



#### SmartHort 2019

# The challenges for developing robots for horticulture

Josse De Baerdemaeker

**KU** Leuven



#### Value chain: input of precision and digital AHDB technologies



lan Ferguson: ACPA 2017, Hamilton, New Zealand

#### AHDB

## Robotics and technology in fruit/vegetable production

#### Focus points

- Reduce costs, increase yield and productivity
  - Labour shortage
    - Planting, pruning, crop care, harvest...
  - Environmental concerns and regulations
  - Grading, sorting and storage (facilities management)
  - The 'ideal market'
- Harvest of high quality data
  - Better information
  - Better decisions

#### A few new names ...

Robots

Autonomous platforms Mechanical weeding Heat weeding Steam weeding Electric weeding Selective spray / spread Orchard treatments Large fruit harvesting Small/soft fruit harvesting Vegetable harvesting  <u>Bonirob</u>, platform, several applications in development, (Bosch, Stuttgart, Germany)

 <u>Vinescout</u>, platform, commercial prototype ready in 2019, (U. Polytechnica, Valencia, Spain)

- <u>Naio</u>, 4 different weeding robots, vegetables, vineyards, field tests FR, UK, US, > 100 units sold, (Toulouse, France)
- ∕\*`
  - Zasso, electric weed control, near commercial, (Aachen, Germany)
- $\rightarrow$
- Ecorobotix, selective spray (Lausanne, Swiss)
- <u>Bilberry</u>, selective weed control, field tests in FR, NL, Aus, (Paris, France)
- Jacto, AgriBot platform, JAV II autonomous orchard sprayer, commercially used in Eucalyptus, (Pompeia, SP, Brazil)
- <u>Octinion</u>, soft fruit harvesting, world leader in performance, closest to commercial, (Leuven, Belgium)
- <u>Cerescon</u>, asparagus harvester, test market in 2018, orders in hand for 2019, (Eindhoven, Netherlands)

Marc Vanacht – July 2018

#### Outsiders coming in ...



| Who?      | \$ Bn | Home base                | Skill base                                          | Entry in Ag.                             |
|-----------|-------|--------------------------|-----------------------------------------------------|------------------------------------------|
| BOSCH     | ~\$90 | Stuttgart,<br>II Germany | Automotive,<br>Appliances etc                       | Bonirob, Greenhouse<br>management        |
| AIRBUS    | ~\$80 | Toulouse,<br>II France   | Aerospace, Remote sensing                           | Remote sensing,<br>robots…               |
| engie     | ~\$75 | Paris,<br>II France      | Energy production,<br>efficiency                    | Processing plants,<br>orchard automation |
| Panasonic | ~\$65 | Osaka,<br>💌 Japan        | Plant factories,<br>refrigeration in retail         | Seed-to-fork<br>integration vegetables   |
| ABB       | ~\$35 | Zurich,<br>Swizerland    | Engineering,<br>automation, Energy<br>grids, robots | Processing plants,<br>automation         |

NVIDIA? Amazon? Siemens? Hitachi? Fujitsu? IBM? Google? Unimog? Bombardier? Samsung? M Benz? Toyota?

Marc Vanacht – July 2018







#### Universal robot platform







### Early floral bud thinning of fruit trees

- Reducing the excess number of floral buds
  - Increases regularity of the yield
  - Results in higher quality fruits
- Thinning of pear trees
  - Mostly done by hand
    - Labor intensive
    - Time-consuming
    - Health issues



• Evolution towards mechatronical thinning



#### Towards mechatronical solutions ?



(Baugher et al., 2010)



(Rosa et al., 2008)



(Schupp et al., 2008)



(Damerow et al., 2009)



#### Flower bud thinning of pears

• Detection and counting of the buds



#### Bud removal using air puff





#### Multi-nozzle field trials of pear bud thinning





#### Air puff field trials









Accurately count and grade apples while on the tree

http://www.omniaprecision.co.uk/fruit-vision/





FN: 612, FT: 24480ms, FT/70ms GpsPos: (5.100160, 40.715395, 108.500000) RelPos: (21.741285, +0.753771) • NumApples: 334, SQ: 0.542870, 42.277344 Threshold: 0.167598 Size Threshold: 304.391907





http://www.intelligentfruitvision.com/solutions/

## Monitoring fruit development for better management









#### Evolution of the fruit weight











#### Precision Agriculture and Robotics Environmental Benefits: Integrated pest control

- Process:
  - Pest damage reduction in fruit or wine production based on population dynamics and IPM (Integrated Pest Management)
- PA Technology:
  - Detect crop damaging pests, insects
  - Monitor the spatial population dynamics
  - Link the level of pest to potential crop loss
  - Use predators
- Expected benefits:
  - Reduction in pesticide use up to ? %
  - Reduction of sprayed area of ? %

## Selective spraying for disease control

AHDB

Fungicide reduction 20-30% (max 80%)





#### **UAV- Drones**

- Flying robots?
  - Between rows in orchards?
    - Inspection
      - Disease detection
      - Crop protection
      - Crop load, quality
    - Harvest??
  - From above
    - Vigor
    - Stress (drought), weeds
    - Uniformity
  - Find potential frost pockets or problem areas for the irrigation system.





#### Detection of internal fire blight infections



https://blog.vito.be/remotesensing/drones-for-early-fire-blight-detection, Stephanie Delalieux 23.05.2017





#### Time to spray? Send in the drones!



- An area of 4,000 to 6,000 square metres can be covered in just 10 minutes (Agras line of DJI, China)
- Can carry up to 10 kilograms of pesticide
- Battery life is only about 20 minutes
- How to deal with closed canopies?



#### Robots on land and in the air...

- Aerial observations of canopy for stress/no-stress assessment
- Below the canopy conditions for disease development may be favourable
- Coordinate observations and treatments
  - Small robots on the ground
  - Drones in the air
- Communication for decision making and deployment

#### Harvester concept: platform



- Portal tractor running over the rows:
  - Based on concept of existing grape and olive harvesters
  - Picking both sides of a row simultaneously
  - Tunnel for
    - Sensing under controlled illumination and background conditions
    - Shielded working space for the manipulators
    - Protection of sensors and manipulators from rain, wind,...













3-finger gripper KU Leuven

#### Apple harvest (1)





## Apple harvest (2)

Abundant Robotics in The Good Fruit Grower

#### https://youtu.be/mS0coCmXiYU

http://home.bt.com/tech-gadgets/futuretech/abundant-robotics-apple-pickingrobot-11364178851823#





#### Apple harvest (3)





https://www.youtube.com/watch?v=UaL3UxUclKY FFRobotics presents Robotic Fruit Harvester

https://www.ffrobotics.com/



#### Robotics for fruit harvest

- How to pick an apple
  - With/without stem: variety dependent
  - What does the market expect?
- Additional advantages for manager
  - Machine knows where the fruit is and in which part of the canopy
  - Detailed yield or production info, even within the canopy
  - Box-information is very precise: how much product is available and which quality
  - Canopy model and production model can refine the harvest strategy



### Trees for robotic harvesting

Prepare the trees for robotic harvesting

- Tree shape and pruning
- High density planting
- High light interception
- Fruit or bud thinning
- all fruit have a good commercial value
- Uniformly ripe fruit simplifies harvesting

These tree adaptations also benefit manual picking!



#### Simpler Structure for Mechanization





4-D Structure

3-D Structure

2-D Structure

Q Zhang, Washington State University



#### Effect of tree on harvest success







#### Sweet pepper harvest robot





http://www.sweeper-robot.eu/11-news/48-sweeper-demonstrated-its-harvesting-robot-for-the-first-time - accessed 16/08/2018



#### Sweet pepper harvest robot

Suggestions for improvement

- Conveyor belt + harvest trolley AGV
- Fingers to catch fruit may push plant away: a redesign is recommended.
- Certain sequences of arm movement can be easily speeded up.
- Adopted growing system will increase success rate (e.g. fruit and leave pruning, special variety).

Expected performance: 15 sec/fruit ; detection 40-85%



http://www.sweeper-robot.eu/dissemination/presentations/6-Sweeper\_pitch\_results-Jos-handout.pdf - accessed 16/08/208



#### Tomato harvesting robot: GRoW



16000 Greenhouse robotic workers ?

METOMOTION https://metomotion.com/

http://www.freshplaza.com/article/196826/New-tomato-harvest-robot-GRoW-being-tested-in-the-greenhouse 6/20/2018



#### Tomato harvesting robot: Panasonic



https://news.panasonic.com/global/stories/2018/57801.html - May 23, 2018





#### Strawberry harvest



Octinion

http://octinion.com/news/press-release-octinion-presents-world%E2%80%99s-first-strawberry-picking-robot



#### **RoboticsPlus Kiwi Picker**



# **Sugar Pea Harvesting**







Optical detection and image processing challenge

Stoelen et al., Low-Cost Robotics for Horticulture: A Case Study on Automated Sugar Pea Harvesting. ECPA July 2015



#### White Asparagus Harvest



<u>http://vcbt.be/wp-</u>content/uploads/2018/03/groentecongres-tipsvoor-witte-asperge.pdf

> https://www.colruyt.be/nl/lekker-koken/dekijker/lentegroenten/asperges

#### **Broccoli Harvest**





https://youtu.be/zi0Zcxef1pl





Young S.L., Meyer G.E., Woldt W.E. (2014) Future Directions for Automated Weed Management in Precision Agriculture. In: Young S., Pierce F. (eds) Automation: The Future of Weed Control in Cropping Systems. Springer, Dordrecht



### Transplanting vegetables

- Gives crop an early start over weeds
- Selectivity at planting may make better uniformity at harvest
- Early detection of diseases
- Planting under favourable soil conditions

• Large diversity of trays is challenging



#### Weed control: transplanting vegetables





# A high capacity planting robot



- The robot picks a row of plants every 5 seconds.
- High capacity of the robot (depending on tray type): +/- 14 000 plants an hour.
- The robot handles small plants as well as big plants.



# A high capacity planting robot



- Good ergonomics
- Easy to operate
- Highly maneuverable



### Weeding

# Bonirob from Bosch





# Robotic micro-dose spraying: ecorobotics



- 20x less herbicide per application
- Rapid robotic arms with sprayers
- Up to 30% less expensive than standard treatments
- Improved yield: no herbicide left on the crops
- Conserves the organic life of the soil, with limited soil compaction (130 kg)
  htt



AHD

ICRODOSES DEPOSITED IN A TARGETED WAY

https://www.ecorobotix.com/en/autonomous-robot-weeder/ Switzerland



# **Digital Farmhand**





https://sydney.edu.au/engineering/news-and-events/2018/08/03/digital-farmhand-boosts-food-security-in-the-pacific.html



#### **Robotic weeding: NAIO**



https://www.naio-technologies.com/en/agricultural-equipment/large-scale-vegetable-weeding-robot/

#### Digital Herbicide: using high-voltage electric power – AHDB the clean solution: zasso, rootwave









https://zasso.eu/en/agriculture-en/

#### http://rootwave.com/technology/



#### Weed control and robotics

- The 'convenience' of herbicide use is under discussion
- Physical methods of weed control require:
  - Good detection and discrimination between crop and weed
  - High working rate either in one machine or in swarms (multiple machines)
- Expectations for robotic weed control:
  - Killing the weed ?
  - Slowing down weed growth rate and density such that crops can develop?
- Smart robots make use of population dynamics

| 99       | 105 | 91  | 101 | 95  | 96  | 89 | 101 | 89 | 93         | 87  | 99           | 86 | 95  | 87 | 100 | 80        | 100 | 86 | 100      | 84 | 93           | 87 | 96  | 84 | 93  | 84 | 96  | 83 | 93 | 83 | 95  | 80 | 92  | 83 | 99  | 84 | 96 | 87 | 93  | 84 | \$ |
|----------|-----|-----|-----|-----|-----|----|-----|----|------------|-----|--------------|----|-----|----|-----|-----------|-----|----|----------|----|--------------|----|-----|----|-----|----|-----|----|----|----|-----|----|-----|----|-----|----|----|----|-----|----|----|
| 100      | 104 | 91  | 102 | 93  | 101 | 86 | 99  | 88 | 97         | 87  | 99           | 87 | 97  | 86 | 104 | 83        | 97  | 84 | 96       | 84 | 95           | 86 | 93  | 84 | 95  | 84 | 93  | 84 | 93 | 80 | 95  | 83 | 93  | 84 | 99  | 84 | 96 | 84 | 91  | 86 |    |
| 97       | 102 | 91  | 102 | 92  | 95  | 86 | 97  | 87 | 95         | 83  | 97           | 87 | 95  | 83 | 99  | 83        | 99  | 78 | 96       | 83 | 93           | 86 | 93  | 83 | 96  | 80 | 93  | 82 | 92 | 80 | 92  | 82 | 93  | 83 | 99  | 82 | 91 | 86 | 92  | 83 | 5  |
| 96       | 102 | 89  | 100 | 92  | 95  | 87 | 99  | 91 | 95         | 86  | 101          | 86 | 95  | 87 | 100 | 83        | 97  | 86 | 97       | 83 | 93           | 84 | 95  | 86 | 95  | 84 | 92  | 82 | 96 | 78 | 95  | 82 | 93  | 86 | 96  | 82 | 93 | 84 | 93  | 86 | 5  |
| 96       | 104 | 89  | 101 | 96  | 100 | 87 | 100 | 89 | 95         | 87  | 100          | 91 | 96  | 84 | 101 | 86        | 101 | 84 | 100      | 84 | 97           | 88 | 100 | 84 | 95  | 87 | 93  | 84 | 93 | 84 | 95  | 83 | 93  | 86 | 102 | 84 | 93 | 88 | 92  | 84 | 5  |
| 99       | 102 | 91  | 101 | 88  | 96  | 88 | 97  | 88 | 97         | 84  | 97           | 91 | 95  | 87 | 97  | 82        | 100 | 86 | 99       | 83 | 95           | 87 | 95  | 86 | 96  | 82 | 95  | 84 | 95 | 82 | 92  | 83 | 93  | 87 | 100 | 83 | 96 | 89 | 95  | 87 | 2  |
| 99       | 102 | 91  | 104 | 91  | 97  | 86 | 9   | La | ar         | C   | e            | а  | n   | 1  | )(  | Ir        | nt: | S  | С        | )f | C            | a  | ta  |    | re  |    | U   | ir | e  |    |     | 7  | 95  | 84 | 101 | 86 | 96 | 88 | 96  | 87 | 5  |
| 99       | 105 | 89  | 102 | 96  | 100 | 89 | 100 |    |            |     | _            |    |     |    |     |           |     | _  |          |    |              |    | _   |    | _   |    |     |    |    |    |     | 6  | 96  | 86 | 99  | 87 | 95 | 88 | 96  | 83 | 5  |
| 97       | 105 | 91  | 101 | 92  | 97  | 88 | 9   | Kr | C          | )/( |              | 90 | J(  | ]6 | 9   | a         | na  | al | УI       |    | CS           | ,  | TC  | )r | Τ   | al | 'n  | 1  |    |    |     | 6  | 95  | 83 | 97  | 83 | 95 | 88 | 95  | 86 | 5  |
| 96<br>96 | 104 | 95  | 100 | 92  | 97  | 88 | 10: | in | fc         | r   | $\mathbf{m}$ | 0  | ti  |    | n   | 1         | n   | tc |          | r  | <b>st</b>    | ic |     |    | ar  | b  | 1   |    |    |    |     | 7  | 95  | 88 | 101 | 84 | 96 | 87 | 95  | 87 | 5  |
|          |     |     |     |     |     |    |     |    |            |     |              |    |     |    |     |           |     |    |          |    | מנ           | IC |     |    |     | IC |     |    |    |    |     | 8  | 97  | 86 | 101 | 88 | 96 | 88 | 95  | 88 | 5  |
| 99       | 106 | 92  | 102 | 93  | 99  | 89 | 100 | de | <b>)</b> ( |     | sia          |    | ſ   | n  | 12  | ak        | ir  | ו  |          |    |              |    |     |    |     |    |     |    |    |    |     | 7  | 93  | 84 | 97  | 83 | 95 | 89 | 97  | 87 | 5  |
| 9/       | 100 | 89  | 102 | 91  | 96  | 80 | 100 |    |            |     |              |    |     |    |     |           |     |    |          |    |              |    |     |    |     |    |     |    |    |    |     | 3  | 95  | 82 | 100 | 83 | 92 | 86 | 95  | 83 | 5  |
| 101      | 106 | 95  | 104 | 95  | 99  | 87 | 10: | U  | n          | 90  | CK           | (  | Dr  | ן  | tr  | <b>IE</b> | ) ( | 9) | <b>K</b> | C  | <sup>U</sup> |    | Oľ  | ٦. |     |    |     |    |    |    |     | 8  | 96  | 86 | 101 | 86 | 97 | 91 | 99  | 88 | 10 |
| 99       | 105 | 92  | 101 | 96  | 99  | 86 | 101 | 07 | 52         | 00  | 97           | ŏ4 | 77  | 62 | 102 | 64        | 77  | 04 | 30       | 83 | 33           | 80 | 31  | 65 | 90  | 0/ | 31  | 83 | 92 | 13 | 90  | ٥б | 93  | 82 | 97  | 82 | 92 | 88 | 96  | 88 | 5  |
| 102      | 110 | 97  | 109 | 101 | 104 | 95 | 105 | 95 | 100        | 89  | 102          | 92 | 100 | 93 | 106 | 89        | 102 | 88 | 105      | 88 | 100          | 92 | 99  | 87 | 99  | 88 | 101 | 88 | 99 | 87 | 99  | 91 | 101 | 87 | 102 | 89 | 97 | 93 | 99  | 87 | 5  |
| 102      | 106 | 101 | 108 | 99  | 102 | 92 | 102 | 95 | 99         | 89  | 102          | 95 | 100 | 91 | 104 | 89        | 102 | 87 | 101      | 88 | 99           | 92 | 99  | 88 | 100 | 87 | 97  | 86 | 99 | 86 | 97  | 89 | 96  | 86 | 102 | 87 | 97 | 89 | 97  | 91 | 10 |
| . 99     | 109 | 95  | 106 | 96  | 102 | 91 | 104 | 92 | 96         | 91  | 101          | 91 | 101 | 91 | 102 | 89        | 101 | 88 | 101      | 87 | 96           | 87 | 97  | 87 | 99  | 87 | 96  | 87 | 99 | 87 | 100 | 87 | 100 | 86 | 100 | 89 | 96 | 92 | 100 | 88 | 5  |
| 97       | 105 | 92  | 105 | 93  | 97  | 87 | 102 | 89 | 96         | 88  | 100          | 91 | 99  | 89 | 104 | 86        | 96  | 83 | 99       | 84 | 95           | 84 | 96  | 84 | 96  | 87 | 96  | 84 | 97 | 84 | 96  | 86 | 96  | 83 | 101 | 86 | 95 | 87 | 97  | 87 | \$ |
| 93       | 105 | 91  | 100 | 92  | 97  | 87 | 97  | 91 | 92         | 86  | 99           | 87 | 99  | 88 | 101 | 87        | 99  | 86 | 97       | 84 | 93           | 84 | 93  | 86 | 93  | 80 | 92  | 82 | 95 | 82 | 92  | 86 | 93  | 83 | 101 | 84 | 93 | 88 | 96  | 84 | 5  |
| 96       | 106 | 92  | 104 | 95  | 99  | 86 | 99  | 91 | 91         | 84  | 100          | 89 | 96  | 87 | 102 | 84        | 101 | 84 | 96       | 86 | 99           | 86 | 97  | 84 | 97  | 83 | 93  | 86 | 97 | 83 | 92  | 83 | 92  | 86 | 101 | 83 | 93 | 87 | 93  | 88 | \$ |
| 100      | 104 | 87  | 100 | 95  | 99  | 87 | 97  | 92 | 97         | 83  | 96           | 88 | 97  | 88 | 100 | 83        | 101 | 86 | 99       | 83 | 95           | 84 | 95  | 86 | 96  | 80 | 96  | 86 | 93 | 80 | 93  | 87 | 95  | 84 | 97  | 84 | 93 | 89 | 89  | 87 | \$ |
| 101      | 106 | 91  | 104 | 96  | 101 | 88 | 96  | 91 | 97         | 86  | 100          | 88 | 99  | 88 | 102 | 83        | 99  | 86 | 102      | 86 | 96           | 86 | 99  | 86 | 93  | 84 | 97  | 86 | 95 | 80 | 96  | 84 | 96  | 84 | 99  | 86 | 93 | 87 | 100 | 84 | 5  |



#### Precision (Bio-) Process monitoring



- Large INTER (between row) variability
- detect (often small) abnormal INTRA (within row) variability



# Challenges

- Robotics has a better chance when we also look at the crop
  - Architecture
  - Fruit distribution
  - Uniformity of ripening or market-readiness
  - Detachment and harvesting mechanisms
- Cultivation method
  - Adaptation and innovation
  - Co-engineering of crop scientists and robotics specialists
- Methods for detection
  - Hardware, software...
  - Crop properties: color, gloss, NIR, fluorescence



# Challenges

- Size of the market
  - Specialty crops, low production areas
  - Different cultivation in different locations
- Seasonality of robotics use
- Autonomous scouting robots in field conditions: changing weather/ illumination
- Working rate and timeliness of operations
- Payload either by weight or volume, (especially for once over harvest)
  - Swarms of robots .....

#### AHDB

# Fear of Robots?

- 'We'll have space bots with lasers, killing plants': the rise of the robot farmer. Tiny automated machines could soon take care of the entire growing process. Fewer chemicals, more efficient ? where's the downside? Because its innovations (of The Small Robot Company) uncouple food growing from big machinery and huge fields, they should – in theory – allow small- and mediumsized farms to prosper, and strip vast agribusinesses of their competitive advantage. (*The Guardian Sat 20 Oct 2018 08.00 BST*)
- GeorgeMonbiot @GeorgeMonbiot (12:49 AM 21 Oct 2018)
  https://twitter.com/georgemonbiot/status/1053916195005579264

A more likely outcome is that large, capital-intensive farms will use robots to gain further advantages over small, labour-intensive farms. When has automation favoured the artisan over the industrialist?



#### Conclusions

- 1. Robots have arrived, today and now, in many sizes, shapes & forms...
- 2. Robots challenge our current practices and knowledge
- 3. Robots challenge crop scientists (and the other way around)
- 4. Robots reshape the plantations
- 5. Robots reshape agriculture and the countryside
- 6. Robots will/must support management
- 7. The Future will accelerate ... even more in agriculture



# Thank you for your attention