

Boosting beneficials through the use of flowering strips seminar

Strategic Farm Week - Winter 2020 Webinar

Rob Fox, Mark Ramsden, Hannah McGrath and Teresa Meadows

Housekeeping

Strategic Farm Week – Winter 2020

ahdb.org.uk/sfweek-winter-2020

BASIS/NRoSO Points

Name; BASIS Account No; Postcode

2 points

Name; NRoSO Member No; Date of Birth; Postcode

Format

Rob Fox Squab Hall Farm & Strategic Farm West Host
Introduction to the flowering strips work and reasoning behind the demonstration

09:20 – 09:50

Mark Ramsden *ADAS Crop Scientist*Harvest 2020 results and using these on-farm

09:50 – 10:00

Hannah McGrath *PhD researcher, Rothamsted Research*Using flowering strips in carrot crops

10:00 – 10:20

Panel discussion with speakers, Brian
Barker and questions from the audience

Your host...
Teresa Meadows
Knowledge Exchange
Manager (East Anglia)

Handouts

FARMEXCELLENCE

Strategic Cereal Farm West Harvest 2020 Report

pests and natural enemies in field crops

Insect Monitoring

Insect monitoring is an important part of IPM. Pest monitoring can be used to determine crop risk and help make management decisions. Monitoring for beneficial insects can be useful to understand the impact of management practices and to assess the level of natural pest control.

For more information, visit: ahdb.org.uk/knowledge-library/encyclopaedia-of-pests-and-natural-enemies

Pitfall traps

 Choose a suitable site for your trap.
 Catches will be higher nearer to
 undisturbed habitats (e.g. field margins). Choose somewhere where it won't be disturbed by walkers or wildlife.

- Dig a small hole with the trowel and place the empty cup inside
- 2. Dig a small hole with the rowel and place the empty cup inside.
 5. Ensure the top of the cup is level with the soil surface so that invertebrates are surface debris around the cup and replace any disturbed surface debris around the edge.
 6. Heaving 4-48rs place some small modes in base of the cup to act as shelter for smaller inacets (otherwise the beetles might set each other!). It is best to leave overright are many species are normal. Ensure the rock cannot be used by the
- beeties to climb up and escape.
 If leaving for more than 24hrs, half fill the cup with water and a drop of washing up liquid/detergent. This will break the surface tension so that any insects falling in will drown quickly. This method is likely to catch more insects as fewer will
- escape.

 6. Mark the location of the trap so you can easily find it.

 7. When collecting, empty the trap into a Tupperware container to easily see what has been caught.

Cereals

	Cultural control	Monitoring	Thresholds
Summer aphids	Provide habitat for natural enemies, particularly parasitic wasps Minimum tillage	AHDB Aphid News Visually examine 100 randomly chosen tillers	50% of tillers infested before GS 61, 66% of tillers infested from GS61 to 2 weeks before the end of grain fill
Autumn aphids	Later sowing date Minimum tillage Grass weed control Tolerant varieties	AHDB Aphid News Visually examine at least 50 randomly chosen plants Sticky/yellow water traps	None – spray if aphids present
Cereal midges	Resistant varieties Rotation Prioritise group 1&2 and seed wheats Encourage natural enemies	Pheromone traps between GS45-61 Part crop and count midges	>120 male midges/trap/day in pheromone traps Feed crops: 1 midge/3 ears, Other crops: 1 midge/6 ears
Wireworm	Rotation (highest risk after grassland) Inversion tillage Rolling	Take 20 10cmx15cm soil cores per 4ha area Alternatively, baited traps available for adults (pheromone) & larvae (plant matter)	Seed treatment at >750,000/ha Damage likely regardless at >1.25 million/ha
Wheat bulb fly	Earlier sowing date Higher seed rate Avoid bare soil July-Aug, delay cultivation	Take 20 10cmx15cm soil cores per 4ha area AHDB wheat bulb fly survey Sticky/yellow water traps	Seed treatment may be necessary when egg numbers >1 million/ha, or if crop was sown Jan-Mar
Frit fly	Early sowing spring oats Rolling spring cereals 4 weeks between ploughing grass & drilling cereals	Check grass/stubble for eggs/larvae before ploughing Crop inspection Sticky/yellow water traps	>10% plants showing damage
Yellow cereal fly	Sow late near woodlands Aim for 200 plants/m²	Crop dissection	Economic impact generally low
Leatherjackets	Cultivation July-Aug (where risk is evident)	Take 20 10cmx15cm soil cores per 4ha area Drive 10cm drainpipe into soil and part fill with brine - leatherjackets float to surface	50 leatherjackets/m² for spring cereals >50 leatherjackets/m² for OSR Or 5 in 12 pipes
Slugs	Cultivation & rolling Increase sowing depth Clear surface residue	Nine refuge traps (13 for fields >20 ha) in a 'W' pattern	Four or more slugs per trap

Overview of pests & natural enemies

Cereals

	Ground beetles	Rove beetles	Ladybirds	Solider beetles	Parasitoid wasps	Web- spinning spiders	Non web- spinning spiders	Hoverfly larvae	Lacewing larvae	Predatory flies	Birds
Summer aphids											
Autumn aphids											
Cereal midges											
Wireworm											
Wheat bulb fly											
Frit fly											
Gout fly											
Yellow cereal fly											
Leatherjackets											
Slugs											

Oilseed Rape

	Ground beetles	Rove beetles	Ladybirds	Solider beetles	Parasitoid wasps	Web- spinning spiders	Non web- spinning spiders	Hoverfly larvae	Lacewing larvae	Predatory flies	Birds
Aphids											
Cabbage stem flea beetle											
Pollen beetle											
Cabbage seed weevil											
Rape winter stem weevil											
Brassica pod midge											
Cabbage stem weevil											
Cabbage root fly											
Slugs											

For more information, visit: ahdb.org.uk/knowledge-library/encyclopaedia-of-pests-and-natural-enemies

Session objective

Use the Strategic Farm learnings to-date to start to look at pests and beneficials across your farm landscape.

Q: What would you like to know by the end of this session?

Flowering strips – introduction and reasoning

Rob Fox, Squab Hall Farm and Strategic Farm West Host

Flowering strips trial West

East

Flowering strips trial - West

Pests, natural enemies and flower strips AHDB Strategic Farms 2019-20

Dr Mark Ramsden

19 November 2020 www.adas.uk

Objectives

Objective 1 - Investigate the variation of slugs, cereal aphids and their respective natural enemies.

Objective 2 – Assess the establishment of the flowering strips

Objective 3 – Assess the impact of in-field flowering strips on yield

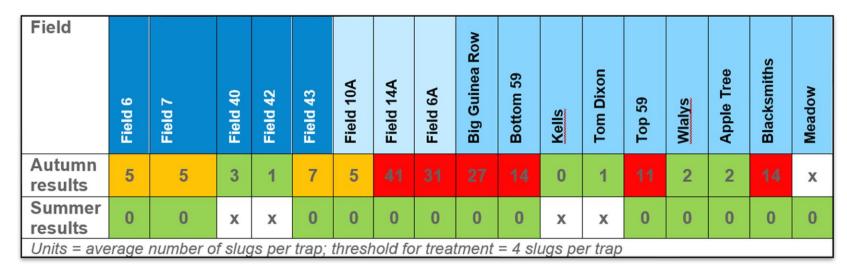
Assessments

Slug trap using chicken layers' mash as bait

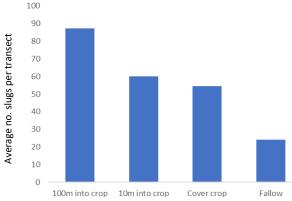
Visual assessment of aphids on cereals

Pitfall trap used to collect ground dwelling invertebrates

Assessment of plant species numbers


Yield assessment using combine yield maps

Slugs


Key message

- Slug abundance was relatively low at SFW.
- Variation was high within and between farms.
- Slug assessments should always be carried out per field, ideally treating only areas of high activity.

Grey field slug *Deroceras reticulatum*Most common species recorded.

Average number of slugs per transect at 100m into establishing crops, 10m into establishing crops, in cover crops or in fallow land, in October 2019.

Ground dwelling beneficials

Group 1

8-18mm General predators Open habitat

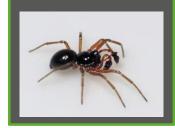
15-25mm General predators Mixed habitat

4-9mm Seed eaters Dense habitat

3-5mm Springtail predators Mixed habitat

5-9mm General predators Dense habitat

Group 6


3-10mm General predators Mixed habitat

5-10mm Omnivores Dense habitat

Money spiders

>5mm General predators Structured habitat

Ground spiders

6-8mm General predators Dense habitat

Overall findings

		Total	Field 6	Field 7	Field 40	Field 42	Field 43	Field 10A	Field 14A	Field 6A	Big Guinea Row	Bottom 59	Kells	Tom Dixon	Top 59	Walxs	Apple Tree	Blacksmiths	Meadow	Shrub	Paddus
Slugs	Autumn results	169	5	5	3	1	7	5	41	31		14	0	1		2	2	14	х	х	х
	Summer results	0	0	0	х	х	0	0	0	0	0	0	х	х	0	0	0	0	0	х	х
Group 1 Generalist predatory ground beetles,	Autumn results	182	12	12	6	18	43	18	3	13	1	4	2		14	2	18	11	х	х	х
eating anything they can catch.	Summer results	1026	308	103	х	х	161	114	123	121		1	х	х		48		18	7	х	х
Group 2 Large predatory ground beetles,	Autumn results	0	0	0			0	0	0	0		0	0		0	0	0	0	х	х	х
eating slugs, worms, and other invertebrates	Summer results	34	2	1	х	х	2	0	0	0	8	0	х	х		12	1	8	0	х	х
Group 3 Seed eating ground beetles	Autumn results	1	0	0	0	0	1	0	0	0			0	0		0	0	0	х	х	х
	Summer results	20	2		х	х	0	0	0	0		0	х	х	1	1		1	15	х	х
Group 4 Small predators, mainly eating	Autumn results	20	1	0	0	0	0	0	0	0	2	0	0	1	3	1	3	9	х	х	х
collembola (springtails) and other small invertebrates	Summer results	3	0	0	х	х	0	0	0	0	0	1	х	х	0	0	0	2	0	х	х

Aphid assessments

		Total	Field 6	Field 7	Field 40	Field 42	Field 43	Field 10A	Field 14A	Field 6A	Big Guinea Row	Bottom 59	Kells	Tom Dixon	Top 59	Walxs	Apple Tree	Blacksmiths	Meadow	Shrub	Paddus
Cereal aphids	GS60 results	1707	177	223	424	29	12	х	х	х	х	х	194	141	х	109	6	7	х	219	166
Cereal aphid mummies	GS60 results	154	28	20	13	13	9	х	х	х	х	х	10	15	х	9	2	4	х	19	12
Cereal aphid predators	GS60 results	71	2	18	2	17	2	х	х	х	х	х	3	3	х	4	0	0	х	12	8

[→] Numbers of aphids per 200 tillers – treatment threshold would be 1,000 per 200 tillers

Actions

Action	Description	When
Pitfall	Install two pitfall traps, one in the field margin and one in the adjacent	Sep – Nov
trapping	crop. Count what you see in each and consider what might be influencing the differences.	Apr – Jul
Slug bait traps	Monitor slug abundance over time, and compare changes in different locations. Consider what might be driving any differences you see.	Sep – Nov
Review your landscape	Identify all the areas on and around your farm where floral resources are available. Observe the different insects in and around these habitats and compare what you see with areas far away from floral resources.	May - Jul
Create habitat for beneficial species	In most agricultural landscapes there is often a lack of suitable floral resource for beneficial insects. Aim for a spread of resources across the farm, rather than all at one site, and select plants known to be beneficial – flowers that are good for bees might not be good for natural enemies. Don't expect immediate results – it can take a few years for populations to build up.	Drill in spring or early autumn for flowering the following year.

Plans for 2021

- Monitoring changes in species around flowering strips to demonstrate impact
- Repeat monitoring of ground beetles to see any changes in species or abundance in and around the flowering strip

Monitor other pests, beneficials and pollinators.

Hannah McGrath (Rothamsted and Reading)

Supervised by: Rosemary Collier (Warwick), Ben Madarasi (Huntapac), Simon Potts (Reading), Stephen Shields (Huntapac), Sam Cook & Jonathan Storkey (Rothamsted).

The plan...

Part I

The theory

Why carrots?

In carrots:

- Aphids transmit viruses to carrots
- 15% yield losses in an expensive crop

In general:

- improvements for growers' pest management approaches
- providing *relevant* evidence on how to reduce reliance on insecticides

Why would flowering strips even have an effect on pests?

Flowering strip are based on the principle of **conservation biological control**:

- Shelter
- Nectar
- Alternative food
- Pollen

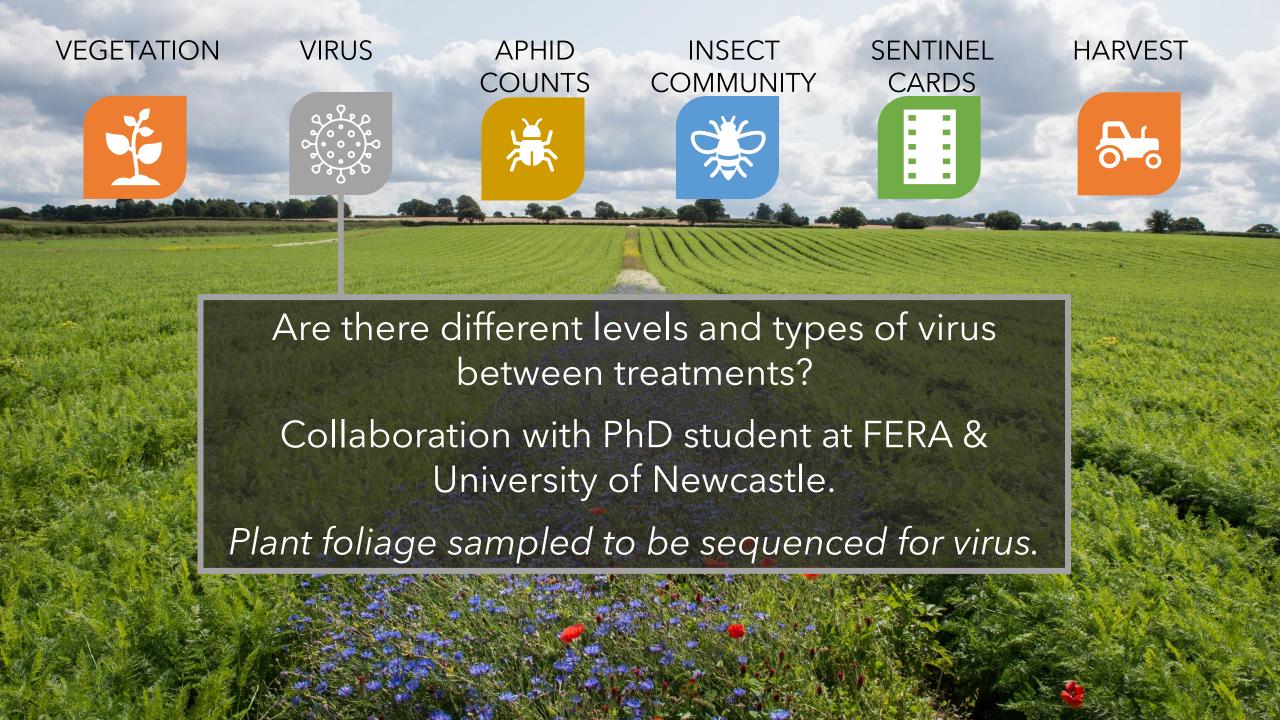
© Hannah McGrath

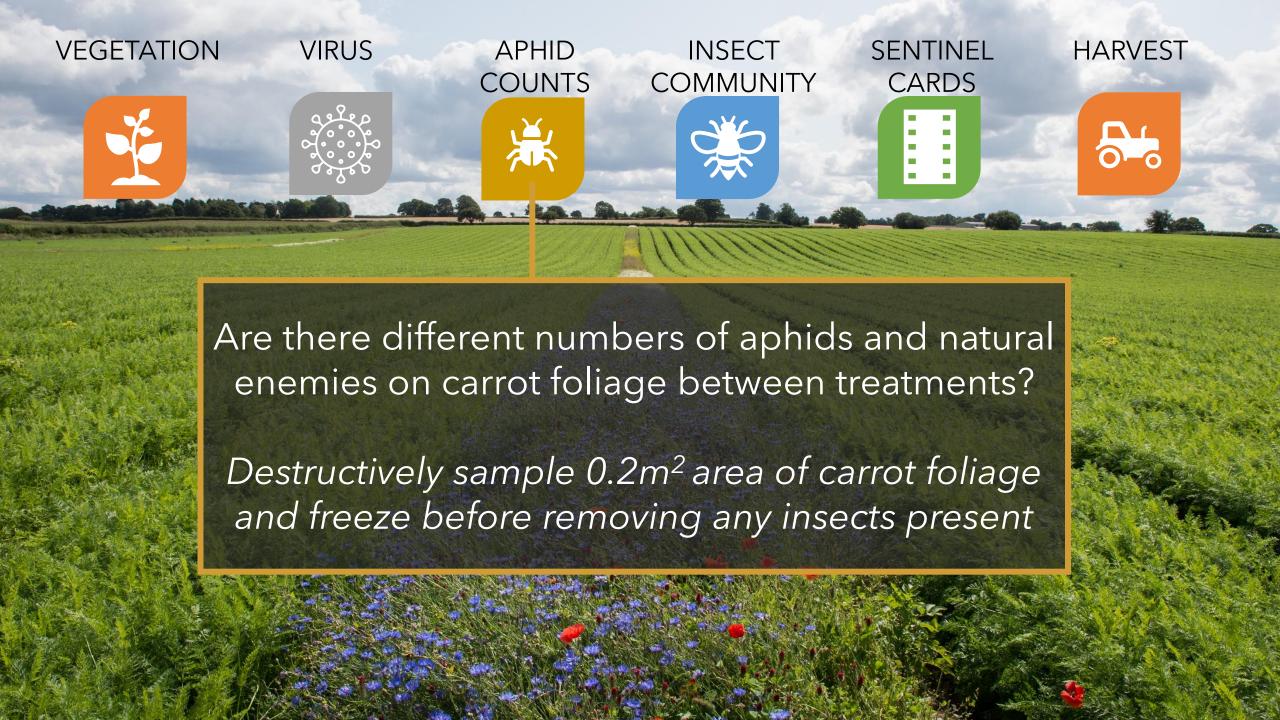
My PhD question

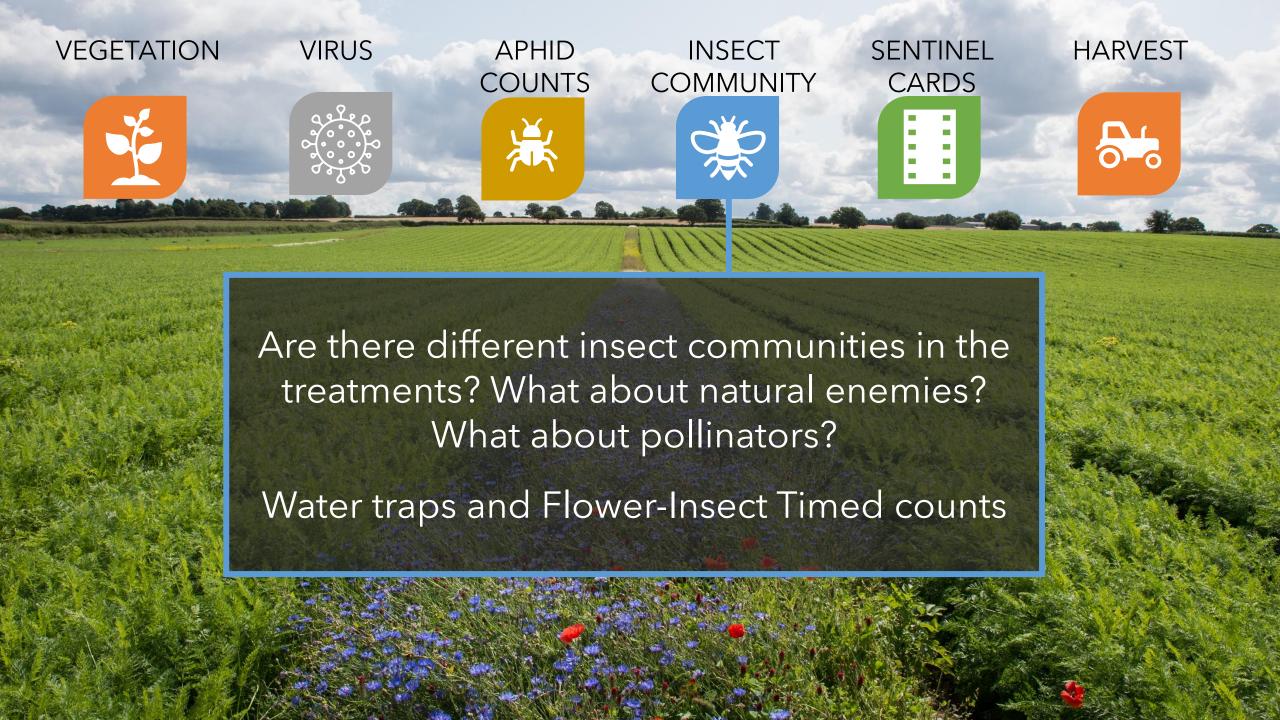
What's the best mix of annual flowers put into carrot fields to support both pest control and pollination?

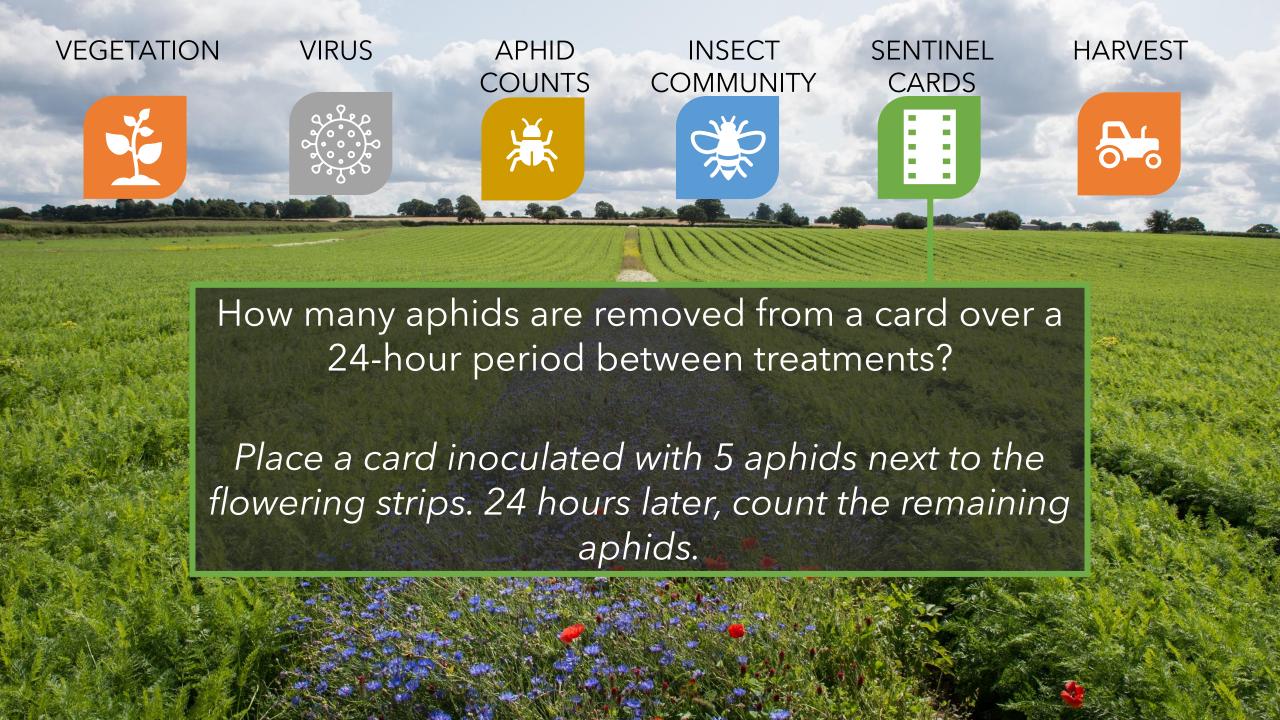
Part II

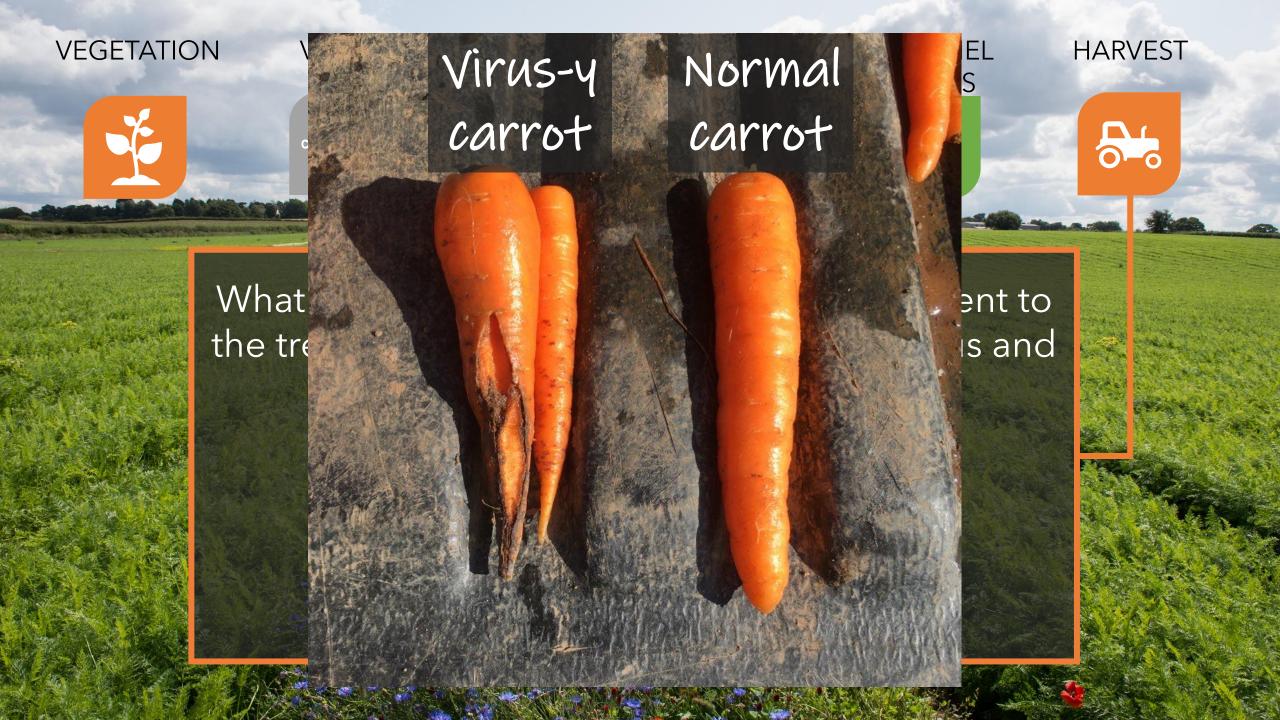
Sampling











What were the results?

We can successfully increase populations of useful insects:

But it's not just about counting ladybirds, we need to quantify their effect on the crop.

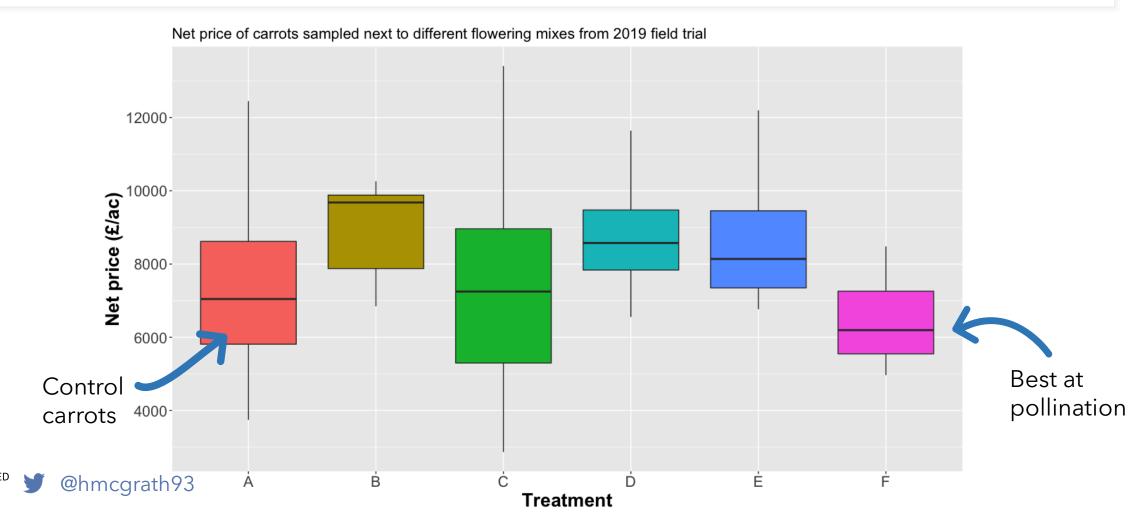
From this field, there are no significant differences in the:

The flowering strips, in this case, haven't improved crop relevant metrics of pest control compared to control carrots not sprayed with insecticides.

Part III

Harvest

HARVEST


How we can look at economic factors?

Treatment	Mean % Virus rejections	Mean % Cavity spot rejections	Mean % pack out	Mean gross yield t/ac	Mean net yield t/ac	Mean net price £/ac
Carrots	1.7	23.7	51.9	35.9	18.8	7505
В	1.5	6.2 \$	65.1 †	34.1	22.3	8901†
С	2.6	21.3	52.1	35.1	18.4	7361
D	1.7	6.5 \$	65.7 †	33.2	21.8	8733
Е	1.6	14.5	57.0	37.9	21.6	8652
F	2.0	26.9	43.9	37.6	15.9	6399\$

There is variability though...

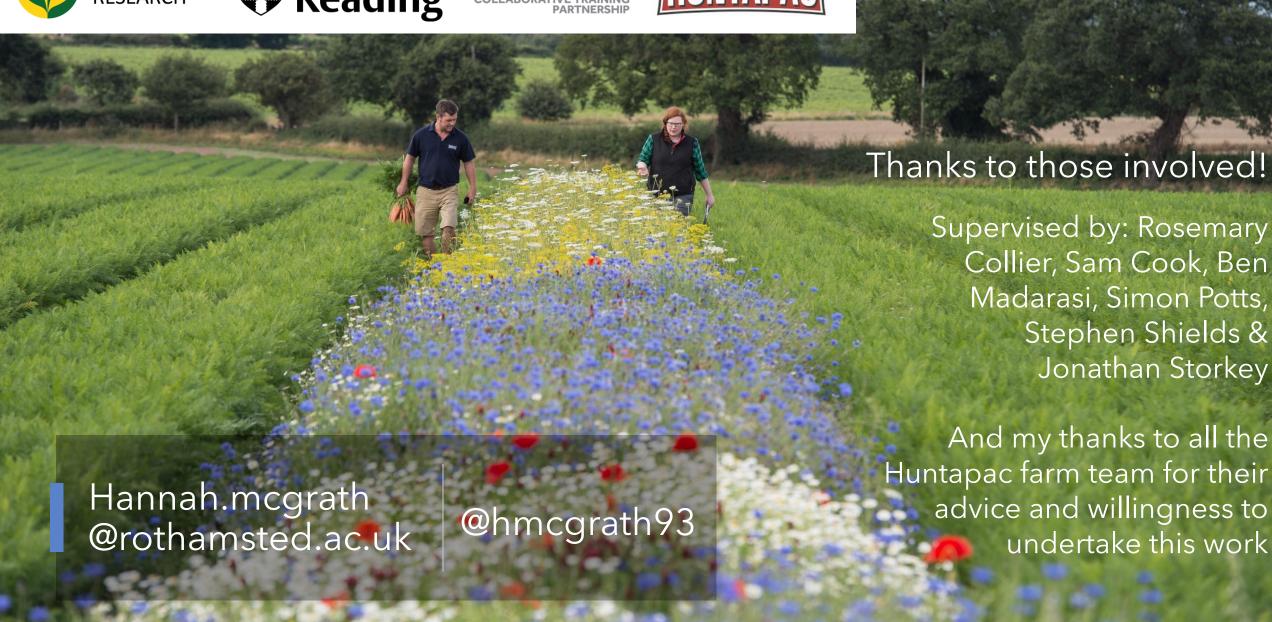
Take home messages

© Hannah McGrath

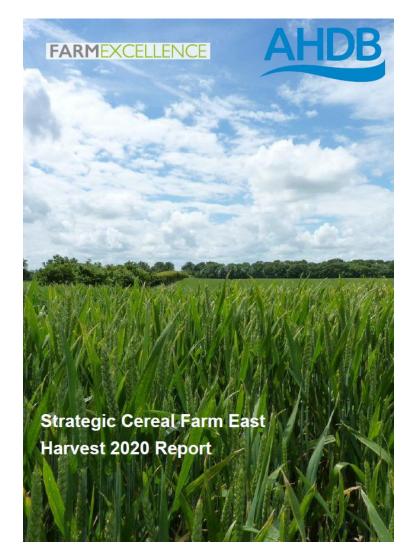
• We can get flowers in the field!

• What can you do on your own farm? Experiment yourself...

 Whole farm approach – how do these fit in?



Questions and Discussion



Further information

Resources

FARMEXCELLENCE

Strategic Cereal Farm West Harvest 2020 Report

Resources

AHDB

- AHDB Encyclopaedia of pests and natural enemies
- AHDB Integrated slug control factsheet
- https://ahdb.org.uk/pests
- ASSIST Research
- GWCT Wildflower mixes and pollen and nectar strips

Strategic Farm Week – Winter 2020

Watch Strategic Farm research videos

Take part in the webinars

Listen to the podcast special

Download the harvest report and 'how to' resources

All at: ahdb.org.uk/sfweek-winter-2020

Coming up...

Strategic Farm Week:

✓9am, Fri – Ask the researcher

Wider AHDB:

- Monitor Farm Mondays
- Agronomy week
- Regional and technical events

Info and register at: ahdb.org.uk/events

Could you be a Strategic Cereal Farm host 2021-2027?

- Are you an ambitious arable farm/enterprise in the following counties?
 - Yorkshire
 - Lancashire
 - Dorset
 - Gloucestershire

- Wiltshire
- Hampshire
- Oxfordshire
- Do you want to test and show case research, share technical and financial performance and have ambitions to advance your business and personal development?

Applications open Monday 23 November 2020 ahdb.org.uk/farm-excellence/recruitment Any questions? Email: Natalie.Gilbert@ahdb.org.uk

Thank you

@SquabRob

@mwramsden

@HMcGrath93

@The_Barker_Boys

@CerealsEA

@AHDB_Cereals

Teresa Meadows
teresa.meadows@ahdb.org.uk
07387 015465