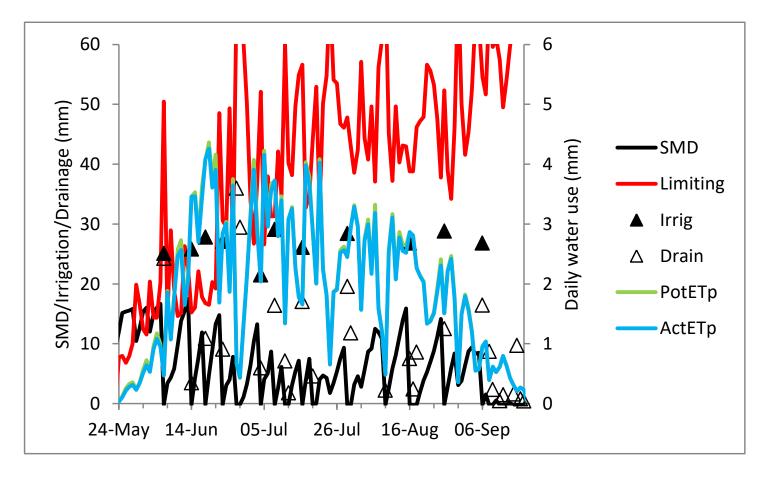
N applications

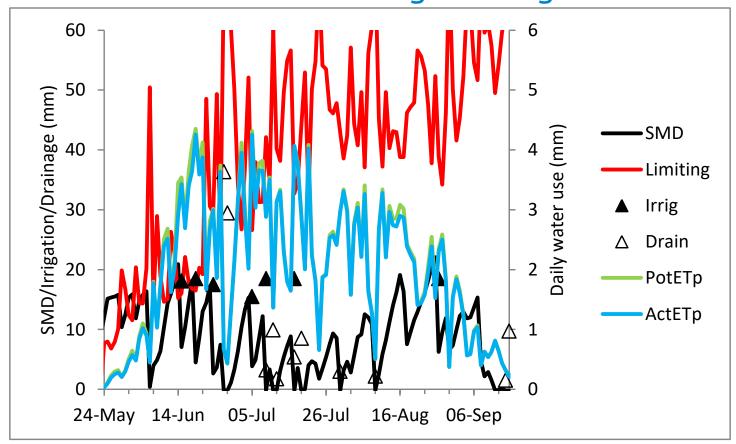
All treatments received 20 kg N as DAP on 10 April

- Standard split N
- 60 kg N as N30S10 on 18 April
- 100 kg N as N30S10 on 25 May (emergence)
- 40 kg N as N37 (diluted 1:4) on 21 June (10 mm tuber stage).
 N.B. 80 kg N applied to rest of field not 40 kg.
- Seedbed N
- 60 kg N as NH4NO3 by hand on 13 April
- 140 kg N as N30S10 on 18 April
- Placed N
- 200 kg N on-planter as tank-mix 75 % N30S10 + 25 % N37 on 24 April

Fertilizer spreading/spraying




N * Irrig: soil moisture deficits a) Standard irrigation


N * Irrig: soil moisture deficits a) Standard irrigation

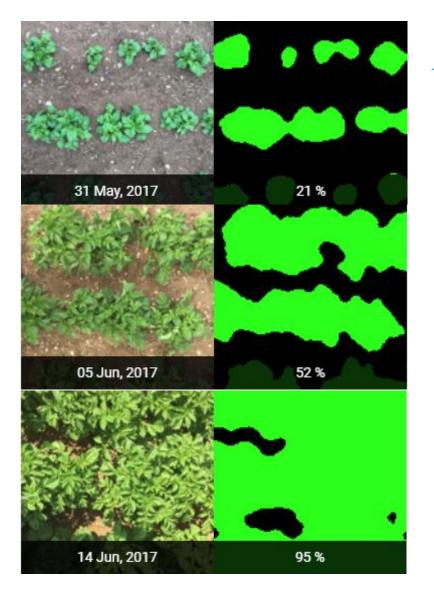
Best practice schedule:

Rules: 1. If >50 % chance of rain the following day, delay irrigation

2. Have knowledge of long-term ET

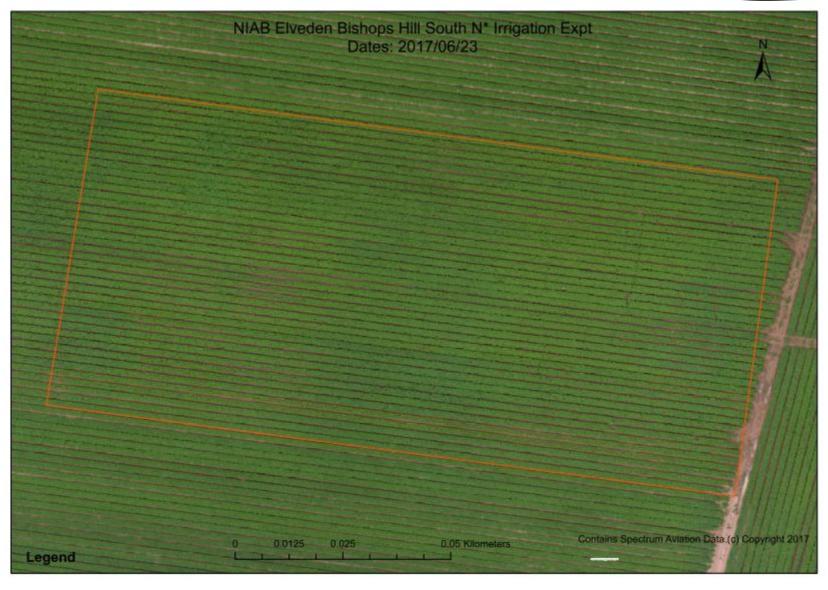
Comparisons: Standard, Over-water, Best Practice

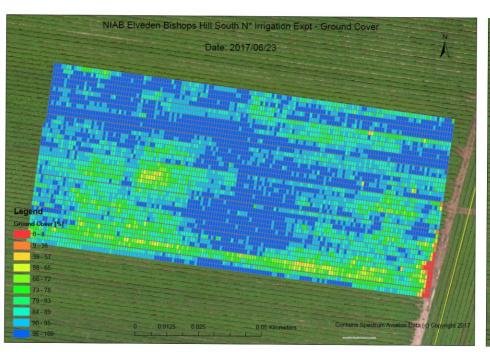
	Irrigation (mm)	Drainage (mm)	Water use (mm)	Efficiency† (%)	Modelled yield (t/ha)
Standard	199	182	232	98.0	61.2
Over-water	296	278	229	98.2	60.4
Best Practice	127	115	230	97.2	60.7

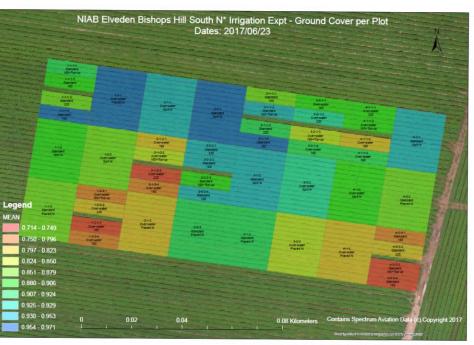

Best Practice: yield reduced but drainage and irrigation reduced by c. 70 mm

†Efficiency in meeting water requirement of canopy and ET demand

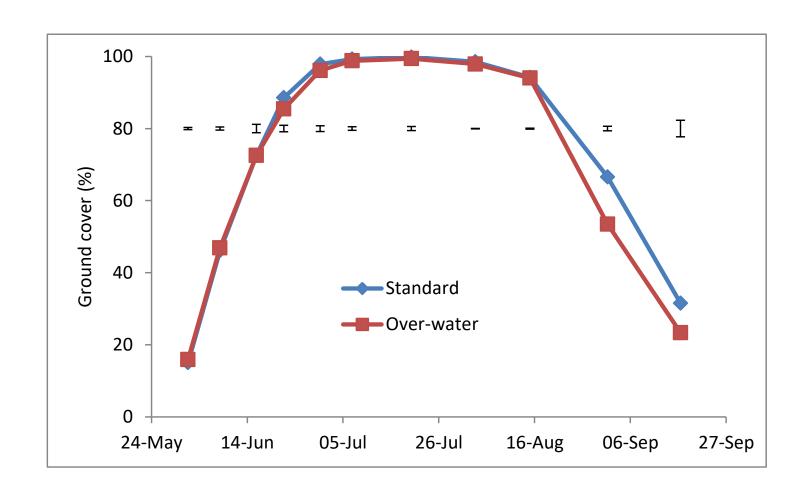
Potato Crop Management

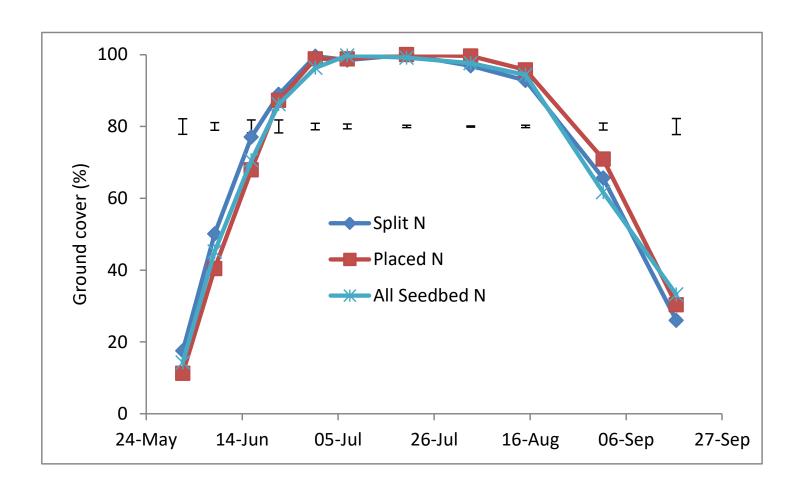



Ground cover 23 June 2017: any obvious differences?



GC converted from NDVI from fixed-wing aircraft




Nitrogen x Irrigation: ground covers a) Irrigation

Nitrogen x Irrigation: ground covers b) Nitrogen

Ground cover duration (main effects)

Irrigation	Nitrogen	GC duration (% days)
Standard		8914
Over water		8464
S.E. (3 D.F.)		99.2
	Split	8717
	Seedbed	8618
	Placed	8733
	S.E. (12 D.F.)	103.7

Nitrogen x Irrigation: yield

Irrigation	Nitrogen	Stems (000/ha)	Tubers >10 mm (000/ha)	Total yield (t/ha)	Yield >40 mm (t/ha)	Tuber DM (%)	DM yield (t/ha)
Standard	Split	91	442	65.0	63.5	24.4	15.9
	Seedbed	84	395	63.1	61.9	24.3	15.3
	Placed	77	334	59.8	58.7	25.0	15.0
Over water	Split	86	399	60.0	58.5	24.5	14.7
	Seedbed	77	376	61.3	60.2	25.2	15.4
	Placed	67	357	53.9	52.7	24.9	13.4
S.E. (12 D.F.)		6.8	35.4	4.13	4.04	0.29	1.00
S.E. (12 D.F.; same Irrig)		7.3	31.7	3.58	3.46	0.35	0.84

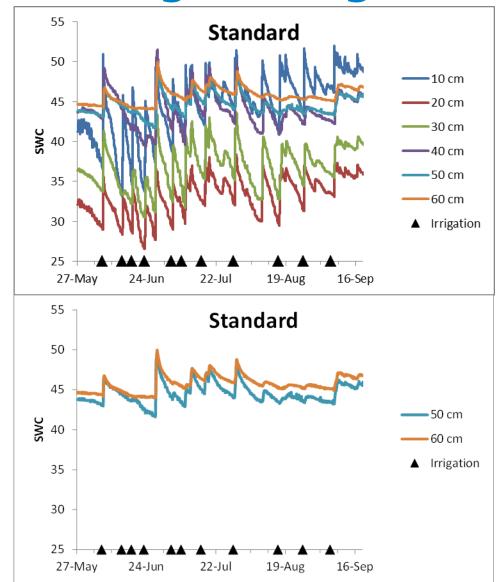
Was 220 kg N sufficient? Comparison vs farm 260 kg N

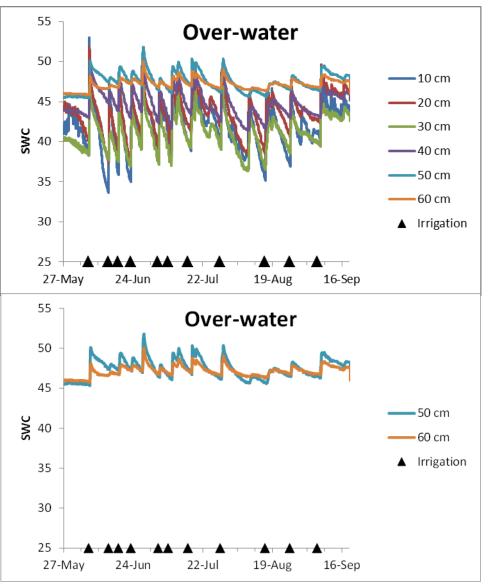
Irrigation	Nitroge n	Stems (000/ha)	Tubers >10 mm (000/ha	Total yield (t/ha)	Yield >40 mm (t/ha)	Tube r DM (%)	DM yield (t/ha)
Standard	Split 220	91	442	65.0	63.5	24.4	15.9
S.E. (12 D.F.)		7.3	31.7	3.58	3.46	0.35	0.84
Standard	Split 260	57	349	64.8	63.0	23.6	15.2
S.E. (3 D.F.)		7.6	69.5	2.08	3.20	0.95	0.57

Fry colour No effect of N or irrigation on fry quality

			Defects (% w/w)				
Irrigation	Nitrogen	Hunter Lab L value	Bruise	Internal sugar	External sugar	Total	
Standard	Split	75.0	1.3	0.7	2.0	5.3	
	Seedbed	73.3	0.0	0.0	0.9	2.1	
	Placed	72.6	0.0	0.0	4.0	4.0	
Over water	Split	73.4	0.0	0.3	2.7	3.1	
	Seedbed	72.7	0.8	0.0	1.2	4.2	
	Placed	73.8	0.0	0.7	0.5	0.5	
S.E. (12 D.F.)		0.99	0.53	0.46	1.05	1.91	
S.E. (12 D.F.; same Irrig)		0.93	0.63	0.45	1.14	1.96	

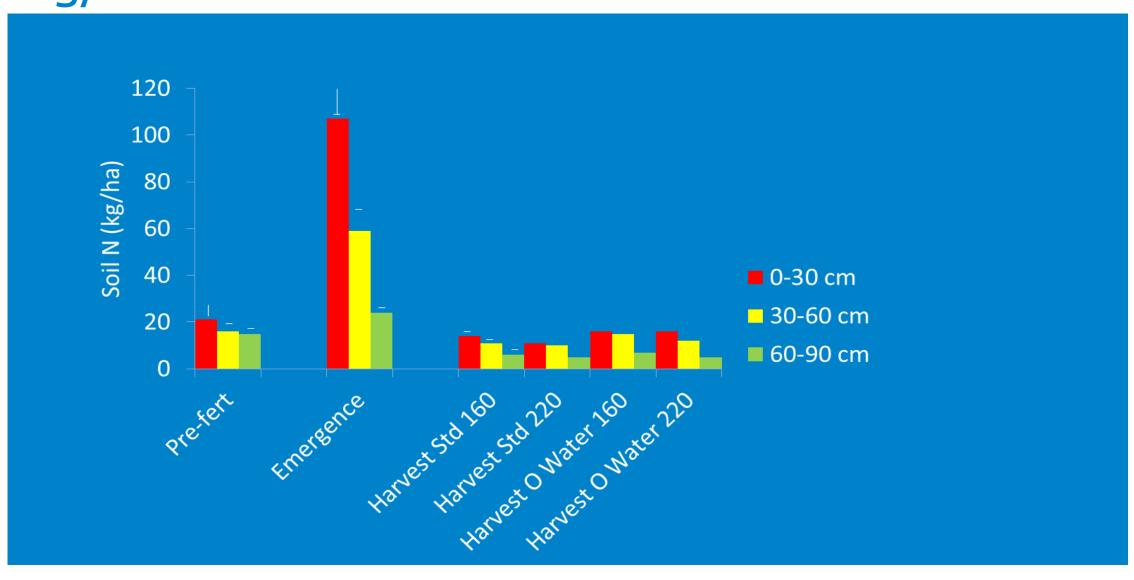
Summary: yield and quality



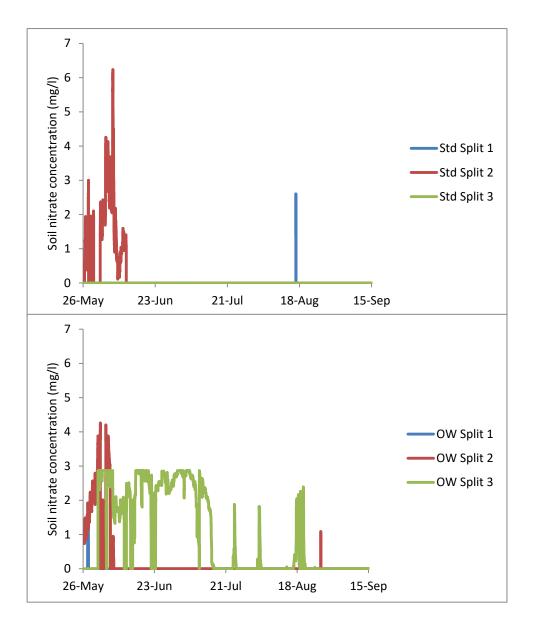

 No effect of irrigation regime on early ground cover development, but overwatering caused earlier senescence and reduced GC duration (but only by 3.5 days at 100 % GC)

- Placed N slightly later in developing GC than Split or Seedbed (but did emerge slightly later and maintain higher GC until desiccation, with no overall effect on GC duration)
- •
- No effect of irrigation regime on yield or grading but overwatering increased tuber [DM]
- •
- No effect of N method on yield but Placed numerically lower than Split or Seedbed
- No
- No effect of irrigation or N method on fry quality

Agrii Soil Water Sensor Data Showing drainage events at 50-60 cm

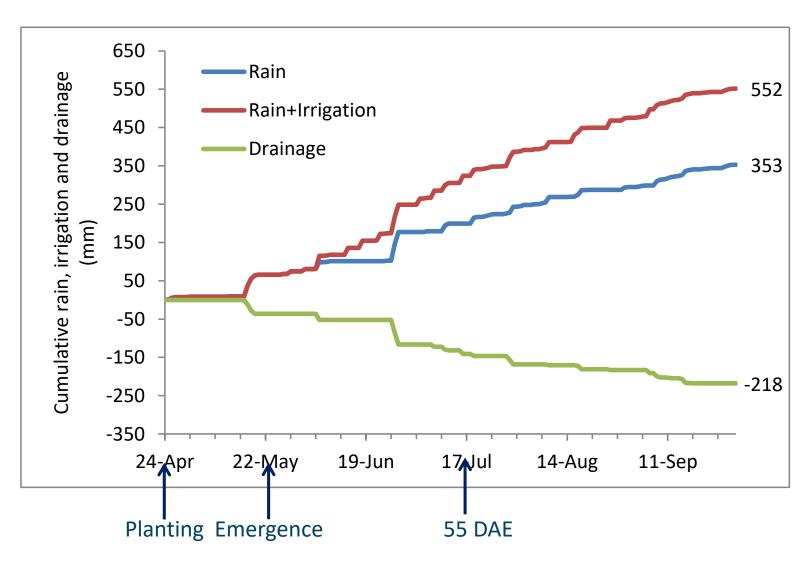


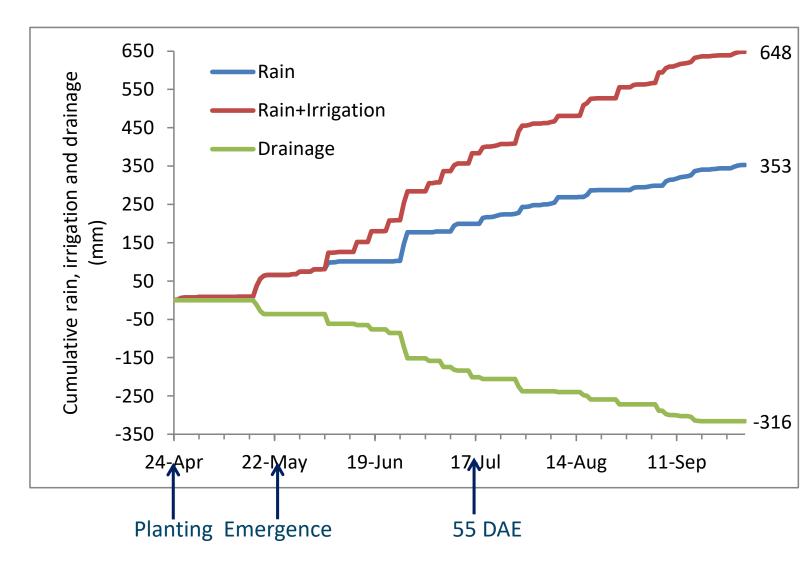
Drainage


- All Over-water irrigation events recorded drainage at 50 and 60 cm
- Some Standard irrigation events recorded drainage at 50 and 60 cm

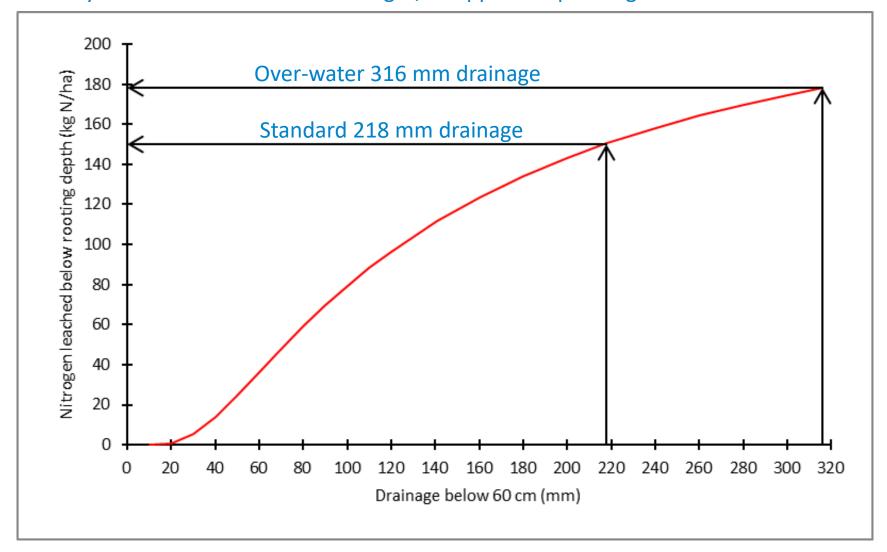
Soil mineral N from soil cores 7 kg/ha MORE N in Over water at end of season

Soil NO₃ sensors (Agrii/PBL Technology)



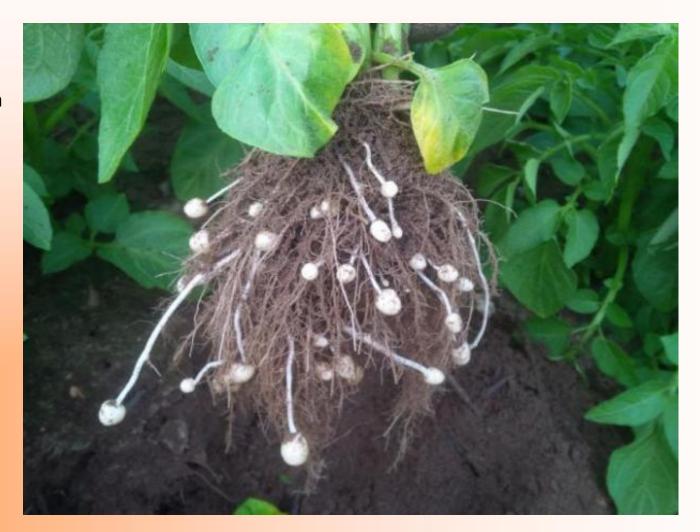

Water input and drainage Standard irrigation and Split N

Water input and drainage Over water irrigation and Seedbed N



Leaching of N fertilizer below 60 cm using Burns' (1975) model

Loamy Sand textured soil with 260 kg N/ha applied at planting


Summary: drainage and soil N

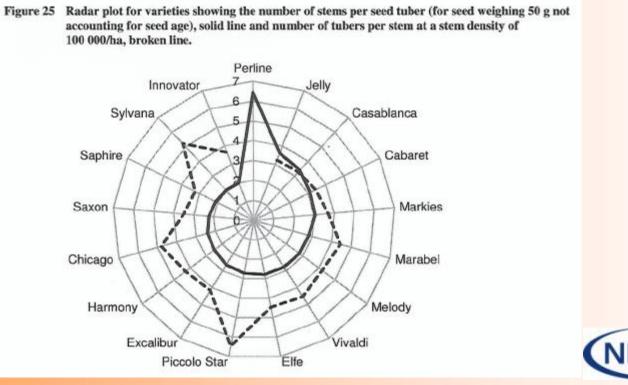
- Drainage greater than in 2016
- Some drainage following Standard irrigation in 2017
- Only 32 kg/ha N left in soil at end of season (started with 52 kg)
- Little useful data from soil NO₃ sensors in 2017
- Burns model indicates potential loss of 150-180 kg N/ha during season IF NO CROP UPTAKE but in reality uptake would be close to 200 kg N/ha

VCS (UK) Ltd

Commissioned to complete a tuber number demonstration

Why are Tuber numbers important?

- ➤ Maximise yield of a specific size requirement
 - Under 42mm size
 - 65 85mm Baker fraction
 - Tuber count specification
 - Processing length tolerance e.g. Russet Burbank spec 1 %>90mm
- ➤ To achieve an intended harvest date e.g. Earlier Harvest lower tuber numbers per seed/seed piece
- Reduce Seed requirement


Which growing aspects influence tuber numbers?

Genetics (Variety)- within growers control

Which growing aspects influence tuber numbers?

Genetics (Variety)- within growers control

D.Firman CUPGRA Annual Report 2012

Genetics - Variety effects stem numbers per seed and tubers per stem

Which growing aspects influence tuber numbers?

- Genetics (Variety)- within growers control
 - ➤ Growing Environment of Seed Crop partially within growers control
 - Chronological age of Seed Crop
 - Disease status of seed crop e.g. Rhizoctonia, Virus PVY
 - Growing Environment of Daughter crop partially within growers control
 - Seed size
 - Seed population (rate)
 - Seed spatial arrangement
 - Soil conditions
 - Fertiliser P & N
 - Growing Environment Weather
 - Planting Date
 - Treatments Ethylene, Amistar (azoxystrobin- in furrow), Monceren DS (pencvcuron)

VCS POTATOES LTD

Physiological age of seed

Which growing aspects influence tuber numbers?

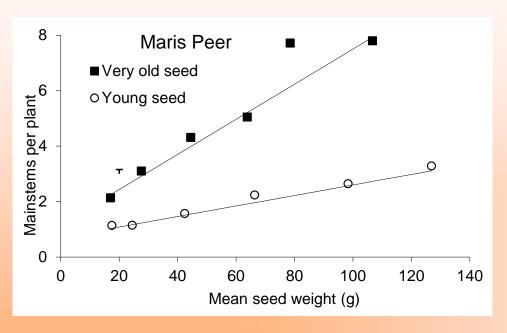
- Genetics (Variety)- within growers control
 - ➤ Growing Environment of Seed Crop partially within growers control
 - Chronological age of Seed Crop
 - Disease status of seed crop e.g. Rhizoctonia, Virus PVY
 - Growing Environment of Daughter crop partially within growers control
 - Seed size
 - Seed population (rate)
 - Seed spatial arrangement
 - Soil conditions
 - Fertiliser P & N
 - Growing Environment Weather
 - Planting Date
 - Treatments Ethylene, Amistar (azoxystrobin- in furrow), Monceren DS (pencycuron)

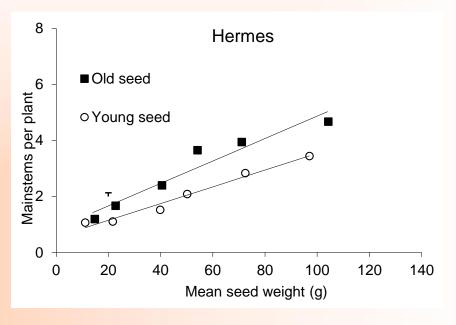
VCS POTATOES LTD

Physiological age of seed

Site 1 – Markies & Shepody

- ➤ Markies Chronological age, Physiological Age
 - Stock 1 1st Emergence 8th June 'Old'
 - Stock 2 1st Emergence 22nd June 'Young'
 - Both Physiologically aged 'chitted' to 245 day degrees
- Shepody Chronological age
 - Stock 1 1st Emergence 27th May 'Old'
 - Stock 2 1st Emergence 21st June 'Young'


Physiological Seed ageing - Chitting


- > Temperature and light at dormancy break affect sprout number (apical dominance) when pre-sprouting seed
- ➤ Bakers Higher temperatures at dormancy breakinitial chitting period 14-16 Deg C will induce apical dominance followed by storage at 5-6 deg C to avoid over 'ageing' of seed (darker conditions will also induce increased apical dominance)
- ➤ 'New/salads' Ideally chit at a much cooler temperature 6-8 deg C at dormancy break promoting many sprouts to develop at a much slower rate, reduce temperature following the observation of sprouting to 4-5 deg C
- Generally Chitting will reduce the potential tuber numbers of a particular seed lot

Chronological age of Seed Crop

- Chronological age Date from Tuber Initiation of seed crop to planting date of daughter tubers
- Obtain TI information from Seed suppliers to optimise planting order
- Procure seed from early seed growers (to increase tuber numbers)
- Grow 'Home saved Seed' Suffolk target planting date Mid March

Source: Firman

Site 1 – Markies & Shepody

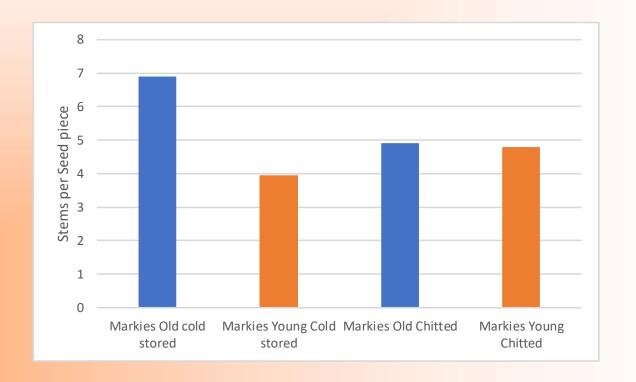
- > Field Bishop Hill's Middle
 - Soil Type Loamy Sand
 - Planting date 19th April
 - Shepody Seed Size 30x45 whole, Population 41,300/ha
 - Markies Seed Size 45x55, Population 34,200/ha

Single plot demonstration – harvest 6th July, 1st August and 6th September

- 10m 3 Row planted Bed, guard row on adjacent bed
- Assessment Stem numbers/tuber numbers all 3 dates
- Assessment yield 6th September

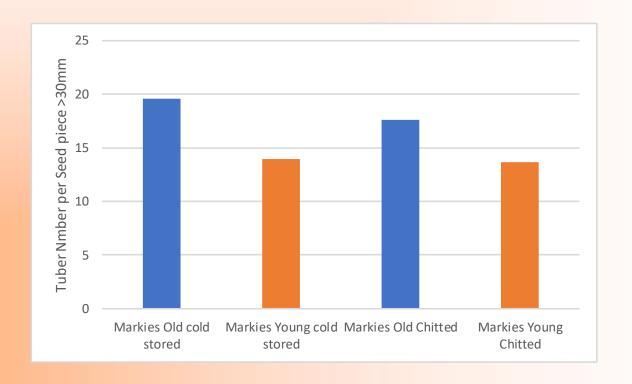
Site 1 – Markies & Shepody

Markies 'Old' Chitted

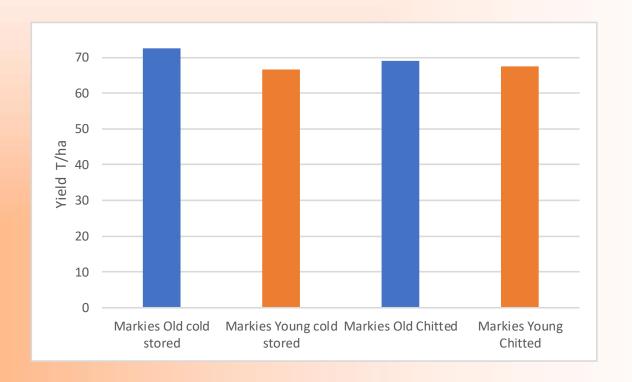


Markies 'Old' Cold store

Site 1 – Markies


> Stem numbers per seed piece

Site 1 – Markies


> Tuber Numbers per seed piece

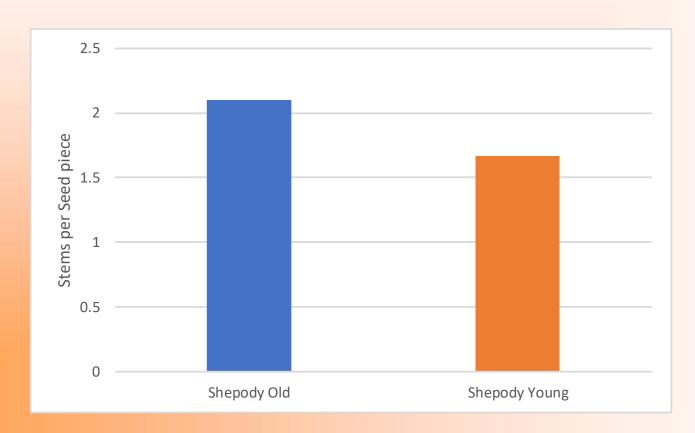
Site 1 – Markies

> Yield T/ha small differences

Site 1 – Shepody

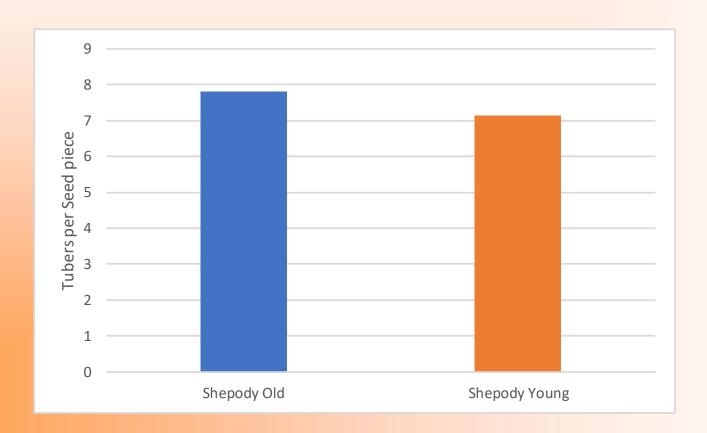
> Similar Ground cover development

Shepody 'Old'

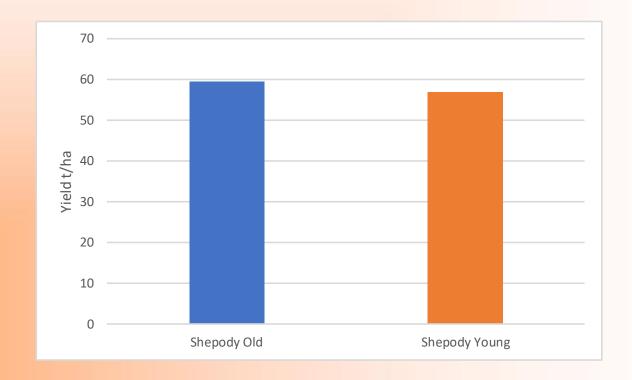


Shepody 'Young'

Site 1 – Shepody


> Stem numbers per seed piece

Site 1 – Shepody


> Tuber Numbers per seed piece

Site 1 – Shepody

Yield T/ha – 'Old' seed 4.5% higher

Site 2 – Maris Peer

- > Field Yorks
 - Soil Type Loamy Sand
 - Planting date 19th April
 - Seed Size 40x45mm
 - Planting population 96,470/ha

Single plot demonstration – harvest 6th July, 1st August and 6th September

- 10m 3 Row planted Bed, guard row on adjacent bed
- Assessment Stem numbers/tuber numbers 6th July/1st August
- Assessment yield 1st August/6th September

Site 2 – Maris Peer

- ➤ Maris Peer Chronological age, Physiological Age
 - Stock 1 Tuber Initiation 18th May 'Old'
 - Stock 2 Tuber Initiation 20th June 'Young'
 - Both Stocks Physiologically aged 'chitted' to 265 day degrees
 - Both Stocks Ethylene treatment 'Accumulator' 20th December-20th April
 - Both Grown in East Suffolk from identical Pre Basic input stock

Ethylene Seed Treatment (Accumulator from Restrain company)

- Ethylene is a plant hormone which controls certain processes within plant such as fruit ripening, opening of flowers, abscission of leaves, induces root hair growth, induces seed germination and prevents stem elongation.
- The raising of temperature promotes the seed to break dormancy but the inhibition of stem elongation caused by ethylene promotes all of the eyes around a seed tuber to initiate growth. Stem elongation is limited due to ethylene
- Storage CO2 should be monitored and stores 'flushed' with fresh air if levels exceed 3000ppm as seed death can occur.
- Planting should take place 2-3 days after removing from store

Ethylene Seed Treatment (Accumulator from Restrain company)

- Storing seed within an atmosphere of approx. 9ppm Ethylene (plant hormone) increases stem numbers of many varieties
- 'Slow start' ramp up required
- Storage temperature increased to 5 5.5 Deg C following 'Slow' start period

Site 2 – Maris Peer

Stems/seed piece

Site 2 – Maris Peer

- > Tuber per seed piece
 - 32 % decrease chitting, 16-24% increase due to ethylene treatment

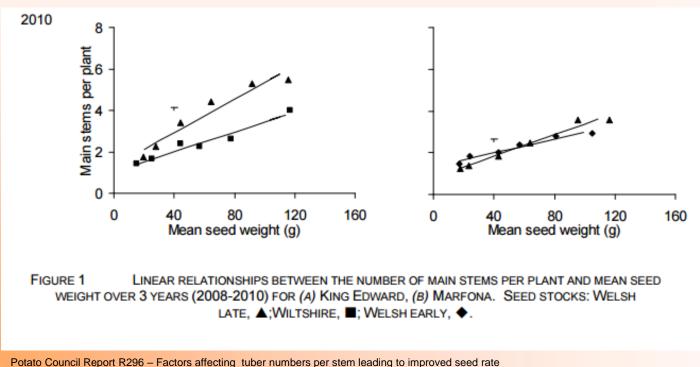
Site 2 – Maris Peer

Site 2 – Maris Peer

➤ Yield T/ha 10% increase 'young', 12% increase 'old' Chitting, limited differences ethylene

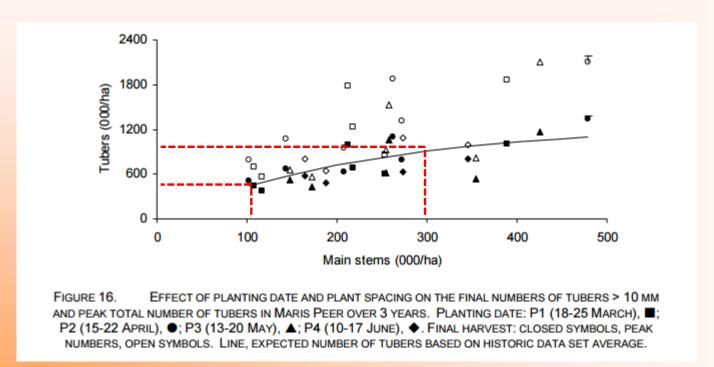
Site 2 – Maris Peer

Tuber size distribution – high yield if crop fully developed to size spec


Ethylene Seed Treatment & Early 'Old' Seed

Pre Planting		At Planting			Post Planting		
Variety	♣						
Physiological Age – Chitting	•						
Chronological Age							
Ethylene seed treatment	1						
		Spatial arrangement – inc rows					
		Planting Date					
		Seed rate/Seed Size	₽				
		Seed bed compaction	↓				
		Phosphate	??				
		Rhizoctonia Control					
					Rhizoctonia control		
					Nitrogen deficiency	—	
					Novel Products		
					Excessive Stress – e.g. waterlogging	—	

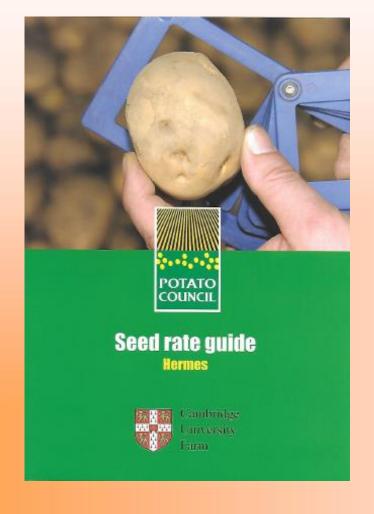
Seed Size

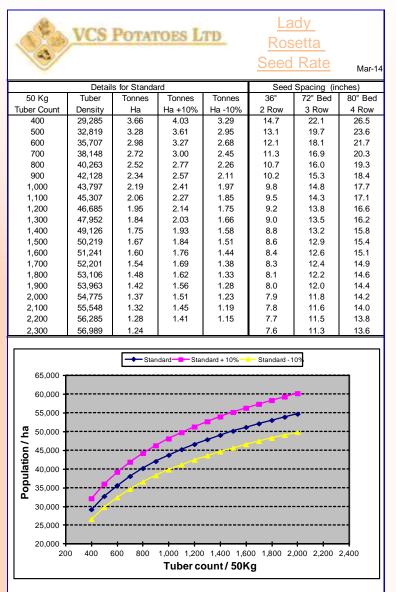


Potato Council Report R296 – Factors affecting tuber numbers per stem leading to improved seed rate recommendations – D.M. Firman S.J. Daniells - February 2011

Increasing seed size increases the stem numbers per plant for all varieties but with different relationships

Stem Numbers – Tuber Numbers (within a particular variety)



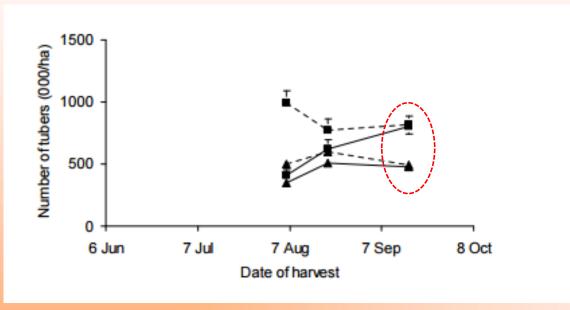

Potato Council Report R296 – Factors affecting tuber numbers per stem leading to improved seed rate recommendations – D.M. Firman S.J. Daniells - February 2011

- ➤ Increase in mainstems 100,000 to 300,00 increase in daughter tubers 500,000 to 950,000
- Within a variety either increase stem numbers or tuber numbers/stem

Seed Density – Rate T/ha

Seed Density – Rate T/ha AHDB

- > Seed rate in t/ha for a given tuber count (in 50kg)
- > Assumption of an intended average tuber size
- Variation for an intended crop yield
- Variation for seed chronological age


Seed rate guide for Hermes for specified yield with a target average tuber size of 58.5mm² and a planting date of 15 April

			Yield (t/ha)			
	50			55	60	
Tuber count / 50kg	Plant density (000/ha)	Seed rate (Vha)	Plant density (000/ha)	Seed rate (t/ha)	Plant density (000/ha)	Seed rate (t/ha)
		Early see	d (emerge	d 1 May)		
2400	80	1.67	98	2.05	123	2.57
2000	71	1.79	87	2.19	110	2.74
1600	61	1.91	75	2.34	94	2.94
1200	50	2.06	61	2.53	76	3.17
1000	43	2.15	53	2.63	66	3.29
900	39	2.19	48	2.68	61	3.36
800	36	2.24	44	2.74	55	3.43
700	32	2.29	39	2.80	49	3.51
600	28	2.34	34	2.86	43	3.58
500	24	2,39	29	2.92	37	3.66
400	20	2.44	24	2.99	30	3.75
		Standard se	ed (emerg	ed 1 June)		0.1.0
2400	87	1.81	106	2.21	133	2.78
2000	77	1.93	95	2.37	119	2.97
1600	66	2.08	81	2.54	102	3.19
1200	54	2.24	66	2.75	83	3.44
1000	47	2.34	57	2.86	72	3.58
900	43	2.38	53	2.92	66	3.66
800	39	2.44	48	2.98	60	3.74
700	35	2.49	43	3.05	54	3.82
600	31	2.55	37	3.12	47	3.91
500	26	2.61	32	3.19	40	4.00
400	21	2.67	26	3.27	33	4.09
and the same	- tell-is	Late seed	d (emerged	1 July)		-
2400	94	1.96	115	2.40	145	3.01
2000	84	2.10	103	2.57	129	3.22
1600	72	2.26	89	2.77	111	3,47
1200	59	2.45	72	3.00	90	3.76
1000	51	2.55	62	3.12	78	3.92
900	47	2.61	57	3.19	72	4.00
800	43	2.67	52	3,26	65	4.09
700	38	2.73	47	3,34	59	4.19
600	34	2.79	41	3.42	51	4.28
500	29	2.86	35	3.50	44.	4.39
400	23	2.93	29	3.59	36	4.50

Variage base did in the part with the greater of yeld and yeld and yeld in the part of the

Tuber number Variation due to seed spacing (density)

Potato Council Report R296 – Factors affecting tuber numbers per stem leading to improved seed rate recommendations – D.M .Firman S.J. Daniells - February 2011

Effect of planting density on number of tubers ▲ 40cm spacing, ■ 20cm spacing

