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1. Abstract 

Vine weevil, Otiorhynchus sulcatus F. (Coleoptera: Curculionidae), is an economically important pest 

of soft-fruit and ornamental crops globally. Managing this pest historically relied on broad-spectrum 

synthetic insecticides, but has shifted toward integrated pest management compatible methods such 

as entomopathogenic nematodes and fungi to target soil-dwelling larvae. These methods require 

reliable pest monitoring tools to be truly effective, however existing tools have been demonstrated 

to be largely unreliable and time-consuming to implement. This project aimed to develop a protype 

monitoring tool that could automatically identify adult vine weevil. Results presented here indicate 

that pre-trained machine learning models can reliably identify adult vine weevil in laboratory and 

semi-field environments as well as demonstrating that retrofitting existing monitoring tools with low-

cost electronic components enhances functionality without negatively impacting insect-monitoring 

tool interactions. This is the first report of such technologies being specifically developed for vine 

weevil and demonstrates the feasibility of an automated monitoring approach, which could benefit 

growers going forward as it will provide greater information about pest populations in their crops and 

better inform management decisions. Further development of the prototype monitoring tool is 

required before commercial deployment would be possible. 
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2. Introduction 

Vine weevil, Otiorhynchus sulcatus Fabricius 1775 (Coleoptera: Curculionidae), is an economically 

important insect pest of soft fruit and ornamental crops (Pope and Roberts, 2022). Once considered 

a sporadic glasshouse pest across Europe and North America (Gill et al., 2001), this species has 

become one of the most serious horticultural crop pests throughout its geographical range during 

the last five decades. Increased economic importance is most often attributed to significant growth 

of the horticultural sector alongside adoption of new growing practices (e.g., use of black polythene 

mulches). These changes unintentionally benefited vine weevil development and reproduction by 

reducing insecticide efficacy while also providing a protective environment from unfavourable 

climatic conditions (Penman and Scott, 1976; van Tol et al., 2012). 

 

Approaches to vine weevil control have largely shifted from a reliance on persistent broad-spectrum 

insecticides to using entomopathogenic nematodes (EPNs) and fungi (EPFs) that target the soil-

dwelling larvae (Blackshaw, 1986; Bruck, 2007; Bruck and Donahue, 2007; Ansari, Shah and Butt, 

2010). Alternative larval control measures based on entomopathogens represents an important step 

toward a more sustainable, integrated approach to vine weevil management. This approach, like all 

integrated pest management (IPM) programmes, relies on pest monitoring within crops to reduce 

grower reliance on synthetic chemical insecticide applications (Kogan, 1998; Dara, 2019). Early 

detection of vine weevil within crops is essential for successful management of this pest. Ineffective 

monitoring often leads to growers being unaware of an economically damaging pest population until 

after significant crop losses have been inflicted (Li, Fitzpatrick and Henderson, 1995). Vine weevil 

monitoring efforts are complicated by the nocturnal feeding behaviour of adults as well as the 

subterranean lifestyles of both larvae and pupae (van Tol et al., 2012). Developing true IPM 

programmes for vine weevil has been limited by ineffective monitoring techniques (Fezza et al., 

2022; Pope and Roberts, 2022). 

 

Monitoring vine weevil predominantly focuses on adults because larval monitoring typically involves 

root sampling, which are both time consuming and potentially damaging to crop plants (Mankin and 

Fisher, 2002). Visual assessments, where growers either search for characteristic leaf notching 

caused by feeding or dislodge individuals from the plant through gentle shaking at night (Li, 

Fitzpatrick and Henderson, 1995), are the most widely used monitoring techniques for adults 

(Gordon et al., 2003). Assessments of leaf notching are thought to be reliable early in the growing 

season, but over time newer notches become difficult to distinguish from older ones while shaking 

risks dislodging fruits or leaves. Indirectly monitoring vine weevil presence through leaf notch 

assessments can also lead to delays in detection, allowing oviposition to occur before control 

measures can be applied (van Tol et al., 2012). Due to the impractical nature of night-time crop 

assessments, more effective monitoring methods are urgently needed. While attempts have been 
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made to develop acoustic detection of the subterranean larval stages (Mankin and Fisher, 2002), 

most research in this area has focused on the use of artificial refuges (i.e., individuals can enter and 

leave) or traps (i.e., individuals can enter but not leave) for adults. Throughout this report, artificial 

refuges and traps are collectively referred to as monitoring tools.  

 

Monitoring tools aim to the exploit negative phototaxis behaviour exhibited by adults, causing 

individuals to seek shelter during daylight (Roberts et al., 2020; Fezza et al., 2022). A range of 

monitoring tool designs have previously been investigated, including: grooved wooden boards 

placed on the ground (Maier, 1983; Li, Fitzpatrick and Henderson, 1995; Gordon et al., 2003), pitfall 

traps (Hanula, 1990), corrugated cardboard wrapped around plant stems or rolls placed on the 

ground (Phillips, 1989; Hanula, 1990), traps marketed for other insect pest species (Pope et al., 

2018), and a purpose-designed vine weevil trap (Roberts et al., 2020). Please see Roberts et al. 

(2020) for a comprehensive overview of these different monitoring tools and an assessment of their 

efficacy. Although monitoring tools are regularly deployed in the field, there is some debate and 

uncertainty regarding their efficacy and reliability. Factors such as size, colour, shape, and entrance 

number may all play a crucial role in monitoring tool efficacy (Fezza et al., 2022).  

 

Assessment of six monitoring tool designs in a simple semi-field environment demonstrated that, 

while all designs can detect the presence of vine weevils, the number of weevils found within each 

monitoring tool was incredibly variable (Roberts et al., 2020). The worst performing designs were 

grooved wooden boards and corrugated cardboard rolls, while the best was a purpose-designed 

vine weevil trap that is black and conical. As grooved wooden boards and cardboard rolls are 

amongst the most widely used monitoring tools used by growers (Hanula, 1990; Gordon et al., 2003), 

alternative designs should be developed and promoted to help improve monitoring efficacy and 

reliability. While it is not fully understood what characteristics make the worst performing traps 

ineffective (Fezza et al., 2022), it is speculated that their inability to trap individuals (i.e., they can 

enter and leave) may be a contributing factor as many growers do not check monitoring tools 

frequently. As demonstrated for other weevil species, monitoring tool efficacy and reliability has the 

potential to be enhanced through inclusion of a semiochemical lure, typically using species-specific 

sex or aggregation pheromones to attract more individuals to the monitoring tool (e.g., Cross et al., 

2006). Despite vine weevil chemical ecology having been extensively studied over the past twenty-

five years no effective attractants have been identified to date. Development of better night-time 

monitoring methods that do not rely on directly trapping individuals and frequent physical inspections 

is a priority objective to facilitate improved vine weevil management. 

 

Monitoring methods that are quick to implement and automatically identify crop pests would provide 

an important tool that limits insecticide use through increased IPM adoption. One possible approach 

to developing such methods is to pair computer vision with machine learning models to recognise 
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objects, images or videos and then apply an appropriate classification to enable identification. Similar 

approaches have been implemented for automated monitoring of crop pests (e.g., Ding and Taylor, 

2016; Li et al., 2020), though none have been developed for nocturnal beetle pests to the authors 

knowledge. This project set out to build and test a prototype ‘smart’ monitoring tool for vine weevil 

adults based on a commercially available monitoring tool, providing a proof-of-concept platform for 

future development and potential commercialisation.  

 

3. Materials and methods 

3.1. Insects 

3.1.1. Vine Weevil Culture 

Vine weevil, Otiorhynchus sulcatus (Coleoptera: Curculionidae) at various larval stages were 

collected from commercial strawberry (Fragaria × ananassa cv. Duchesne) crops grown in 

Staffordshire (UK) during autumn 2021. Larvae were maintained on strawberry (cv. Elsanta) plants 

housed within a 47.5 cm3 white mesh cage (BugDorm-4S4545, MegaView Science Co. Ltd., 

Taichung, Taiwan) in a controlled environment room (20 °C; 60 % relative humidity; 16:8 

photoperiod) (Fitotron, Weiss Technik, Ebbw Vale, Wales, UK). Resultant adults from this larval 

population were maintained under the previously stated environmental conditions using a standard 

method of placing the weevils in plastic terrariums (30 × 19.3 × 20.6 cm) containing yew (Taxus 

baccata) branches and moist paper towels that were replaced weekly (Shah et al., 2007; Pope et 

al., 2018; Roberts et al., 2020). All adult weevils used in this study were at least one month old and 

had been confirmed to be reproductively active, ensuring that subsequent monitoring tool tests used 

a field-representative pest population. 

 

3.1.2. Earwig Culture 

Adult European earwigs, Forficula auricularia Linnaeus 1758 (Dermaptera: Forficulidae) were 

collected from an experimental polytunnel containing strawberry plants (cv. Elsanta) at Harper 

Adams University (Shropshire, UK) during January 2022. Individuals were combined into a single 

laboratory culture and maintained on strawberry leaves infested with potato aphids, Macrosiphum 

euphorbiae (Hemiptera: Aphididae) housed within a 47.5 cm3 white mesh cage (BugDorm-4S4545 

in a controlled environment room (20 °C; 60 % relative humidity; 16:8 photoperiod) (Fitotron). This 

population served as a non-vine weevil species for training a machine learning model.   

 

3.2. Monitoring Tool  

3.2.1. Design  

The prototype monitoring tool developed during this project was based on an existing product 

commercially marketed for vine weevil monitoring (Fig. 1) (Chemtica, Heredia, Costa Rica). This 

http://www.chemtica.com/site/?p=3684
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product was selected as it has previously been shown to be moderately effective for vine weevil 

monitoring under semi-field conditions (Roberts et al., 2020). Although this product has some 

desirable design features due to its dark colouration and height (Fezza et al., 2022), it was 

determined that modification could further enhance monitoring efficacy. A clear acrylic disc (2 mm 

thickness) that was held 5 mm above the base of the monitoring tool on three feet equally spaced 

around the perimeter of the disc was inserted into the monitoring tool to provide an area for vine 

weevil adults to position themselves within when seeking refuge during daylight hours (Fig. 2). The 

addition of a clear acrylic base had three primary functions: (1) limit vine weevil orientation so that 

they could be accurately imaged, (2) facilitate entry and exit of vine weevil adults to transform the 

monitoring tool from a trap to a refuge and (3) exploit vine weevil thigmotactic behaviour to provide 

a ‘preferred’ refuge area (Roberts et al., 2020).  

 

Figure 1 Chemtica vine weevil trap (A) assembled for in-field deployment with entry location identified by (a) 

and (B) with top removed to showcase the internal structure.  

 

A Raspberry Pi camera module (V2.1; PiHut, Haverhill, Suffolk) and light emitting diode (LED) ring 

light (PiHut) was internally mounted at the apex of the monitoring tool to capture images of vine 

weevil adults seeking refuge under the clear acrylic base. Initial testing of this setup identified 

imaging issues as the clear acrylic base reflected light back into the camera, essentially preventing 
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it from capturing high-quality images. A circular ‘window’ (5 mm diameter) was cut into the clear 

acrylic base to minimise reflectance issues. A white base was also installed into the monitoring tool 

to act as a light-coloured backdrop for image capture and provide contrast against the dark coloured 

vine weevil adults. To make the modified monitoring tool ‘smart’ a Raspberry Pi Zero 2W 

microprocessor (PiHut) was externally mounted to the side of the monitoring tool. This is a relatively 

new Raspberry Pi model (launched January 2022) and was selected for this project due to its low 

power consumption requirements, excellent integration with various software libraries and broad 

range of connectivity options (WiFi, USB, mini-HDMI). Alongside executing Python scripts to delivery 

functionality, the Raspberry Pi 2W was fitted with a BME280 temperature / humidity sensor (AZ 

Delivery, Deggendorf, Germany) and BH1750FVI lux sensor (AZ Delivery) to record key 

environmental conditions during monitoring tool deployment. The ‘smart’ monitoring tool is, at 

present, mains powered. Due to the ongoing global silicon shortage having a negative impact on 

computer chip production, the project was only able to purchase a small number of Raspberry Pi 

Zero 2W units and this delayed ‘smart’ monitoring tool construction. 

 

Figure 2 Modified Chemtica vine weevil trap to add smart features (A) assembled for in-field deployment with 

(a) Wi-Fi antenna, (b) BH1750FVI lux sensor, (c) BME280 temperature / humidity sensor, (d) Raspberry Pi 
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Zero 2W, (e) clear acrylic and (f) entry location, (B) close-up of entry location and 0.5 cm stand-offs and (C) 

internal view of the (g) LED ring light and camera. 

 

3.2.2. Image Capture and Processing 

Images from within the monitoring tool were captured every ten minutes to create a bespoke training 

data set for this project. The initial focus of capturing these images was to single out individual adult 

vine weevils so that they can be classified and counted. However, as adult vine weevils tended to 

group together due to their thigmotactic behaviour (Fig. 3), counting the total number of individuals 

within the trap was computationally challenging. An alternative approach was devised that looks for 

differences between subsequent images, which identified an insect arriving in a new location. It 

should be noted that it was not possible to determine whether an insect was counted more than 

once, only a general level of insect activity can be established using this method. This approach 

determined a region of interest (ROI) that contained an insect, with a sub-image (100 x 100 pixels) 

being cropped out from the ROI for labelling in preparation for training a machine learning model. To 

ensure that these sub-images contained a single centrally located insect, a threshold was applied to 

the image’s moment of inertia (i.e., to make the image centrally ‘balanced’) and then a second 

threshold was applied to the amount of white background (i.e., to minimise empty space within an 

image). Processed images were uploaded to GitHub until required for use as a deep learning model 

training data set. Python scripts for imaging processing can be accessed here and are documented 

to contain all key information required to implement them on another Raspberry Pi system (e.g., 

threshold values). 

 

https://github.com/Dr-Joe-Roberts/weevil-watch/tree/main/data_set_2x199_weevil_earwig
https://github.com/Dr-Joe-Roberts/weevil-watch
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Figure 3 An image captured from the ‘smart’ trap illustrating vine weevil thigmotactic behaviour (black mass 

on right hand side of the image) during daylight hours. Red circles illustrate individuals that have moved since 

the preceding image was captured.  

 

3.2.3. Training an Image Classification Model 

Although Raspberry Pi Zero 2W microcontrollers are relatively powerful computing units, they do not 

contain a graphical processing unit (GPU) so are not capable of training and executing a machine 

learning model locally. A newly developed machine learning approach designed for low-powered 

computing units called TensorFlow Lite (Google, California, USA), in combination with the 

Colaboratory cloud service (Google), was used in this project to address this issue. To train a 

machine learning model that classifies an insect entering the monitoring tool into pre-defined 

categories (i.e., either a vine weevil or an earwig). Captured ROI images were manually sorted by 

species into their corresponding folder. These folders were then imported into TensorFlow Lite Model 

Maker  to create a small, trained image classification model able to run locally on a Raspberry Pi 

Zero 2W with minimal user input.  

 

3.2.4. Reporting 

An image was taken every ten minutes when the monitoring tool was operating under testing 

conditions and the ROIs extracted from these images were input into the trained model for 

classification. This model was able to classify ROI images as containing either a vine weevil or earwig 

as well as providing classification confidence. Each hour the accumulated classification for that hour, 

lux, temperature and humidity were logged as individual data points. At 12:00 each day these data 

points were plotted as bar charts and emailed to the user, along with a 5 x 5 grid montage of ROI 

classifications. Additionally, the full image taken each 10 minutes was uploaded to a website so that 

the user could have a complete view of the monitor in near real time. Each uploaded image 

overwrites the last to prevent the web server becoming overloaded. The image also has text showing 

the current environmental conditions should the user want this information.  

 

3.3. Testing 

3.3.1. Laboratory Conditions 

Basic monitoring tool functionality was beta tested under laboratory conditions. A known population 

of 20 adult vine weevils were released into a 47.5 cm3 white mesh cage (BugDorm-4S4545) 

containing a single ‘smart’ vine weevil monitoring tool along with a sprig of yew and a moist cotton 

wool pad. The mesh cage and its contents were housed within a controlled environment room (20 

°C; 60 % relative humidity; 16:8 photoperiod) (Fitotron) for two days to establish whether the 

Raspberry Pi Zero 2W and associated camera / LED light ring captured usable images and test the 

environmental monitoring sensors. Once beta testing was complete, the ‘smart’ vine weevil 

https://www.tensorflow.org/lite/guide
https://colab.research.google.com/notebooks/intro.ipynb
https://www.tensorflow.org/lite/guide/model_maker
https://www.tensorflow.org/lite/guide/model_maker
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monitoring tool was deployed in a 47.5 cm3 white mesh cage under the environmental conditions 

previously described for ten days to collect training images for the image classification model.  

 

3.3.2. Semi-Field Conditions 

‘Smart’ monitoring tool performance was tested against an equivalent commercially available 

monitoring tool in a semi-field environment simulating a susceptible crop. This experiment aimed to 

determine whether the ‘smart’ monitoring modifications had a negative impact on its performance 

compared to an unmodified monitoring tool. To create a semi-field environment, five potted 

strawberry plants (cv. Elstanta) were placed in a ‘tent’ cage (145 × 145 × 152 cm) (Insectopia, 

Austrey, UK) situated within a glasshouse fitted with an environment management system (20 °C; 

60 % relative humidity; 18:6 photoperiod). Two un-baited monitoring tools (one commercially 

available and one modified to be ‘smart’) were placed in a tent cage with five potted strawberry plants 

to provide both a food source and a range of alternative refuges (e.g., under pots, around rims, within 

compost). A known population of 40 adult vine weevils (approximately 19 weevils m2) were released 

into the centre of the experiment cage at 18:00. The number of vine weevil adults within each trap 

was enumerated between 07:00 and 09:00 each day for four days. Due to the shortage of Raspberry 

Pi Zero 2W units available for purchase, only a single fully functional ‘smart’ monitoring tool was 

constructed during this project. It was, therefore, only possible to set up a single experimental cage 

to test ‘smart’ monitoring tool efficacy. The tent cage to which the monitoring tools were allocated 

was re-randomised each day to exclude the effect of tent cage position and/or simulated crop. 

Monitoring tool position was also altered between days to minimise the impact of directional bias on 

monitoring choice. Adult vine weevil populations were changed between each replicate.  

 

3.3.3. Statistical Analysis 

Statistical analysis was carried out using R (V 4.1.3) (R Core Team, 2022). Monitoring tool 

performance (i.e., the number of insects within a monitoring tool) was analysed using an exact 

binomial test against the null hypothesis that number of insects seeking refuge had a 50:50 

distribution. Prior to carrying out statistical analyses, replicated results from each of the four days 

were pooled. Insects not recorded in the monitoring tools were excluded from statistical analysis 

(Fezza et al., 2022). No statistical analyses were carried out on the data collected during laboratory 

testing as the primary purpose of these tests were operational functionality and collect training 

images.  
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4. Results 

4.1. Image Classification 

4.1.1. Training Image Collection 

It was initially anticipated that a range of ground-dwelling invertebrates would be used to train the 

image classification model deployed onto the Raspberry Pi 2W. However, due to timing of this project 

coinciding with winter it was not possible to collect large enough numbers of non-target organisms 

to achieve this objective. A population of earwigs was discovered in an experimental polytunnel that 

served as a relevant non-target organism for model training. During training image collection, a total 

of 1499 individual images were collected: 1300 images containing at least one adult vine weevil and 

199 images containing at least one earwig. From these images it was possible to parse out 5977 

potential ROI, however manual screening for image quality reduced this number to 199 vine weevil 

ROI and 199 earwig ROI suitable training images. 

 

4.1.2. Image Classification Accuracy 

The laboratory earwig population used to collect training images during this project unfortunately 

perished prior to use for testing image classification model accuracy and could not be replaced 

before testing due to low temperatures. Image classification model confidence (i.e., how certain the 

model was on its identification) was 85 ± 10 % during laboratory testing and did not incorrectly identify 

any adult vine weevils as earwigs (Fig. 4). Approximately 16 ± 2 % of images were categorised as 

‘unsure’ during laboratory testing, indicating that these images were unable to be classified as either 

adult vine weevils or earwigs.  
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Figure 4 Representative montage illustrating 25 images captured from within the ‘smart’ monitoring tool along 

with their classification (weevil = vine weevil) and the model confidence in this classification. Confidence is 

presented as a proportion between 0 and 1 that can be converted to a percentage by multiplying by 100. 

 

4.2. Monitoring Tool Performance Under Semi-Field Conditions 

In a binary choice experiment presenting adult vine weevil with an unmodified monitoring tool and a 

‘smart’ monitoring tool under semi-field conditions there was no significant difference in the number 

of individuals seeking refuge in each monitoring tool when assessed over four days (binomial exact 

test: no. successes = 30, no. trials = 65, p = 0.6201) (Fig. 5). Monitoring tools contained a combined 

40.6 % of the released vine weevil population during testing under semi-field conditions, with 18.7 

% in the unmodified monitoring tool and 21.9 % in the ‘smart’ monitoring tool. Image classification 

model performance under semi-field conditions was comparable to that under laboratory conditions. 
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Figure 5 Percentage of vine weevil adults recorded in the unmodified and ‘smart’ monitoring tools when 

released as groups of 40 into a tent cage containing five strawberry plants (n = 4).  

 

5. Discussion 

This 3.75-month project set out to develop a prototype monitoring tool that could automatically 

identify adult vine weevil entering into it, providing a platform for further research and development 

to improve IPM for this economically important pest. Results presented here indicate that pre-trained 

machine learning models can reliably identify adult vine weevil in laboratory and semi-field 

environments as well as demonstrating that retrofitting existing monitoring tools with low-cost 

electronic components enhances functionality without negatively impacting insect-monitoring tool 

interactions. While ‘smart’ monitoring tools exist for a range of Lepidopteran pests, this is the first 

report of such technologies being specifically developed for vine weevil.  

 

5.1. ‘Smart’ Monitoring Tools  

Early detection of vine weevil within crops is essential for successful management. Conventional 

vine weevil monitoring methods (e.g., visual plant assessments for leaf notching or dislodging adults 

during night-time assessments) are notoriously unreliable and impractical (Pope and Roberts, 2022). 

‘Smart’ tools could provide a reliable, cost-effective approach to vine weevil monitoring and better 

inform management decisions to align with an IPM framework. Most efforts to develop automated 

monitoring systems have focused on Lepidopteran pests as they are often morphologically distinct 

from one another due to their wing colouration and patterns, which makes them relatively easy to 

classify using machine learning approaches (Cardim Ferreira Lima et al., 2020). Although vine weevil 

is not overly colourful, it was able to be successfully identified using a machine learning model within 

this project as it does have some key morphological features (e.g., extended snout and elbowed 

antennae). With a classification accuracy of 85 % the machine learning model developed during this 

project is comparable to other systems (Kang, Cho and Lee, 2014; Thenmozhi and Srinivasulu 

Reddy, 2019). Many of these systems, however, also benefit from deployment alongside species-

specific pheromone lures that enhance monitoring tool catch and reduce incidences of non-target 

 2 4     1   2 4     1   1 2   4 5 
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organisms entering (Cardim Ferreira Lima et al., 2020). Despite significant attention in recent years 

(Roberts et al., 2019; van Tol, Elberse and Bruck, 2020), no effective semiochemical lure has been 

identified for adult vine weevil. The value of any vine weevil monitoring tool is, therefore, limited as 

previous work has identified only moderate efficacy in un-baited monitoring tools (Roberts et al., 

2020).  

 

5.2. Project Limitations and Future Development Opportunities 

While the prototype ‘smart’ monitoring tool developed during this project was able to accurately 

identify adult vine weevil, it was tested under simple conditions with no non-target organisms present 

in the experimental arena. This is largely due to the project running through the UK winter months 

(December to March), so there was a lack of non-target organisms available within the wider 

environment to provide a broader range of training images for the machine learning model. It is, 

therefore, possible that the ‘smart’ monitoring tool could mistakenly identify certain non-target 

organisms as adult vine weevil. There are several important carabid beetle species (e.g., 

Pterostichus melanarius, Harpalus rufipes and Calathus fuscipes) as well as weevil pests (e.g., 

Anthonomus rubi) commonly found in the same soft-fruit and ornamental crops as vine weevil, which 

can have a similar appearance to adult vine weevil (Solomon, 2000). It would be possible to augment 

the training image repository for the machine learning model with standardised images representing 

a wider species range by using online databases such as iNaturalist. While this would undoubtedly 

enhance machine learning model performance, it relies on extensive knowledge of which non-target 

organisms are present in the relevant soft-fruit and ornamental crops. Deploying several ‘smart’ 

monitoring tools without machine learning models and only camera functionality in different crops 

would enable researchers to develop a database of non-target organisms that enter the ‘smart’ 

monitoring tool. This information could better inform the training of machine learning models to 

enhance their performance and reliability under field conditions.  

 

In its current configuration, the ‘smart’ monitoring tool is unable to provide an accurate count for the 

number of individual insects within the tool at any given time (except that at least one individual is 

present). This is largely due to adult vine weevils exhibiting thigmotactic behaviour, which results in 

a large mass of individuals that cannot be distinguished from one another (Roberts et al., 2020). 

Having an accurate count for the number of individuals within a monitoring tool is crucial information 

required to determine whether a pest population has exceeded the economic injury or action 

thresholds that guide decisions within IPM frameworks (Dara, 2019). However, such thresholds do 

not yet exist for vine weevil and their determination would rely on development of better monitoring 

systems. Future research could exploit the ‘smart’ monitoring tool developed during this project to 

contribute to wider knowledge on vine weevil population dynamics and establishment of thresholds. 

If such thresholds can be established for adult vine weevil then the ‘smart’ monitoring tool would be 

required to count the number of individuals present. It may be possible to derive this information by 
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dividing the area of monitoring tool base by the mean area of an adult vine weevil, though this is a 

crude approach and would not differentiate between target and non-target organisms. A more 

appropriate approach would utilise the activity levels already calculated by the ‘smart’ monitoring tool 

and environmental data to develop a predictive model for the number of individuals per square meter. 

Such predictive models have been developed for other pest species (Cardim Ferreira Lima et al., 

2020). For the prototype ‘smart’ monitoring tool to be deployed in-field it would need to be converted 

to run on battery power and transfer data via a cellular network. Further design iterations should 

focus on making the ‘smart’ monitoring tool field ready.  

 

5.3. Conclusion 

Current vine weevil monitoring approaches are variable and do not accurately predict pest presence 

or density. This project has successfully demonstrated that a camera-based monitoring tool with 

integrated machine learning model for image classification can identify adult vine weevils in the 

laboratory and under semi-field conditions. Further development is required for this prototype ‘smart’ 

monitoring tool to be suitable for deployment in commercial nurseries, particularly with respect to 

machine learning model optimisation as it is currently too simplistic. Wider efforts to identify an 

effective semiochemical lure would further enhance monitoring tool efficacy and facilitate adoption 

of ‘smart’ monitoring tools once commercially available. 
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