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ABSTRACT 
 

Knowledge of soil physical properties has always been important for decisions concerning cropping and 

crop management inputs, especially the use of fertilisers and lime. Information on the geographical 

distribution of soils is important if precision farming methods are to be used. HGCA project 2243 has 

investigated the practical usefulness and applicability of three soil sensor technologies for measuring and 

mapping soil types within fields, namely Electro-Magnetic Induction (EMI) which measures the apparent 

electrical conductivity of the soil (ECa), Ground Penetrating Radar (GPR) and Spectral Reflectance. The 

work was carried out in 1999-2002 on 4 experimental sites in England on contrasting soil landscapes 

(limestone, glacio-fluvial outwash, chalk, river terrace). Emphasis was given to studies on EMI. 

  

The EMI sensor was housed in a metal-free cart drawn by an ATV at 10-15kph, with a Geographical 

Positioning System (GPS). It was simple and easy to use, producing a single data value at each measurement 

point which was able to identify soil texture variations especially where there was interaction between 

texture and soil wetness.  Although ECa was overwhelmingly influenced by soil moisture, the data 

distinguished heavier less permeable soils from those that were more permeable and free draining. 

Regression analysis showed that subsoil clay and organic matter contents, and topsoil sand and organic 

matter contents were the main factors influencing the ECa; topsoil bulk density was also important. Since 

soil moisture had such a strong impact on the ECa, direct predictive relationships between ECa and soil 

properties could not be derived. This means that some in-field examination of soils will always be needed 

following an EMI survey to confirm the nature of the soils present in different zones. EMI data was more 

closely related to topsoil properties than output data from the cluster analysis of sequences of yield maps 

(HGCA project 2116). This suggests that the EMI sensor is reacting to the properties of the upper layers of 

the soil whereas the cluster analysis approach will be reacting to the soil conditions experienced by the 

whole crop root system, commonly well over 1m deep.  The pattern of ECa variation was remarkably stable 

irrespective of whether the soil was wet or dry at the time of sensing. Using geo-statistical analysis, a 

between-pass spacing of c.20 m usually achieved an error of less than 25%; this is considered acceptable as 

a cost-effective and practical approach.  

 

GPR proved to be a slower technique producing data that was difficult to interpret. Readings could not be 

obtained on clay soils but information on the depth to bedrock or free-water interfaces was obtained on 

sandy material. Spectral reflectance measurements of the bare soil surface did not have any clear or reliable 

relationships with topsoil properties. Neither of these techniques are considered to have any short-term 

potential as a practical or cost-effective method for agricultural soil sensing. 

  

The project has shown that EMI is a reliable method for obtaining information on within-field soil patterns. 

Future work should develop an integrated use of EMI with other precision farming techniques for gathering 

information to allow improved crop management decisions both within and between fields. 
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SUMMARY 
 
INTRODUCTION  & AIMS 

 

Knowledge of the physical make-up of soils has always been important for farmers when making decisions 

concerning crop management inputs such as lime and fertiliser use, cultivation and sub-soiling/drainage. 

More precise soil knowledge, including information on boundaries between soil types, should result in more 

accurate use of fertilisers and agro-chemicals. The introduction of precision farming techniques (e.g. GPS, 

yield mapping, machinery capable of variable rate application, sensors) has encouraged farmers to pay more 

attention to crop variations that exists within a farm and within individual fields. Recent research has 

confirmed that variation in crop yields is primarily due to the inherent soil type, and that a knowledge of soil 

type and the location of boundaries between contrasting soil types is essential if these technologies are to 

realise their potential.  The key soil variables, needed for cropping and husbandry decisions are soil physical 

variables such as texture, depth to bedrock, wetness and organic matter, though key soil chemical properties 

are also considered (e.g. soil mineral nitrogen). A major problem however is that current methods for 

obtaining information on soil properties are manual and usually requires the input of a specialist soils 

adviser. Even with such input, small scale variations can be missed unless very intensive (and therefore 

expensive) soil survey methods are used. 

 

A recent ADAS review highlighted the most promising remote sensing technology that could be employed 

in arable agriculture to improve efficient soil management.  Two sensors showed more potential than others 

for these variables, namely Electro Magnetic Induction (EMI) and Ground Penetrating Radar (GPR), whilst 

a third, Spectral Reflectance showed some potential.  

  

The overall aim of this HGCA funded project was therefore:  “ To evaluate the practical potential of three 

soil sensor techniques for remotely measuring and mapping important soil physical properties, and to 

develop robust protocols for use on farms.”  The three sensors investigated were: EMI, GPR and spectral 

reflectance, and for each sensor technology the primary objective of the study was; “to identify the soil 

properties and soil horizons (i.e. soil layers of different characteristics) that can be measured using different 

sensor configurations, the associated accuracy of measurement and the stability at different times of 

measurement during the season.”  

 

Secondary aims were to identify the best sensor technique, or combination of techniques, for measuring 

specific target soil variables, develop soundly based protocols for in-field use, and evaluate the cost and ease 

of use of the sensors in practice. 
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MATERIALS AND METHODS 

 

SITES & SOILS 

Two sites were measured in the cropping year 1999/2000 (Year 1) and two others in the cropping year 

2001/02 (Year 2).  The two fields used in Year 1 were located at Lodge Farm, Shefford, Bedfordshire and 

Heydour Lodge Farm, Grantham, Lincolnshire, in fields named “Shagsby 4” (grid reference TL 108400) and 

“Field 107”( grid reference SK 996373) respectively, and known in this report  by the acronyms: SHG and 

HLF.  The two fields used in Year 2 were located at Shuttleworth Agricultural College, Old Warden, 

Bedfordshire and Crowmarsh Battle Farm, Benson, Oxfordshire, in fields named “Football field” (grid 

reference TL 142447)) and “The Clays”( grid reference SU 637915), and known in this report  by the 

acronyms: FTB and CLY respectively.  All four sites had been predominantly in winter cereals in recent 

years and several years’ yield maps of winter wheat were available.  

 

Soil measurements carried out on site consisted of in situ measurements of the soil water regime, and 

laboratory measurements of physical properties on removed cores so that soil water properties could be 

calculated using  pedo-transfer functions.  Measurements of soil texture, bulk density and soil organic 

carbon, were made on both topsoil and subsoil sections of these cores, and these used to calibrate hand-

texturing of further cores taken randomly across each field.  Soil moisture measurements were taken at 

approximately the same time as the EMI scans using a SENTEK DIVINER 2000 soil moisture probe.   

 

ELECTRO-MAGNETIC INDUCTION (EMI) SENSOR 

In recent years the technique of measuring the electrical properties of soil (chiefly conductivity) has emerged 

as a potential tool to help differentiate and map various soil variables.  The electrical current needed to 

measure soil conductivity can be induced electro-magnetically, using principles similar to those in operation 

in electrical transformers. The electrical coils used can be suspended a few centimetres above the surface, 

which makes the sensing “remote”, and the apparent conductivity (ECa) measured at any point over the soil 

surface will be influenced by the textural, moisture and solute components of the soil below it. This opens up 

the possibility of mapping the ECa of a field to help evaluate and explain maps of crop yield, or to allow 

more cost effective mapping of soil type.   

 

A commercially available dual coil EMI system, the EM 38 manufactured by Geonics Ltd,  was towed 

behind an ATV in a lightweight non-metallic cart on each field of the study.  This survey was carried out 

twice in the year at times of field capacity and maximum soil moisture deficit.  Using simultaneous GPS 

measurements, very accurate maps could be recorded with intervals between readings of the order of 3 m.    

The geostatistical method of kriging may be used to estimate ECa  at points in between passes.  Because the 

mean-squared error of kriged estimates from a given array of data may be computed if the variogram is 

known it is possible to find the maximum grid spacing such that the error of the kriged ECa  is acceptable. 
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The primary objective of the geostatistical analysis of these ECa data was to address the point above, which 

should help us to answer the basic question ‘how widely spaced should the passes of an EMI survey be?’ 

 

GROUND PENETRATING RADAR (GPR) 

Ground-penetrating radar or GPR allows us to “see” into, below, or through otherwise solid or impenetrable 

materials. The technique is particularly useful in providing subsoil information where excavation is not 

immediately possible (e.g. under crops or frozen ground), or is inappropriate.  The system consists of an 

antenna (transducer), that acts as both a transmitter and receiver of radar pulses, and a recording/control unit, 

which can display real-time images of what the device has "seen" from echoes that bounce back from the 

objects or interfaces within the material. As the pulse or wave propagates through the soil, rock or other 

medium, it is attenuated, reflected, diffracted, refracted and scattered by the material depending on its 

physical properties.  

 

Two GPR systems were operated during the project (at HLF field in year 1 - a ‘Sensors & Software’ 

‘pulseEKKO 1000, and at the CLY field in year 2  - a ‘Mala Geosciences, Ramac system’).  The aim of the 

surveys was to profile shallow soil layers. To this end the GPR systems were physically dragged at walking 

pace along four 20 m transects located along selected tramlines within the study areas at HLF and CLY 

fields.  Measurements were made across each field when the soils were at field capacity (February / March), 

and also when they were thought to be near maximum  soil moisture deficit after harvest (July / August / 

September) in 2000 (HLF) and 2002 (CLY). 

 

SPECTRAL REFLECTANCE 

Sensing by reflectance of electromagnetic radiation at certain wavebands has found most application for 

monitoring vegetation and crop cover  The measurement of soil variables using spectral reflectance is likely 

to be restricted to those soil features that occur at or close to the soil surface, as reflectance of incident 

radiation is not affected by soil properties at depth. Future potential is largely limited to the possibility of 

being able to sense topsoil organic matter and surface moisture content.   

 

The principle of the system was to traverse a linear array of two-band radiometers systematically over a bare 

soil surface, and to this end a tractor was equipped with a 24m boom from a conventional agricultural 

sprayer, and radiometers (Skye Instruments type SKR1800 ) mounted at 4m intervals across the boom to 

detect radiation reflected from the soil surface (at 660nm (visible red) and 730nm (near infrared)). The 

tractor was driven (at 10 – 13 kph) along 24 m spaced tramlines across the SHG field during the post harvest 

period  in the autumn of 2002, after the crop stubble had been ploughed in and the soil surface was bare.  
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RESULTS AND DISCUSSION 

 

SOIL SURVEY 

After surveying at SHG the soils mapped were of the Evesham and Oxpastures series which are clays and  

heavy clay loams over clay respectively, Waterstock (a clay loam), and Bearsted and Cottenham series 

which are sandy loams and sands respectively.  At HLF the soil mapped were of the Haselor series, a heavy 

calcareous stony clay, and Elmton, a very shallow sandy clay loam over limestone.  Also there were large 

areas of Cranwell series (a shallow stony sandy loam), and Wilsford (a loamy sand) in valley areas (further 

soil description in Appendix 1). 

 

Similarly at FTB Cottenham series was mapped (a light loamy sand or sandy loam developed over a deep 

loamy sand to sand parent material) together with sandy loams of Bearsted and clay loams of Ludford series.  

The heavier clay loam of the Oxpasture series was located at a lower elevation.  At the CLY site most of the 

field was mapped as soil of the Wallop series, which is a shallow silty clay loam to silty clay developed over 

fragmented chalk.  There were also smaller areas of Frilsham and Soham (sandy clay loam) (Appendix 1).  

 

ELECTRO-MAGNETIC INDUCTION (EMI) SENSOR 

The output of the EMI scans can be displayed spatially related to the GPS co-ordinates to obtain apparent 

electrical conductivity maps of the site, such as that shown below for the SHG field, mapped during a period 

of field capacity (11/02/00).  
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A visual comparison of the above ECa map with the relevant soil map, indicates a clear distinction of larger 

ECa readings in the parts of the field dominated by the heavier clay loam soils of the Evesham and 

Oxpasture series, compared with smaller values from the lighter soils of Waterstock and Bearsted series.  

This pattern holds true in general at both wet and dry times of the year suggesting that a large part of the 

signal from this field is governed by the clay content of the soil.  This is also suggested by the fact that the 

site mean ECa is only marginally smaller in the summer compared with the winter, and leads to the 

identification of two distinct classes of response for this field.  Site hydrology also shapes the pattern 

however, as the valley feature in the Waterstock soil to the top left of the figure shows as an area of 
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marginally  higher readings, and is probably due to subsoil moisture.  Similar maps for the other sites can be 

related to changes in soil type and hydrology across each site (see Technical Detail section), and also 

demonstrate a basic stability of pattern across wet and dry seasons.  More information about the spatial 

variability of soil features across each site can be gained however, by employing basic and more advanced 

geo-statistical analyses. 

 

Summary statistics of the data from each site revealed that whilst some were normally distributed other were 

skewed and better analysed after log-transformation, and indeed one site, SHG, was bi-modally distributed 

and had to be analysed as two data-sets.  Kriging analysis showed that the usually employed estimator of the 

variogram, “Matheron’s”, led to over-estimates in most cases (ascertained from the confidence interval of 

the median value of the standardised cross-validation error), and that other, robust, estimators would be more 

appropriate.  Validation of the analyses showed that in most cases “Dowd’s” estimator gave the best 

estimate of the variogram, but each data-set should be analysed separately to ascertain the most appropriate 

model and estimator to be used.  However, using the best estimator, the required spacing between passes of 

the EMI instrument to give a target estimation error of either 10 or 25 % of the mean could be calculated for 

both point and block kriging.  This showed that at most sites < 5 m spacing would be required for 10% error 

by point kriging, but 15 – 24 m would be suitable for 25% error in either vertical or horizontal modes of 

usage.  For block kriging (10 m block) a spacing between 10 & 20 m would be sufficient at 10 % error.  If 

only Matheron’s estimator was used, then a requirement for almost twice as many passes to achieve the 

same level of error would be necessary. However, no single spacing could be recommended for all sites, 

modes and conditions.   

 

Generally speaking there was found to be only minor changes in these spacing estimates over time for each 

data-set, most notably at HLF where the overall mean conductivity changed most.  The robustness of spatial 

patterns was analysed by two methods, co-kriging of the change in ECa between the two seasons, and also 

by cluster analyses performed on sets of ECa readings on the two dates. For virtually all sites and modes of 

use the cluster centres showed that relative change in ECa was minor and relative differences were 

maintained, highlighting the stability of the basic pattern of ECa variation across sites between seasons. 

 

The effect of the measured soil physical variables on ECa readings (kriged values from within 25 m of the 

same locations as soil measurements) was initially analysed across all sites on a combined data-set by 

regression of ECa on principal components of the soil variables.  The principal component analysis showed 

the individual nature of the CLY site, which was thereafter analysed separately.  Principal component 

analysis of the soil variables, followed by multiple regression analyses, and the partial regression analysis of 

ECa on each soil variable in turn allowed us to interpret how the soil variables contribute to the overall ECa 

reading.  By this method it was shown that topsoil sand content and bulk density had significant effects on 

ECa as did subsoil bulk density organic matter and clay contents.  Of these the most significant effect came 

from topsoil sand content followed by subsoil bulk density, and that these effects are more apparent in the 
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spring when measured at field capacity.  The effects (for all fields other than CLY) can be summarised for 

the two most influential principal component vectors (PC1 & PC6) by the diagram below, where a large ECa 

is indicated by the large grey circle in the top-left corner of the diagram and a small ECa by the small grey 

circle in the bottom-right corner. Thus, particularly large ECa are expected from soils with large clay 

contents, particularly in the subsoil, large bulk densities in the topsoil, small sand contents, particularly in 

the subsoil  and small organic carbon contents in the subsoil.  Further evidence comes from the next two 

most influential vectors (PC2 &PC8), which indicate that larger organic carbon content in the topsoil will be 

associated, other factors being equal, with larger ECa, as will low sand content in the topsoil.  At site CLY 

similar analyses showed that organic carbon in both topsoil and subsoil was more influential, as was subsoil 

sand content and bulk density, in determining the ECa. 
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GROUND PENETRATING RADAR (GPR) 

The measurements generated pseudo depth section profiles of the transects at the HLF site in year 1, which  

allowed a fairly deep “view” into the soil to be made.  This was because of the sandy nature of the upper soil 

material with a low electrical conductivity.  Radar reflections were measured down to around 4m below 

ground level, but showed zones of differential penetration where reduced depth may be due to more clay-

rich soil. Dipping reflectors in the deeper parts of some profiles were interpreted as possible bedrock strata 

beneath the soil layer, and within the soil layer, there were numerous reflection events indicative of more 

prominent soil layers and point source reflectors caused by underground services / drains, buried rocks or 

voids. Unfortunately, at the CLY site in year 2, due to limitations caused by high clay contents in the topsoil 

which prevents the penetration of the radar signal, exploration was severely restricted to a few centimetres 

and no useful data could be obtained. 

 

SPECTRAL REFLECTANCE 

The reflectance measurements made during the autumn of 2002, were also mapped across the site (SHG) for 

‘visible red’ wavelength readings, at 660 nm. Visible red was selected as this tends to be more indicative of 

changes in soil colour and type than the ratio of red/infra-red that is used in vegetation indices (and is more 

influenced by moisture and surface structure).  The resulting map did not really suggest the same pattern 

seen in maps of ECa for this site or the soils.   A separate principal component analysis was conducted on the 
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soil data for SHG field for reflectance measurements, and the regression of visible red reflectance on static 

soil properties showed that only topsoil clay content has a significant partial effect.  Organic carbon content 

(which is often important in determining VR reflectance of soil material) had only a small weighting in the 

dominant principal component vector.  This may be because, at the time of measurement it was observed 

that there was a good deal of variation in the structure of the soil surface, which would influence visible red 

reflectance because of differing amounts of shadow created by aggregates of different size and shape.   

 

CONCLUSIONS  

 

ELECTRO-MAGNETIC INDUCTION SENSOR 

It is necessary to evaluate critically, and validate,  the random function models that we assume underlie our 

data in a geo-statistical analysis.  Matheron's estimator of the variogram is the most efficient statistically, 

and analysis of data on the original scale is always to be preferred since it avoids complications associated 

with back-transformation of the final results.  Alternatives may be considered in the following sequence:  i.  

A data transformation should be considered;  ii.  Robust estimators of the variogram should always be 

considered for use on the original or transformed data (robust estimators assume normality);  iii.   When data 

have a complex distribution such as a bimodal, the possibility that there are two or more distinct regions 

requiring a separate spatial analysis should be considered.  

 

Differentiating variations in texture 

The evidence from the HLF data-sets showed clearly the potential of EMI techniques to distinguish between 

soil types based on clay or sandy loam textures (Haselor and Cranwell).  At SHG the main soil types were all 

clays or clay loams, and the main determinant between them was the amount of clay in the upper subsoil 

and/or the interaction between texture and soil hydrology.  In this case EMI distinguished the heavier less 

permeable soils (Evesham and Oxpastures)  from more permeable and freely draining soil (Waterstock and 

Cottenham), during both wet and dry times of the year.  

 

Where the definition of a pattern to ECa variation across a field was chiefly caused by soil type, this pattern 

remained remarkable stable across seasonal fluctuations in the moisture regime.   The principal component 

analysis on the variations in ECa with soil physical variables clearly showed that subsoil clay and organic 

matter contents and topsoil sand and organic matter contents are major determinants of the variability of 

conductivity across a site.  Topsoil bulk density also proved of importance.  Since bulk density and clay 

content are important in determining ECa values then the measurements will be informative about soil 

hydrological conditions.  

 

Differentiating variations in soil hydrology 

The ability of EMI to record differences in the water content of soils can be useful in one of two ways.  

Firstly, it can identify regions within fields that behave differently hydrologically to those in the rest of the 
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field, such as valley features at both HLF and SHG.  Similarly, it also locates reserves of water deeper in the 

profile that are not apparent from surface topography, such as at HLF.  The vertical mode of operation 

proves more apt at this usage, and the difference in readings made during different seasons highlights 

regions of maximum and minimum change more clearly, when geo-statistical and cluster analysis techniques 

are employed.  Secondly, the general ability of fine textured soils to hold water enables changes in depth of 

soil profile to be assessed, when changes in the depth of underlying parent material are not visible from the 

surface (CLY). 

 

The soil moisture content itself proved surprisingly less useful in explaining variability in the ECa 

measurements across fields.  It is thought that this may be because the amounts held in the soil pore space is 

itself governed by static soil properties such as texture and bulk density, and all our analysis shows is that 

the actual water content provides no additional explanation of the variation in ECa.  However, the presence 

of water does compound the differences due to these features and make spatial differentiation easier. 

 

Suggested protocols for the use of EMI  

The manner in which EMI is best used will to some extend be guided by the reason for the survey, to 

delineate soil type boundaries, identify soil management zones, map saline or droughty areas or others.  

However, some more general points to consider are offered here to enable the suspected features of interest 

to be highlighted more securely in any survey.  Some a priori knowledge of the soils on site is essential for 

the capabilities of the EMI instrument to be fully exploited. 

 

Firstly, the orientation of the instrument can help to either emphasise features in the upper soil profile in the 

horizontal mode or in the upper subsoil in the vertical mode.  If changes in clay content of the topsoil, or the 

presence of impeded water due to compaction or panning at the base of the subsoil are the sort of features of 

interest, then the horizontal mode of operation should be used.  If changes in subsoil texture, depth of soil, or 

the presence of deeper moisture reserves are under consideration, then the vertical orientation would be 

better.  If little is known of the soil problems or changes, but it is hoped to identify management zones in 

relation to yield maps, then the vertical mode is probably the better general purpose option. 

 

Secondly, considering the commercial collection of ECa  data to generate maps for farmers.  It is clear from 

these results that a single spacing between passes will not be optimal for all sites, although a spacing of 10 to 

20m would not be wildly unsuitable at any site studied here, and indicates that in a growing crop the use of 

tramlines is not unreasonable.  In the longer term one possibility is to automate the robust analysis procedure 

used above.  Four or five passes could be made in a field at a narrow spacing of about 6 m, then after a pause 

during which the data are analysed, the optimal spacing could be identified and the rest of the field surveyed 

at a density planned to ensure that the final map is of adequate precision.   
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It is assumed that the EMI scanner will be housed in a non-metallic cart of some form and towed behind an 

ATV over a bare or recently established crop with a level surface.  Under these circumstances, it should be 

ensured that the EMI instrument is at least 3 m away from the vehicle or metal components to avoid 

interference with the signal.  A slower speed of around 10–15 km h-1 is recommended, depending upon the 

size of the field and width of passes, because much information is lost as points of measurement become 

more widely spaced. The instrument can also be used by being walked or towed along single transects across 

features of interest. 

 

GROUND PENETRATING RADAR 

The applicability of GPR to field survey proved to be severely limited by the soil material found on site.  At 

the site, CLY, it proved impossible even to obtain a set of readings, due to the fact that the soils had a high 

clay content in the topsoil that effectively reflected the signal before it had even penetrated the main body of 

the soil profile.  Where the instrument was used on sandy material (HLF) rather more information was 

gained, relating in the main to the location of bedrock or free-water interfaces in the profile.  The 

information which GPR provides and EMI does not, is of course an estimate of the depth in the soil profile 

at which any features occur (when soil is sandy in nature).  It is not however, suitable for mapping the spatial 

distribution of features in two dimensions 

 

Suggested protocols for the use of GPR  

The potential for the use of GPR is rather more limited than EMI, as it is not as yet tow-able behind an ATV 

in its normal mode of operation, which is to be dragged over the surface of the ground.  This necessitates a 

level surface and slow speed of walking-pace.  It is therefore only suitable when no crop is present, and over 

single transects or short distances.  It is also not suitable for sites with a high clay content in the topsoil. 

 

It is suggested that it is better to operate it during summer months when the soil is dry, when trying to 

identify physical subsoil features such as depth to argillic horizons in the subsoil, bedrock, or the depth to 

the water-table. It is suggested that it is best used in a limited capacity where such features of interest have 

already been located by other survey methods and more detail is required.   

 

SPECTRAL REFLECTANCE 

Although a map of visible red reflectance seems to offer a coherent pattern of variation across the field it 

would be unwise to interpret this with regard to soil type.  This is because neither multiple regression and 

partial effects, nor principal components analysis, can adequately identify any soil physical component as a 

correlating variable.  Topsoil clay content did have a partial effect but this was thought to act mainly through 

its effects on surface structure, which is largely unpredictable. 
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Suggested protocols for the use of Spectral Reflectance  

The use of spectral reflectance techniques to measure soil properties in the field is in its infancy, and is 

usually allied to crop measurements. At present, vehicle- and air-borne surveys of bare soil by spectral 

reflectance analysis reveal only limited and quite specific information about the surface soil on a site.  As 

such, they cannot yet really be recommended for use in commercial within-field survey work. 

 

PRACTICAL SENSING 

 

EMI 

EMI surveys are currently being offered commercially by several companies,  which may also combine it 

with other agronomic advisory services.  Costs are negotiable, but around £20 ha-1 can be considered a 

current (2003) guide price. We consider this technology offers good value for money to growers who 

experience short-range soil variation within fields, especially when specialist advice on how to interpret and 

act on the information is available.  EMI proves most suitable for targeting such features as: 

• Changes in soil type due to texture and differential hydrology. 

• Subsoil water reserves in permeable material 

• Location of shallow soils and bedrock near the surface. 

• Drought prone regions within fields 

• Clay subsoil features in otherwise sandy material. 

 

GPR 

GPR only proves suitable for targeting specific features that are already suspected, and is a service which is 

not currently offered commercially in an agronomic context (though specialist geophysical contractors will 

carry it out). We do not consider it a cost effective technology for soil management decision making, except 

in highly specialised situations (Cost would be around £650 per day for a maximum of 3 km transect 

measurement).  GPR proves most suitable for targeting such features as: 

• Depth of soil profile, and depth to clay rich layers, in sandy materials. 

• Depth to water table during dry periods in permeable soil. 

• Location and depth to buried pipes, boulders or other hardened point source features. 

 

Spectral reflectance 

Spectral reflectance measurements are not currently available for soil management on a commercial basis.  If 

however, soil information is offered as a cost-free addition to crop analysis (which is beginning to be 

available commercially), then some use could be made of it to guide soil management if guided by expert 

advice.  Spectral reflectance measurements prove most suitable for targeting such features as: 

• Surface soil moisture content. 

• Changes in features that affect surface soil moisture, such as organic matter. 

• Changes in soil type as reflected by topsoil colour. 
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TECHNICAL DETAIL 

 

AIMS 

 

The overall aim of the project was:  “ To evaluate the practical potential of three soil sensor techniques for 

remotely measuring and mapping important soil physical properties, and to develop robust protocols for use 

on farms.” 

 

This was comprised of the four more specific objectives: 

 

1. For each sensor technology, to identify the soil properties and soil horizons (i.e. soil layers of different 

characteristics) that can be measured using different sensor configurations, the associated accuracy of 

measurement and the stability at different times of measurement during the season. Emphasis will be 

given to sensing by EMI and airborne spectral reflectance since currently these techniques are judged to 

have most potential for cost-effective practical use on farms (King and Dampney, 1999). 

2. To identify the best sensor technique, or combination of techniques, for measuring specific target soil 

variables (e.g. soil depth over rock, topsoil organic matter). 

3. To develop soundly based protocols for in-field use. 

4. To evaluate the cost and ease of use of the sensors in practice. 
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INTRODUCTION AND BACKGROUND 

 

A recent ADAS review for the Ministry of Agriculture Fisheries and Food (MAFF) (King and Dampney, 

1999) highlighted the most promising sensors that could be employed in arable agriculture to improve 

efficient soil management.  

 

The main output of the review was the identification of the most promising applications of current and 

forthcoming sensor technologies, and recommendations for the research needed to test and develop these 

applications into reliable farm practices.   This study follows on from that review, taking the most promising 

of the technologies identified and assessing their worth in arable crop management alongside other precision 

farming techniques (for example yield mapping). 

 

THE NEED TO SENSE SOIL PROPERTIES 

 

Knowledge of the physical make-up of soils has always been important for farmers when making decisions 

concerning crop management inputs such as cultivations, subsoiling/drainage and fertiliser use. However 

most farmers and advisers are reluctant to spend time examining soil type and condition below the surface. 

This is partly due to a lack of knowledge of ‘what to look for’, and partly because it is a laborious job.  

 

Although the National Soil Resources Institute (formerly the Soil Survey and Land Research Centre, and 

previous to that the Soil Survey of England and Wales) has surveyed all of the country, only 25% of the 

nation’s soils have been mapped at 1:25,000 or 1:63,000 scales. Since the intensity of field soil surveying for 

these maps is commonly 1 core to 3 or 4 ha, the locations of some important within field soil boundaries are 

too imprecise.  These surveys also take no account of modifications to soil structure resulting from farm 

operations (e.g. soil compaction). Therefore, there are large areas of arable agriculture which have either no 

existing soil survey information, or where the information is incomplete, at too coarse a scale. 

 

More precise soil knowledge should also result in more accurate use of fertilisers and agro-chemicals. 

Standard recommendations for lime, NPK fertilisers and herbicides are all adjusted according to soil type, so 

unless the farmer or adviser can accurately assess the soil type, the use of these inputs is likely to be less 

than optimal. This will have implications for farm profitability and protection of the environment. 

 

The introduction of precision farming techniques (e.g. GPS, yield mapping, machinery capable of variable 

rate application, sensors) has encouraged farmers to pay more attention to variation that exists within a farm 

and within individual fields. Several research projects (Dampney et al., 1998; Lark et al., 2003a) have 

confirmed that variation in crop yields is primarily due to the inherent soil type, and that a knowledge of soil 

type and the location of boundaries between contrasting soil types is essential if these technologies are going 

to realise their potential. 
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The review of King & Dampney (1999) concentrated on those soil variables that may be used for cropping 

and husbandry decisions, and identified the key soil variables needed for i) cropping strategy, ii) crop and 

soil management, iii) detection of artificial sub-surface features and iv) non-agricultural purposes. These are 

primarily soil physical variables such as texture, depth to bedrock, wetness and organic matter though key 

soil chemical properties are also considered (e.g. soil mineral nitrogen). 

 

Two sensors showed more potential than others for these variables, namely Electromagnetic Induction 

(EMI) and Ground Penetrating Radar (GPR), whilst a third, Spectral Reflectance Measurements, showed 

some potential. Some background to these technologies is given below. 

 

ELECTRO-MAGNETIC INDUCTION (EMI) SENSING  

In recent years the technique of measuring the electrical properties of soil has emerged as a potential tool to 

help differentiate and map various soil variables (King & Dampney, 1998). Measuring the electrical 

conductivity of soil/water paste extracts has long been used to evaluate the solute concentration when 

assessing soil salinity hazard.  Until recently however, measurements made at the field scale were the 

province of geophysical surveys.  This was accomplished by inserting four electrodes into the surface in a 

line (the “Wenner” array), and recording the resistivity (ρ) of the material measured between the inner pair 

of electrodes (Kollert, 1969).  Resistivity is the inverse of the conductivity of a material, and a typical range 

of electrical conductivities (EC) for component materials of soil, is shown in Table 1. 

 

Table 1. Typical ranges of electrical conductivity (Kollert, 1969) 

 

Material EC (mS/m) 
Irrigation water (0.7% salt ) <1500 
Potable water (0.25% salt ) <550 

Clay  10-1000 
Sand 0.01-1 
Loam 20-200 

Topsoil 5-20 
Sandstone 0.1-50 
Limestone 0.4-20 

Crystalline rocks <0.001-1 
 

 

 The electrical current needed to measure soil conductivity can also be induced electromagnetically, using 

principles similar to those in operation in electrical transformers (McNeill, 1980).  A transmitting coil, that is 

energised with an alternating current at an audio frequency, is placed on the soil surface. This sets up a 

magnetic field around it, that induces a weak electrical current in the soil, which in turn generates a second 

magnetic field a set distance from the transmitting coil. A second receiving coil placed here generates an 

alternating current in response to, and proportional with that in the transmitting coil, but altered by the 
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electrical conductivity of the soil.  If the magnetic field at the transmitting coil is Ht , and that at the 

receiving coil is Hr , then; 

 

     Hr/Ht = (√-1(2πf)µoECa2) / 4       (1) 

 

where f is the current frequency (Hz), µo is the permeability of free space, EC is the ground conductivity 

(S/m) and a is the inter-coil spacing (m).  This can be re-written to obtain a reading of the apparent ground 

conductivity (ECa) which is linearly proportional to the ratio of the two magnetic fields (Hr/Ht ).  

 

 

    The electrical coils used can be suspended a few centimetres above the surface, which makes the sensing 

“remote”.  Using a 1 m inter-coil spacing, the zone of influence is the surface 1.5 to 3.0 m of soil.  From 

Table 1 it can be seen how the apparent conductivity (ECa) measured at any point over the soil surface will 

be influenced by the textural, moisture and solute components of the soil below it.  As a result of this, some 

detailed knowledge of the site will always be needed to explain the measurements.  Nevertheless, this opens 

up the possibility of mapping the ECa of a field to help evaluate and explain maps of crop yield, or to allow 

more cost effective mapping of soil type.  On more uniform sites there is also the potential to make more 

direct measurements of variables such as soil moisture for management decision making. 

 

The instrument can be used in two modes, with the coils either vertically or horizontally orientated.  With 

the coils in a vertical orientation the signal obtained is influenced by soil material up to 4 m in depth, but the 

upper 1.5 m of soil depth contributes most to the signal.  In horizontal mode however, a slightly shallower 

layer of material (> 2 m) is penetrated, but the signal response is more strongly influenced by the the upper 

50 cm of a soil profile.  The explanation of this can be found in McNeill (1980), but by using both modes of 

operation we may deduce more about the depth profile of soil on a site. 

 

GROUND PENETRATING RADAR (GPR) 

 

Ground-penetrating radar or GPR is one of a number of non-invasive geophysical techniques that allows us 

to see into, below, or through otherwise solid or impenetrable materials. The technique is particularly useful 

in providing subsoil information where excavation is not immediately possible (e.g. under crops or frozen 

ground), or is inappropriate. 

 

GPR is a time-domain impulse radar that transmits broad bandwidth pulses into geologic media, and acts as 

a sounding device very much like depth finders in boats. 

 

The system consists of an antenna (transducer), that acts as both a transmitter and receiver of radar pulses, a 

recording/control unit, which can display real-time image of what the device has "seen", and connecting 
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cables. GPR is a reflection system that uses non-ionizing electromagnetic waves to probe the material under 

investigation (Fig. 1), remaining at the surface of the soil and picking up echoes that bounce back from the 

objects or interfaces within the material.  

 

The operating heart of the system is the control recording unit that sends signals via fibre optic cables to the 

antenna or transducer which in turn produces a polarised radar signal. The antenna then switches off, and 

detects reflections, which are then recorded by the control unit. Because the pulses are going out and coming 

back at light velocities, there is ample time available for the antenna to record all the reflections or return 

echoes, before sending out another pulse. As the pulse or wave propagates through the soil, rock or other 

medium, it is attenuated, reflected, diffracted, refracted and scattered by the material depending on its 

physical properties. (Fig. 1).  

 

 
 

Two physical conditions of the medium have major impacts on the radar waves and influence the depth 

attainable in a GPR survey: (1) dielectric properties and (2) conductivity (Table 1).  The velocity of EM 

wave propagation is determined by the dielectric properties of the medium.  Just as light (which is a form of 

EM radiation) is slowed down and refracted when it travels from air into water, radar waves are refracted or 

bent by material below the antenna.  If the dielectric changes underground are abrupt for example going 

from dry gravel into the water table, the change will appear as an interface or strong horizon on the resulting 

radar section. Dielectric losses occur in water because the EM energy produces mechanical rotation of the 

water molecule under the influence of an electrical field. With GPR surveys, the continued loss of energy by 

the radar pulse in water-saturated material means that penetration depth is greatly limited.  

 

Conductivity of the substrate is the most important factor determining the rate of signal attenuation. Soils or 

materials with high conductivity (generally > 10 mS m-1) (Table 1) will cause rapid dissipation of the radar 
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pulses via the transformation of EM energy into heat when ions are pushed through the medium by the 

electric field induced by the radar pulse. Highly conductive materials close to the surface will end up 

reflecting radar energy back to the antenna, and nothing will be seen below this reflector. Clays in the 

substrate make it highly conductive, and thus signal loss is greatest in clayey soils. 

 

SPECTRAL REFLECTANCE  

 

Sensing by reflectance of electromagnetic radiation at certain wavebands has found most application in 

monitoring vegetation and crop cover. This application has already been reviewed for MAFF (Dampney et 

al., 1998). Commonly, measurement of specific crop characteristics involve the use of some form of 

vegetation index, the simplest of which is a ratio of “near infrared” (750 nm) to “red” (650 nm) responses 

(Steven and Clark, 1990) and includes a component due to soil reflection. 

 

The reflectance from soil surfaces is not simply a function of the colour of the mineral particles, but depends 

also on its organic matter content, moisture and structure. Jansinski & Eagleson (1989) actually obtained 

three “soil lines”: for soil minerals, soil moisture, and soil shadow respectively. Rondeaux et al. (1996) 

measured the reflectance from 26 soil samples at 660 and 865 nm and found that using the reflectance ratio 

all soil groups, except those with very high organic matter, fitted a single universal line. The ratio of 

reflectance at red and NIR wavelengths has thus been shown to be linear for all soil types (Baret et al., 1993) 

and has become known as the “soil line”. 

 

The measurement of soil variables using spectral reflectance is likely to be restricted to those soil features 

that occur at or close to the soil surface. Reflectance of incident radiation is not affected by soil properties at 

depth. Future potential is largely limited to the possibility of being able to sense topsoil organic matter and 

surface moisture content.  More immediately, the main application is likely to be ‘anomaly detection’, in 

which “sensed” information should allow contrasting field areas to be mapped and considered for different 

management practice (Barnes et al., 1996). 
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MATERIALS AND METHODS 

 

The soil sensors were evaluated in cereal fields of contrasting soil type that had also been used in recently 

completed HGCA Project 2116 (‘Developing a cost-effective procedure for investigating within-field 

variation of soil conditions’). The fields were selected as they showed a high level of soil variability.  Some 

variability was quite obvious  but some was too subtle to be visible or predictable from the surface.  

 

Sites  

 

Two sites were measured in the cropping year 1999/2000 (Year 1) and two others in the cropping year 

2000/01, though the advent of ‘Foot and Mouth Disease’ (FMD) in February 2001 caused a delay in the 

completion of measurements until the following season of 2001/02 (Year 2) on the same sites. 

 

The two fields used in Year 1 were located at Lodge Farm, Shefford, Bedfordshire and Heydour Lodge 

Farm, Grantham, Lincolnshire, in fields named “Shagsby 4” (grid reference TL 108400) and “Field 107” 

(grid reference SK 996373) respectively, and known in this report  by the acronyms; SHG and HLF.   

 

The two fields used in Year 2 were located at Shuttleworth Agricultural College, Old Warden, Bedfordshire 

and Crowmarsh Battle Farm, Benson, Oxfordshire, in fields named “Football field” (grid reference TL 

142447)) and “The Clays”( grid reference SU 637915), and known in this report  by the acronyms; FTB and 

CLY respectively. 

 

All four sites have been predominantly in winter cereals in recent years and were chosen initially for project 

2116, because several years’ yield maps of winter wheat were available.  All fields were sown to winter 

wheat during the year of study and the yield of that year was also mapped.  Topographic details of the fields 

are discussed below in relation to the maps of the soil boundaries and position of soil sampling (Figs. 3 – 6) 

in the ‘Results and Discussion’ section. 

 

Soils 

 

Year 1  - SHG 

The SHG site is characterised by soils of the Bearsted Association.  Soil series of Bearsted, Waterstock & 

Hanslope, have been mapped over the major part of the site, but it also has inclusions of Evesham and 

Ludford.  A brief description of these soils is given in Table 2, and fuller descriptions can be found in Hodge 

et al. (1984).  A detailed soil map of this site was made in 1988 from 1 observation per 2 ha (Fig. 2), which 

also shows the field boundary. 
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 The highest point is towards the lower right-hand side and the land generally falls away towards the topmost 

left-hand corner.  There is a distinct but shallow valley feature running along the left hand edge of the 

Waterstock map unit.  At the left hand edge of the field is a mature woodland and the right-hand boundary is 

an farm road between fields. 

 

Table 2. Soil profile descriptions in (SHG). 

 

Soil series Topsoil texture Subsoil texture Wetness class 
(Hodge et al. 
1984) 

Evesham 
 

Clay to ~25 cm; stoneless; 
calcareous. 

Clay to > 1.2 m; stoneless; 
calcareous 

III 

Hanslope 
 

Clay or clay loam to ~25 cm; 
slightly stony; calcareous. 

Clay to >1.2 m; slightly stony; 
calcareous. 

II 

Waterstock 
 

Clay loam to ~25 cm; 
slightly stony; non-
calcareous. 

Clay loam to ~80 cm, clay loam 
or sandy loam to > 1.2 m; slightly 
stony; non-calcareous. 

II 

Bearsted 
 

Sandy loam or sandy silt 
loam to ~25 cm; slightly 
stony; non-calcareous. 

Sandy loam to ~45 cm, loamy 
sand to ~70 cm over sandy parent 
material to >1.2 m; slightly stony; 
non-calcareous. 

I 

Ludford Sandy silt loam or clay loam 
to ~25 cm; slightly stony; 
non-calcareous. 

Clay loam to > 1.2 m; slightly 
stony; non-calcareous. 

I 

 

Ludford

Bearsted

Hanslope

Waterstock

Evesham

 
Fig. 2 Soil series mapped within the boundary of SHG field.   

 

Year 1  - HLF  

The soils at HLF are characterised by soils of the Elmton Association.  A minor part of the site is occupied 

by Elmton and Aberford soil series (Hodge et al., 1984), which are calcareous clay loams over magnesian 

limestone at either 25 cm depth (Elmton) or below 55 cm depth (Aberford), but the major part by shallow 

sandy loams of the Cranwell series. 
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Year 2 - FTB 

The FTB site was mapped as the  Bearsted Association.  Soils were Bearsted series on the upper part of the 

slope, which is a sandy loam over sandy loam and sandy parent material, but also had the wetter clay loam 

over clay soils of the Oxpasture series at the bottom of the slope in the north of the field.   

 

Year 2 - CLY 

The CLY site was mapped as the Coombe Association over chalk.  The site was a fairly uniform well drained 

shallow clay of the Wallop series (Jarvis et al., 1984), but of variable depth as the slope of the field falls 

away from an underlying chalk ridge in the east. 

 

Soil measurements 

 

Soil measurements carried out on site consisted of in situ measurements of the soil water regime, and 

laboratory measurements of physical properties on removed cores so that soil water properties could be 

calculated using  pedo-transfer functions.  Five cores were taken from each of four transects on the four 

sites, distributed along crop ‘tramlines’ such that they covered potential changes in soil properties and types.  

Measurements of soil texture, bulk density and soil organic carbon, were made on both topsoil and subsoil 

sections of these cores, and these used to calibrate hand-texturing of further cores taken randomly across 

each field.  A further 50 cores were taken at SHG, 54 at HLF, 61 at FTB and 100 at CLY. In addition these 

were supplemented with data taken under HGCA project 2116 (led by Silsoe Research Institute) and also 

HGCA project 2298 (led by Reading University) on shared sites (CLY and FTB).  

  

 ‘SENTEK’ Diviner tubes (Sentek Pty Ltd., South Australia; distributed by Peter White Water Management, 

Ipswich, IP6 9JS, UK) were installed into the 20 core-holes (to a depth of at least 1.2 m) on the four 

transects at each site, for soil hydrology measurements. This allowed soil moisture measurements to be taken 

at 10cm intervals down to 1m depth. 

 

Soil moisture measurements were taken at approximately the same time as the EMI scans using a SENTEK 

DIVINER 2000 soil moisture probe.  The DIVINER 2000 sensor utilises electrical capacitance to measure 

soil moisture.  A high frequency electrical field is created around each sensor, extending through the access 

tube into the soil.  The volumetric soil moisture content is measured by responses to changes in the dielectric 

constant of the soil.  The capacitance of soil increases considerably with an increase in the number of soil 

water molecules, which are free to relax as their electric dipoles respond to the capacitor sensors field 

reversal.  This measurement is proportional to capacitance and is also called specific polarisation or electric 

dipole moment per unit volume. 

 



 21

ELECTRO-MAGNETIC INDUCTION (EMI) SENSOR 

 

Commercially available dual coil EMI systems have been developed such as the EM 38 manufactured by 

Geonics Ltd (Plate 1).  These instruments directly read Hr/Ht , and thus ECa, (McNeill 1980), and are either 

carried across a field, or towed behind an ATV in a lightweight non-metallic cart (Plate 2).  Using 

simultaneous GPS measurements, very accurate maps can be recorded with an interval between readings of 

the order of 3 m.    

 

EMI mapping 

 

In this study, the EM38 (and GPS antenna) was towed in a small non-metallic cart about 3 m behind a 

“quad-bike” ATV to avoid interference with the GPS signal from the ATV. Measurements were made across 

each field when the soils were at field capacity (February / March), and also when they were thought to be 

near maximum  soil moisture deficit after harvest (July / August / September) between 2000 and 2002.  

Measurements were made along transects at 6 m spacing, parallel to crop tramlines, at approximately 3 m 

intervals when the ATV was driven at 15 kph.  At one site (CLY) it proved impossible to obtain an adequate 

GPS signal to complete coverage of the study area within the field, and so a minimum data-set was 

supplement by ‘walking’ the instrument along the transects at moisture deficit to ensure a comparative ECa 

reading for moisture measurements (as in Plate 1).  

 

 
 

Plate 1. The Geonics EM38 being walked along a transect.  
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Plate 2. The Geonics EM38 housed in a wooden cart with GPS receiver mounted, being towed 

behind an ATV.  

 

EMI and Geostatistics 

 

The collection of ECa data in this study was carried out at transect spacings far narrower than would be 

contemplated for a commercial survey.  This was deliberate to enable the progressive degradation from a 

dense data-set, so that more statistical information could be gathered and the optimum spacing identified.  At 

such densities geostatistics would not normally be required to predict the ECa for points in the field, but even 

so, it is likely that geostatistical methods for analysis and estimation will be useful for three reasons, viz: 

i.  In commercial practice the time spent surveying a field will depend in part on the spacing between passes 

of the sensor.  The geostatistical method of kriging may be used to estimate ECa  at points in between passes.  

Because the mean-squared error of kriged estimates from a given array of data may be computed if the 

variogram is known (McBratney et al., 1981) it is possible to find the maximum grid spacing such that the 

error of the kriged ECa  is acceptable.  This allows the most cost-effective ECa  survey to be planned. 

ii.    Our basic data are point measurements of ECa.  In practice we are likely to be interested in the mean 

ECa  of small regions (blocks) coinciding, for example, with pixels from satellite imagery, or the basic units 

of a treatment map.  Block kriging allows us to ‘scale up’ point estimates of ECa  to block estimates with 

known and minimum error. 

iii.  Other geostatistical methods might be used with sensor data in the future.  For example, they might be 

usefully co-kriged with yield or spectral data.  

 

The primary objective of the geostatistical analysis of these ECa data was to address point (i) above and to 

characterise the relationship between the intensity of sampling and the precision with which apparent 

conductivity may be estimated for points and blocks in the field.  This should help us to answer the basic 

question ‘how widely spaced should the passes of an EMI survey be?’ 
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Geostatistical analysis of soil properties is based on the assumption that a variable, z, measured at a location, 

x, may be treated as a realisation of a random function, denoted by Z(x).  The analysis is possible if the 

random function is intrinsic, that is if 

 

[ ] 0,  )()(E =+− hxx ZZ       (2) 

 

and   
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depends only on the spatial separation or lag  h. The function ( )γ h is the variogram. 

 

An estimate of the variogram is needed for geostatistical estimation (kriging) and the design of optimal 

sampling strategies (McBratney et al., 1981). The most widely used estimator of the variogram is due to 

Matheron (1962): 
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 where N(h) pairs of observations among the available data are separated by lag h. 

 

This estimator is asymptotically unbiased for any intrinsic random function, but because it is based on 

squared differences among data it is very sensitive to outlying values of z.  A single outlier can distort the 

estimate of the variogram.  This in turn affects calculated kriging variances and so the intensity of sampling 

designs obtained with the variogram.  A number of robust estimators of the variogram have been proposed 

as alternatives to Matheron's, and Lark (2000a) evaluated three of the major ones.  He showed that they 

could perform well, and also how alternative variograms for a data-set may be assessed.  

 

The initial analyses in this study were conducted on the most closely spaced data-sets for fields SHG and 

HLF.  Histograms and descriptive statistics of the data were examined with and without log-transformation.  

The data were then divided at random into a prediction set and a validation set.  Variograms of the prediction 

data (raw and log-transformed) were then evaluated using Matheron's estimator (Equation 3), Cressie and 

Hawkins (1980) estimator, Dowd's (1984) estimator and that of Genton (1998).  Models were fitted to the 

estimates of the variogram using weighted least-squares. 

 

The prediction data sets were then thinned to a smaller subset for kriging.  This was done by stratified 

random sampling.  The reason for doing this was so that the kriged estimates of the validation data were 
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derived from prediction data at different lag distances (so testing the estimated variograms over a range of 

lags) without creating kriging matrices too large to solve in reasonable time.  Kriged estimates were then 

obtained for each validation datum, by kriging with each variogram.  This yields, for each variogram and 

each validation datum, z(x), a kriged estimate ∃( )Z x  and a kriging variance σ K
2 ( )x — an estimate of the 

error variance of this prediction.  From these values a new variable is computed: 

 

{ }
θ

σ
( )

( ) ∃( )
( )

x
x x

x
=

−z Z
2

2
K

.      (5) 

 

If the intrinsic hypothesis applies and the variogram used in kriging is correct then the expected value of 

θ ( )x is 1.  However, θ ( )x is very susceptible to outliers.  Lark (2000a) showed that it is better to evaluate 

the median of θ ( )x , with an expected value of 0.455.  This was shown to be a robust measure of the validity 

of a variogram model in kriging, and the median of θ ( )x was obtained from all the validation data for each 

variogram.  If this median is significantly smaller than 0.455 this suggests that the variogram is 

overestimated (due probably to outliers) and so gives inflated kriging variances. 

 

Having evaluated alternative variograms of the ECa data, kriging variances were calculated assuming that 

ECa  is kriged from data on passes of the sensor at different spacings.  This can be done since the kriging 

variance depends only on the disposition of the sites from which the kriged estimate is derived and the 

variogram.   It was assumed that the data are collected at 3m intervals along each pass.  Kriging variances 

were calculated for the point estimate at a site equidistant between adjacent passes, and for the estimate of a 

10m square block centred at the same point.   

 

This procedure was then followed using the other data-sets collected at each site (vertical setting).  Because 

these sets were smaller all the data were used for variogram estimation and the θ ( )x statistic was estimated 

by cross-validation (see Lark, 2000a). 

 

Seasonal stability of EMI Measurements 

 

An important question about ECa data is whether the spatial pattern that is revealed in a single data set is 

likely to be stable over time.  If we wish to use ECa data to delineate management zones are we likely to do 

better at certain times of year (e.g. when the season is at field capacity rather than when there is a substantial 

deficit)?  Some of the results presented here for quantitative analysis of ECa data and soil measurements 

suggest that bigger differences are found in spring, but we want a more general method for assessing the 

stability of patterns, and we have employed two approaches to do this.  
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In an initial study we compared the measurements of ECa (vertical mode) at HLF on the two dates of 

sampling, by multivariate geostatistical analysis.  We computed robust pseudo cross-variograms of ECa on 

the two dates, which describe the spatial variation and joint variation of the two variables.  We then used 

these to estimate change in ECa by cokriging.  Details of these statistical methods are given elsewhere (Lark, 

2002). 

 

To avoid the limitations of the linear model of co-regionalisation we used an alternative method.  We 

overlaid the ECa data sets for the two dates to be compared and sorted them into vectors — by pairing 

observations from the two dates which are closest together in space (provided they are no further apart than 

5 metres).  We then performed a fuzzy cluster analysis on these vectors.  This method is not described in 

detail here, but more information is provided by Lark (2001).  The aim of the method is to discover distinct 

clusters in the data – i.e. groups of vectors with similar ECa values at the two dates.  If there are regions of 

the field with (relatively) large values of ECa data on both dates then these should form a distinct cluster, 

similarly areas of small ECa will form a cluster.  If there is any complex temporal variation — e.g. areas 

where ECa ‘flips’ from large to small values — then these will also form a distinct cluster themselves. 

 

Relating EMI to Soil Measurements 

 

The objective of the analyses reported here was to obtain insight into the soil properties which contribute to 

the observed variation in measured ECa.   

 

The basic method used in this analysis was regression analysis, whereby a response variable (ECa here) is 

modelled as a linear combination of input variables, and a random error variable.  It would be possible to 

regress ECa on a set of soil properties s1 , s2, … sm giving rise to an equation: 

 

 ECa = a + b1 s1 + b2 s2+…+ bm sm+ e,     (6) 

 

where a and the b s are regression coefficients and e are the error.  This equation would be useful for 

predicting the ECa for a site from the soil properties s1 , s2, … sm  but it would be of little use for generating 

insight into what causes the variation in ECa (Webster, 1997).  This is because the variables s1 , s2, … sm are 

not statistically independent of each other.   Thus, while the coefficients b represent a least-squares solution 

to the problem of predicting  ECa from s1 , s2, … sm , we may not interpret the coefficient bi  as a measure of 

the importance of soil property si (e.g. clay content in the topsoil) in physically determining the signal ECa.  

This is because the clay content of the topsoil will not be independent of, for example, the bulk density of 

the topsoil.  Both these variables may make distinct physical contributions to the ECa of the soil, but the 

regression equation is not able to disentangle these because the variables do not vary independently of each 

other.  Therefore the coefficient which is estimated for clay content will change as other variables are added 
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to, or dropped from, the regression, and so the variable does more or less work accounting for the effects on 

ECa of variables not included in the model with which it is correlated.   

 

Given this constraint, we carried out two separate analyses on the ECa and soil data.  In the first we fitted a 

regression model to predict ECa from all the measured soil variables.  We then fitted a new model 

corresponding to each of the soil variables in which it alone was dropped from the set of predictors.   Each 

reduced model may then be compared to the full model (using the Akaike information criterion, discussed 

below) if the model with a term dropped is deemed to give a poorer fit to the observed ECa measurements, 

then we may conclude that that variable has a partial effect (direct or indirect) on the ECa , that is to say an 

effect which is not correlated with the effects of any terms remaining in the model.  This qualification is 

critical, if we identify no effect of a variable independent of other terms, this does not necessarily mean that 

the variable bears no relation to ECa, it may be that it is of physical importance, but is sufficiently strongly 

correlated with terms still in the model for its effect to be expressed through them.  We may therefore only 

draw positive conclusions from the analysis. 

 

In the second approach we started by computing the principal components of the soil variables.  The 

principal components of a data set with m variables are m new variables formed by an orthogonal linear 

transformation of the original ones, that is to say we can think of the principal components as a rigid rotation 

of the original variables.  While an infinite number of sets of orthogonal transformations of the variables are 

possible, the principal components are constrained (i) to be un-correlated with each other and (ii) to account 

for as much of the variability in as few of the principal components as possible.  Details of the method can 

be found elsewhere,  here we conducted principal component analysis by finding eigen-values and vectors of 

the correlation matrix of the original variables which effectively analyses the original variables on a 

common dimensionless scale.   

 

Having formed principal components of the original soil variables we conducted regression analyses on the 

principal component scores.  Because the principal components are un-correlated we may identify the 

components which account for most variation in ECa by considering the t statistic for each in turn.  We may 

then examine the coefficients whereby the important principal components are formed from the original soil 

variables, and see whether they admit an interpretation in terms of the pattern of soil variability which they 

seem to describe. 

 

It is important to note that the regression was not done by ordinary least squares (OLS).  OLS regression is 

not suitable for the analysis of spatial data sets which have not been collected by random sampling.  All 

these data were collected on systematic grids or transects.  In these circumstances OLS can seriously 

overestimate the significance of a regression relationship. 
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The ML regression procedure was used instead (Lark, 2000b). The ML estimate of the vector of regression 

coefficients, b, is given by  

 

( ) ( ). = 1T11T yAXXAXb −−−                               (7)                        

 

X and y are respectively a matrix and a vector of n observations of the independent variable(s) (ancillary 

variables) and the dependent variable (soil property).  A is a correlation matrix for the n errors.  This may be 

specified by a variogram function for the errors, determined by the spatial parameter and the ratio of the sill 

to the nugget component of the error variance. The maximum likelihood estimate of the error variance, 

conditional on A is given by: 

 

( ) ( )∃ ,σ 2 11 =  T
n

Y Xb A Y Xb− −−                            (8)                        

 

and the maximum likelihood estimates of the parameters of the error variogram, the regression coefficients 

and the error variance is then obtained by a numerical maximisation of the likelihood function:  

 

− log   -   log  A n ∃ .σ 2                                             (9) 

 

with respect to the variogram parameters.  The significance of the resulting regression model was then tested 

by computing the Wald statistic: 

 

W = bTL   b        (10) 

 

where L   is the Fisher information matrix.  For a regression model with k predictors, W is approximately 

distributed as χ 2 with k degrees of freedom.  This tests the null hypothesis that the regression coefficients are 

all zero. 

 

When regressions of one variable (ECa here) have been computed on alternative sets of independent 

variables they cannot simply be compared on their error variances, since increasing the number of predictors 

almost invariably reduces the error variance.  Instead the models were compared on the basis of the Akaike 

information criterion, AIC, (Akaike, 1973).  Selecting from among models fitted to the same data on the 

basis of the minimum AIC is a parsimonious procedure.  Additional predictors are only accepted if the 

improvement in fit is sufficient to justify them by a likelihood–based rule.  Here the AIC was applied by 

computing the statistic 

 

a n k= + +log logA σ 2 2 ,       (11) 
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where k is the number of independent variables in the prediction.  The value of a will be least for the 

regression with the smallest AIC. 

 

The ML procedure outlined above was used in most cases.  However, in the analysis of data sets including 

the Diviner measurements of soil water the numbers of observations were very small.  In these 

circumstances we used the REML directive in Genstat (Payne et al., 1988) for spatial modelling.  This 

indicated no evidence for spatial correlation of the error term, so we conducted the analysis using OLS 

regression in Genstat, and computed the corrected AIC for small sample sizes proposed by Bedrick and Tsai 

(1994).  

 

GROUND PENETRATING RADAR (GPR) 

 

Two GPR systems were operated during the project.  At HLF field in year 1 measurements were made using 

a ‘Sensors & Software’ ‘pulseEKKO 1000 GPR’ using a 450 MHz antenna, whilst at the CLY field in year 2 

a ‘Mala Geosciences’ ‘Ramac system’ with a 500 MHz shielded antenna was used, to give optimal depth 

and target resolution (Plate 3). 

 

 
Plate 3.  The Mala Geosciences GPR being dragged across a concrete surface. 

 

Reflectance Measurements of Sub-surface Features 

 

The aim of the survey was to profile shallow soil layers.  The simplest means of doing this is to traverse the 

ground surface with the antenna in direct contact with the soil, and measure the reflected signal.  To this end 

the GPR systems were physically dragged at walking pace (Plate 3) along the four 20 m transects located 

along selected tramlines within the study areas at HLF and CLY fields.  The transects at HLF were located in 

positions where it was considered changes in subsoil features may be of interest, and at CLY they were 

located continuously so that one long transect was sampled running through the centre of the field from the 
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chalk ridge and down to the lower elevation. Measurements were made across each field when the soils were 

at field capacity (February / March), and also when they were thought to be near maximum  soil moisture 

deficit after harvest (July / August / September) in 2000 (HLF) and 2002 (CLY). 

 

Novel Measurements with GPR 

 

At HLF field in year one a small one-off survey was conducted using GPR in  novel manner.  This is known 

as “air launched mode” when it is hoisted to a fixed height above the ground surface.  This was conducted 

over a small (50 m x 10 m) patch across a valley feature, to investigate the possible differentiation of soil 

types.  The GPR antenna was mounted at a height of 1 m above the soil surface on the back of an ATV and 

driven a slow speed across the area. 

 

SPECTRAL REFLECTANCE 

 

The principle of the system was to traverse a linear array of two-band radiometers systematically over a bare 

soil surface so that a regular spaced grid of measurement points could be generated.  To this end a tractor 

was equipped with a 24m boom from a conventional agricultural sprayer.  Radiometers were mounted at 4m 

intervals across the boom to detect radiation reflected from the soil surface.  A radiometer with a cosine-

correcting filter was mounted at the centre of the boom to measure down-welling radiation in order to 

compensate the soil radiometers for variation in ambient radiation.  The boom could be set at different 

heights relative to the ground so that the sensing area for each radiometer could be varied.  Typically the 

height was set to give a sensing circle of diameter 0.5m. 

 

The radiometers were Skye Instruments type SKR1800 dual channel sensors fitted with narrow band 

interference filters centred at 660nm (visible red) and 730nm (near infrared), and the filter bandwidths were 

25nm.  The radiometer signals were carried by cable to a multi-channel A-D converter expansion board in a 

PC, mounted in a tractor cab.  Sampling of the signals was initiated by an interrupt generated from a GPS 

receiver at a rate of 1Hz.  The GPS receiver aerial was mounted on the tractor cab roof at a measured 

distance from the centre-line of the boom. 

 

The tractor was driven along 24 m spaced tramlines across the SHG field during the post harvest period  in 

the autumn of 2002, after the crop stubble had been ploughed in and the soil surface was bare.  It was also 

essential that the soil surface was fairly flat with no standing water to avoid extraneous reflections.  The file 

of radiometer measurements generated by traversing each tramline with the scanning radiometry system was 

imported into a spreadsheet so the measurements could be compensated, corrected, and synchronised with 

GPS location. 
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The tractor was driven at approximately 10-13 kph, and the data collection process for a 7 ha field was about 

0.5 hours. 
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RESULTS AND DISCUSSION 

 

SOIL SURVEY 

 

After collection and analysis of the core samples from each site, it became apparent that the soil types 

dominant on each site did not quite match the prior assumptions about their series and distribution. These 

revised maps, based on approximately 4 observations per hectare, are reproduced here.  Profile descriptions 

of each soil series mentioned are given in Appendix 1. 

 

SHG site year 1. 

Fig. 3 shows the revised soil type distribution for this field and should be compared with Fig.2.  The 

topography of this site was such that the highest point was towards the bottom right hand corner of Fig. 3, 

with a ridge running along the right hand boundary.  A valley feature that was often more moist than the 

surrounding boundary areas, but not as wet and cloddy as the southern boundary, ran from approximately the 

middle of the field towards the top left hand corner of Fig. 3. 

 

Shagsby Field, Chicksands
TL106400
Ea: Evesham; BE: Bearsted : Wtk: Waterstock ; cN: Cottenham ; Ox: Oxpasture

Wtk

BE
Ox

Ea

cNBE

BE

 
 

Fig. 3 Soil types at SHG. 

 

Evesham and Oxpastures soils are clays and  heavy clay loams over clay respectively, whereas Waterstock is 

a clay loam, and Bearsted and Cottenham soils are sandy loams and sands respectively (Appendix 1).  The 
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area receives an annual rainfall of approximately 570 mm,  has about 101 days at field capacity and a 

maximum moisture deficit of 103 mm under wheat.  

 

HLF site year 1. 

Fig. 4 shows the soil types for the part of this field which was mapped using EMI and GPR instruments.  

The highest point is towards the top right hand corner of Fig. 4, with a plateau running along the right hand 

boundary where the Haselor soil is located.  A deep valley feature ran the middle of the field (top to bottom) 

where the Wilford soil is located between Cranwell soils on the slopes to either side.  The site rose again to 

another slightly lower plateau along the left hand edge of Fig. 4. 

 

Field 107, Heydour Lodge
TF004372
eT: Elmton; CQ: Cranwell ; WP: Wilsford ; Hb: Haselor ; Ox: Oxpasture

Hb
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WP

WP
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Fig.4 Soil types at HLF. 

 

Haselor soils are heavy calcareous stony clay, and Elmton a shallow sandy clay loam over limestone.  The 

Cranwell soil coming off the limestone ridges is a shallow stony sandy loam, and runs into the deep loamy 

sand of the Wilsford soil in valley areas (further soil description in Appendix 1).  The site receives annual 

rainfall of approximately 652 mm, has about 139 days at field capacity and a maximum moisture deficit of 

106 mm under wheat. 

 

FTB site year 2. 

Fig. 5 shows the soil type distribution for this field, though only the lower half was mapped by EMI.  The 

topography of this site was such that the highest point of the field was along the bottom edge of Fig. 5, 
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sloping gently where the Cottenham soil series is predominant.  This slope steepens at the more mixed area 

of Bearsted and Ludford soils in the middle of the picture, until it levels off again at a lower elevation, where 

the Oxpasture soil is located. 

 

Football Field, Old Warden
TL142447
BE: Bearsted ; cN1: Cottenham  (sandy loam top);
Hn: Hanslope ; cN2: Cottenham  (loamy sand top); Ox: Oxpasture

LD

LD

Ox

cN1

BE

cN2

cN1

Hn

 
 

Fig. 5 Soil types at FTB . 

 

Cottenham soil is a light loamy sand or sandy loam developed over a deep loamy sand to sand parent 

material.  Sandy silt loams of Bearsted and clay loam Ludford series intergrade on the slope between the 

Cottenham soils and the heavier clay loam of the Oxpasture soil at the lower level (further soil description in 

Appendix 1).  The site receives rainfall of approximately 555 mm a-1, has about 95 days of field capacity and 

a maximum moisture deficit of 118 mm under wheat. 

  

CLY site year 2. 

Fig. 6 shows the soil type distribution for this field, though the study area comprised only a narrow strip 

running from the lower edge of the Soham soil series on the top left field boundary to the top edge of the 

Frilsham soil at the lower right hand edge of the field.  The highest point is along the bottom right hand edge 

of Fig. 6 along a chalk ridge, sloping steadily towards the top left hand edge of the field, and more steeply so 

into the top corner. 

 

Most of the field is soil of the Wallop series, which is a fairly shallow silty clay loam to silty clay developed 

over fragmented chalk.  The main variation across the field is the depth of this material over chalk. There are 



 34

smaller areas of sandy clay loam on both the ridge, (Frilsham) and lower plain areas (Soham)(Appendix 1). 

The site receives annual rainfall of approximately 644 mm, has about 139 days at field capacity and a 

maximum moisture deficit of 122 mm under wheat. 

 

The Clays, Benson
SU640915
Wa: Wallop; Fs: Frilsham; Sb: Soham

Wa

Sb

Fs

 
 

Fig. 6 Soil types at CLY . 

 

SOIL PHYSICAL PROPERTIES AND HYDROLOGY 

 

The location of soil moisture measurement tubes (‘Diviner’ tubes) on two sites SHG and CLY are shown 

here (Figs 7 & 9) as examples of their distribution across features of interest and/or contrasting 

soil/management zones in fields.   

 

The distribution across SHG (Fig. 7) relative to the revised soil boundaries indicates that tubes 1 – 10 are 

probably located within heavier clay/clay loam soils, whilst 11 – 15 are in the lighter clay loam and 16 – 20 

sandy loam or loamy sand.  The moisture contents of the top- and sub-soils during the summer moisture 

deficit period are shown in Fig. 8 where generally reduced levels in the sandy loam Cottenham series soil are 

seen in comparison with the rest of the field.  The feature that does stand out however, is the somewhat 

higher levels of moisture in the sub-soil at tubes 6, 12, 13 and 14 on two separate transects spanning three 

soil types.  All however, are in depressed areas of the field; 6 as it slopes towards the left hand edge in Fig. 7 

and 12, 13 and 14 in a valley feature running from the middle of the field toward the top left-hand edge.  

This should be compared with Fig. 12 to see that they lie just within higher reading ECa areas. 
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Fig. 7  Location of ‘Diviner’ tubes and soil coring transects at SHG. 
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Fig. 8  Soil moisture content (% g/g) for top- & sub-soil at SHG on 15/08/2000. 

 

The distribution of tubes across CLY is shown in Fig. 9 relative to the soil types indicating that tubes 1 – 20 

are probably located within only one soil type (a clay), which runs from a low-lying flat area at 1 to the top 

of a chalk ridge at 20.  The moisture contents of the top- and sub-soils during the summer moisture deficit 

period are shown in Fig. 10 where very low levels are recorded, but particularly so in the in tubes 5 – 8 and 

19 – 21 for the subsoil.  Tubes 19 – 21 are on the very top of the ridge where the soil is very shallow and 

tubes 5 – 8 are also in an area of shallow soil where the underlying chalk comes near to the surface.  These 

areas are identified as small value ECa areas by the use of the EMI instrument in vertical mode in Fig. 14a. 
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Fig. 9.   Location of ‘Diviner’ tubes and soil coring transects at CLY. 
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Fig. 10   Soil moisture content (% g/g) for top- & sub-soil at CLY on 26/06/2002. 

 

Similarly the tubes in HLF identified the much higher moisture contents associated with the clay soil on that 

site, and also certain tubes on FTB had higher moisture contents in the subsoil showing where the clay 

inclusions were, which led to larger value ECa readings in some areas in Fig.13a. 

 

ELECTRO-MAGNETIC INDUCTION (EMI) SENSOR 

 

EMI mapping 

 

The output of the EMI scans can be displayed spatially related to the GPS co-ordinates to obtain apparent 

electrical conductivity maps of the site, such as those in Figs. 11 - 15 for the sites studied here.   
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Year 1 

Fig. 11 shows the distribution of ECa readings across the part of the HLF field studied (Fig. 4), on occasions 

near field capacity (date 1 = 16/03/00) and during harvest when the soil was dry (date 2 = 17/08/00).  It 

should be noted that harvesting was still in progress on part of this field on date 2, which is why EMI 

surveying could not be extended to the right hand edge of the field in Fig. 11 c&d.   

 

The maps of ECa readings made on SHG field are shown in Fig.12.  Again, readings were made at field 

capacity (date 1 = 11/02/00) and after harvest when the soil was dry (date 2 = 23/08/00), but only with the 

instrument in the vertical mode of operation.  The second set of measurements (Fig. 12b) were made at a 

higher speed of ATV operation compared with the first set (Fig. 12a) (by a different operator), and serve to 

show how this has led to a much less dense data-set (459 points instead of 3564; King et al., 2001).   

It is instructive to compare visually the range of ECa values mapped for each site with the relevant soil maps 

for the same sites.  If this is done for SHG site (Figs. 3 & 12) then the value of EMI as a technique becomes 

clear, as there is a clear distinction of larger ECa readings in the parts of the field dominated by the heavier 

clay loam soils of the Evesham and Oxpasture series, compared with lower values from the lighter soils of 

Waterstock and Bearsted series.  This pattern holds true in general at both wet and dry times of the year 

suggesting that a large part of the signal from this field is governed by the clay content of the soil.  This is 

also suggested by the fact that the site mean ECa is only marginally smaller in the summer compared with 

the winter (Table 7), and leads to the identification of two distinct classes of response for this field (Fig. 18).  

Site hydrology also shapes the pattern however, as the valley feature in the Waterstock soil to the top left of 

Fig. 3 shows as an area of marginally higher readings in Fig. 12, and is probably due to subsoil moisture. 

 

The comparison for the HLF site is a little different (Figs. 4 & 11) as there is only a small area of heavier 

soil and most variation across the site is topographical.  At times of both field capacity and maximum 

moisture deficit, the ECa readings across the HLF site are much smaller than SHG (Table 7), reflecting the 

sandier material and drier conditions.  The area of clay loam soil topsoil at the top of the slope to the right of 

Fig. 11a&b however, showed comparable apparent conductivity to the clay loams on SHG (Fig. 12a).  There 

were big differences recorded in the site mean between dates however (Table 7), due mainly to the second 

date not including the high conductivity clay area (cf. Fig 11a&b and 11c&d).  However, the major part of 
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Fig. 11.  EMI scans of HLF field. a. = date 1 (16/03/00) vertical mode, b = date 1 horizontal mode, c = date 

2 (17/08/00) vertical mode, d = date 2 horizontal mode. NB. Note from X-axis GPS co-ordinates, 
that c & d do not extend as far to the right hand side of the field as a & b. 
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b. 
 
Fig. 12.  EMI scans of SHG field. a. = date 1 (11/02/00) vertical mode, b = date 2 (23/08/00) vertical mode. 
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the field was uniformly low reading in both vertical and horizontal modes at field capacity (Fig. 11a&b), and 

readings were even more reduced during the dry part of the year (Fig. 11c&d) indicating that in this material 

the main contributor to the signal was moisture.  Little pattern was visible in this part of the field in the 

vertical mode, but the main valley feature was visible in the horizontal mode when at field capacity (Fig 

11b).  This valley feature was even more apparent by the contrast in readings made during a period of 

moisture deficit (Fig. 11c&d), as were other less distinct valley features. This time the contrast was more 

apparent in the vertical mode (Fig. 11c) and coincides with areas of Wilsford soil which is deeper sand 

material between areas of shallow Cranwell series over limestone outcrops (Fig. 4).  In this case the main 

contributor to the EMI signal is moisture held at depth in this material, and the ECa is effectively soil depth 

as well as texture. 

 

It should be noted from Fig. 11d that negative ECa readings can be obtained from a survey. This occurs 

because they are not truly absolute readings, taking a zero datum in free air at one particular point in the 

field. In some cases the underlying geology may influence the zero reading slightly.  For this reason 

comparisons between sites or dates should not be taken as indicating precise differences.  Also, we have not 

computed ratios, or geometric means, of horizonal and vertical mode readings which can be informative 

(Lark et al., 2003b) since these require an absolute scale. 

 

Year 2  

Figure 13 displays the ECa distribution across the FTB site at field capacity (date 2 = 21/03/02) and after 

harvest (date 1 = 19/09/01) when the bulk of the soil profile was dry.  On this second date however, there 

was considerable surface water from rainfall that eventually prevented the horizontal mode readings from 

being taken (to avoid damage to the site in susceptible areas).  The maps in Fig. 3 correspond to the higher 

part of the field, which is the lower portion of the area outlined in Fig. 5.  The top right hand corner of Fig. 

13 relates to the pointed middle section of the right hand side of the field in Fig. 5, and the top left 

approximates to the junction between Bearsted (BE) and Cottenham 2 (cN2) soils along the left hand edge in 

Fig. 5. 

 

A comparison between the ECa maps for FTB field (Fig. 13) and the soil map (Fig. 5, lower half) reflect the 

general uniformity of the studied half of the field that is mainly Cottenham series soils.  This deep sandy 

material gives generally small value ECa measurements in the vertical mode during both moisture deficit 

(Fig. 13a) and field capacity (Fig. 13c), except for small areas of more clayey materials in the lower left 

hand corner.  However, there is a pattern of patches in the field where conductivity is somewhat higher than 

the rest, which is not however strongly reflected in the horizontal mode readings made during a moisture 

deficit period (Fig. 13b).  This pattern is consistent over both dates. This rather suggests that there is a 

change in materials at depth (>2 m) in these areas which is probably in the mineral soil, because of its 

persistence.  It has been noted in the past that there are areas of clay inclusions in the subsoil of this upper 

field area  
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Fig. 13.  EMI scans of FTB field. a. = date 1 (19/09/01) vertical mode, b = date 1 horizontal mode, c = date 

2 (21/03/01) vertical mode. 
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Fig. 14.  EMI scans of CLY field. a. = date 1 (22/08/01) vertical mode, b = date 1 (22/08/01) horizontal 

mode. 
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Fig. 15.  EMI scans of CLY field. a. = date 2 (06/06/02) vertical mode, b = date 2 horizontal mode. 
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(Frogbrook, pers. comm.).  Also, the Greensand parent material is very rich in iron, with common ironstone 

nodules, which may themselves influence apparent conductivity on the site (though more likely as point 

sources of high conductivity). 

 

It is also interesting to note from the ECa readings made at FTB field, that those made in the horizontal mode 

in the moisture deficit period are actually generally rather large and much larger than those in the vertical 

mode, which is counter to the situation at HLF and to what would normally be expected.   This was caused 

by weather conditions at the time of measurement, which was persistent light rain.  This had only wet the 

surface soil, leaving the soil at depth still dry, and so leading to conditions where moisture content would be 

highest in the surface soil layers that contribute a higher component of the EMI signal when used in the 

horizontal mode.  Because the soil was very permeable it was still trafficable despite the surface moisture, 

which however, was not the case under field capacity conditions (see earlier comments on this page as to 

why horizontal mode readings could not be taken at FTB on this occasion). 

 

Despite persistent problems obtaining GPS signals at the CLY site sufficient data were obtained to map a 

considerable part of the field covering the range of soil conditions present.  Fig. 14 displays the ECa 

distribution across a central portion of the CLY  site after harvest (date 1 = 22/08/01) when the soil profile 

was dry.  This part of the field corresponds to a strip running from the base of the inset rectangular section of 

the top left edge shown in Fig. 6 to the bottom right hand edge.  On the second date the soil was also dry in 

the following year (date 2 = 06/06/02) (Fig. 15) and taken at a lower density from a slightly wider area. 

 

At CLY site the major variation in ECa readings visible in both modes and dates during a deficit period (Figs. 

14 & 15) is probably not caused by differences in soil type. The main feature is the patch of reduced ECa 

readings at the right hand edge of the study area in Fig. 14 and 15, and it would be tempting to ascribe this to 

the Frilsham soil series mapped in Fig. 6 near this location, and not the majority Wallop series over the rest 

of the field.  However, both of these soil types have  a reasonable amount of clay in the topsoil and similar 

depths of topsoil, and it is the Frilsham soil that is generally deeper in total profile (Appendix 1).  It is not 

likely therefore, that it would have a lower total apparent conductivity than the Wallop, as seen in Figs. 14 & 

15.  In this case it more likely that the entire strip surveyed is Wallop series and the variation in ECa reflects 

the increasing depth of soil from very shallow areas on the top of the chalk ridge, down to the lower 

elevation part of the field.  The pattern of variation in this part of the field was not indicated by changes in 

surface topography, and probably shows more minor variation in depth of soil to underlying chalk.  This 

chalk is also variable in hardness, with many softer patches where the material is more like marl than rock 

and holds considerably more water. 

 

EMI and Geostatistics 
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The basic frequency distribution of the ECa readings (vertical mode) made at the two sites SHG and HLF in 

the first year whilst at field capacity (date 1), are shown in Fig. 16 for both raw and log transformed data.  

The summary statistics for the data from both sites on both occasions (vertical mode of EMI use) are given 

in Table 3.  Log–transformation of the HLF (date 1) data caused some reduction in skew.  The SHG data are 

bimodal and so the log-transformation makes the data negatively skewed.   The date 2 data from HLF field 

were not skew so the log-transformation was not considered. 

 

Figure 17 shows by way of example, variograms obtained with different estimators and fitted models for 

HLF (date 1) data set (untransformed).  The most obvious feature of this figure is that Matheron's estimator 

is giving much larger values for the variogram than do the robust estimators. The Matheron and Cressie-

Hawkins variograms were initially fitted with Gaussian models.  This is generally to be avoided since it can 

lead to numerical instability.  For this reason, and because the fit at the shortest lags was poor, a power 

function model was also fitted to the Matheron variogram for lags up to 100m.  This is the model shown in 

the figure, kriging and determination of grid spaces with this model did not involve lag distances greater 

than 100m. 

 

Tables 4 & 5 show the results of validating these different variogram models (and those fitted to the other 

data sets) by kriging at the validation data sites and evaluating the θ ( )x  statistic.  In all cases the median 

value of θ ( )x for kriging with the variogram model fitted to estimates obtained with Matheron's estimator 

was substantially below the expected value of 0.45 and the 95% confidence interval.  This indicates that the 

model overestimates the variogram.  In the case of the date 1 data set for HLF field (not log-transformed) 

Dowd's estimator gives a median value of θ ( )x very close to the lower limit of the 95% interval.  It is 

clearly the best estimator of the variogram for this data set.  In the date 2  data from the site  Dowd's 

estimator is also the best and falls within the 95% interval.  Log-transformation has little effect on the results 

for HLF.  This suggests that the best model of the data is a dominant normally-distributed process with some 

outlying values generated by an independent process. 
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a. HLF field date 1 (raw data left, log-transformed right). 
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b.  SHG field date 1 (raw data left, log-transformed right). 

 

Figure 16.  Frequency (F) distribution histograms of the year 1 data-sets (date 1). 

 

Table 3.  Summary statistics of Year 1 data (Vertical Mode) raw data (mS/m) and transformed (ln mS/m). 

 

 HLF  (date 1) HLF (date 

2) 

SHG (date 1) SHG (date 

2) 

 mS/m ln mS/m mS/m mS/m ln mS/m mS/m 

Mean 27.7 3.25 6.25 26.0 3.04 20.7 

S.D. 12.0 0.35 2.35 15.0 0.71 10.9 

Skew 1.81 1.36 0.07 0.15 -0.45 -0.44 
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Figure 17.  Variograms by different estimators and fitted models for HLF field date 1 (raw data ) 

 

 

Table 4  Validation of variogram models for HLF 1 and SHG 1 (vertical mode) date 1. 

 

 Data set 

 HLF date 1 SHG date 1 

95% interval for 

median θ ( )x  

0.42–0.49 0.40–0.50 

 mS/m ln mS/m mS/m ln mS/m 

Estimator Median value of θ ( )x  

Matheron 0.23 0.35 0.15 0.16 

Cressie-Hawkins 0.38 0.37 0.23 0.26 

Dowd 0.40 0.39 Model not fitted 

Genton 0.30 0.40 0.22 0.27 

 

In the case of the SHG data none of the variograms gave a median value of θ ( )x  close to the expectation on 

either date.  This, and the strongly bimodal histogram, suggests that the data cannot be regarded as a 

realisation of a simple intrinsic random function but are best subdivided into regions with different 

variograms.  For this reason the data were divided into two groups by a simple classification method 
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minimising the within-group variance.  Figure 18 shows the classification as a map.  Class 1 contains data 

with larger ECa  values (mean 36 mS/m), the mean in class 2 is 10mS/m. 

 

Table 5  Validation of variogram models for HLF 2 and SHG 2 (vertical mode) date 2. 

 

 Data set 

 HLF date 2, mS/m SHG date 2 mS/m 

95% interval for 

median θ ( )x  

0.39–0.52 0.36–0.55 

Estimator Median value of θ ( )x  

Matheron 0.28 0.15 

Cressie-Hawkins 0.36 0.23 

Dowd 0.40 Model not fitted 

Genton 0.34 0.23 
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Figure 18.  Two classes defined on the date 1 data from SHG Field. 

 

The data within each class were then divided into a prediction and classification subset and variograms fitted 

and validated as above.  Table 6 shows the results of the variogram validation.  The date 2 set of data for the 

site was then subdivided according to the classification of the nearest point in the original data set.  

Variograms were fitted to data from each class within set C2 and compared by cross validation, see Table 7. 



 49

 

Again, the variogram based on Matheron's estimator appears to be an overestimate in all cases, but the 

robust variogram estimators mostly give acceptable results.  Since the un-transformed data appear to be 

well-modelled by variograms obtained robustly, the log-transformation is not considered further. 

 

Table 6  Validation of variogram models for the two classes in data set SHG 1 (vertical mode) 

 

 Shagsby date 1, Class C1 Shagsby date  1, Class C2 

95% interval for 

median θ ( )x  

0.39–0.52 0.38–0.53 

 mS/m ln mS/m mS/m ln mS/m 

Estimator Median value of θ ( )x  

Matheron 0.34 0.30 0.32 0.31 

Cressie-Hawkins 0.42 0.45 0.41 0.40 

Dowd 0.47 0.59 0.50 0.43 

Genton 0.42 0.89 0.40 0.40 

 

Table 7  Validation of variogram models data set SHG 2 according to the classes in data set SHG 1 (vertical 

mode). 

 

 SHG 2, Class C1 SHG 2, Class C2 

95% interval for 

median θ ( )x  

0.34–0.57 0.26–0.65 

Estimator Median value of θ ( )x  

Matheron 0.31 0.22 

Cressie-Hawkins 0.39 0.31 

Dowd 0.42 0.85 

Genton 0.41 0.60 
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Figure 19.  Variograms for (date 1) data on SHG field within each class. 

 

Figure 19 shows variograms for the two classes (date 1) obtained by Matheron's and Dowd's estimators in 

each case. This figure shows clearly one effect of the classification.  The variograms within the two classes 

are very different both with respect to the magnitude of the variability and also the pattern of the spatial 

dependence which is of shorter range in class 2.  These are two distinct patterns of spatial variation that 

previously had been averaged together into a variogram that was representative of no one part of the field. 

 

An important practical implication of these considerations in spatial analysis is for the optimal spacing 

between passes of the sensor across a field.  Kriging variances were calculated for different spacings as 

described in the methods section.  In Figure 20 are shown the point kriging variances using the variograms 

obtained by Matheron's estimator and the robust estimator of Dowd (1984) applied to the data sets from HLF 

field (both dates, not log-transformed).   These results are also expressed in terms of the + 1 RMS error as a 

percentage of the mean ECa.  Figure 21 shows the same results for data-sets C1 and C2.  Here the kriging 

variances with Matheron's estimator applied to the whole data-set are compared with those for Dowd's 

robust estimator applied to the two classes separately (assuming that we krige at each point from data within 

the class that occurs nearest to the target site using the class variogram).  The percentage error is also shown. 
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Figure 20.  Kriging variances and error % for data from HLF field.  The broken line is based on Matheron’s 

variogram estimator, the solid line on Dowd’s. 

 

Variograms were then obtained for the remaining data sets, using cross validation to select the appropriate 

estimator.  In Table 8 below we present the variogram models used for each data set.  In Table 9 we present 

the spacing between passes of the EMI equipment necessary to give an estimation error (range of ± 1 

standard error) which is no more than 10% of the mean of the signal across the whole field.  Where this 

cannot be achieved with spacing wider than 5 m the spacing which limits the error to 25% is quoted. 

 

It is noteworthy that in only two cases (out of 16) did a simple application of Matheron's estimator to ECa  

data give a variogram that was supported by subsequent validation.  Since the overwhelming majority of 

geostatistical analyses by environmental scientists only use Matheron's estimator, and only rarely attempt to 

validate the variogram, this is an important finding.  Getting the most out of ECa technology is likely to 

require the more sophisticated methods of analysis used here.  

 

The problems with the Matheron estimator have practical consequences.  In the case of the date 1 data from 

HLF field (point kriging) the Matheron variogram indicates the need for almost twice as many passes of the 

sensor across the field as are indicated by the robust variogram estimator, that validation showed to be a 

much better representation of the variability of the data. In the case of the date 1 data from SHG field there is 

an even bigger difference between the spacings indicated for a target error  (25%). 
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Figure 21. Kriging variances and error % for data from SHG field.  The broken line is based on Matheron’s 

variogram estimator (applied to the whole data set), the solid lines on the robust estimators within 

the two classes. 

 

The temporal differences are of interest.  The recommended spacing in Table 9 do not change much over 

time at the SHG site.  There is a change on HLF field.  This latter change is probably largely a result of the 

marked difference in the mean conductivity between the two dates at this site.  There is some reduction in 

the kriging variances over time, but it is not very pronounced. 

 

There is a marked difference between the indicated spacing of passes over all the sites, and also between the 

horizontal and vertical modes.  At the Grantham site we can use a coarser grid of data than at SHG.  This 

reflects differences between the two sites in the kriging variances obtained from the validated robustly 

estimated variograms.  A practical consequence of this is that a single spacing between passes is unlikely to 

suit all sites, modes and conditions. 
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Table 8.  Validated variogram for each data set (non-transformed).   

 

Field Date Mode Estimator Model 
HLF 1 

1 
2 
2 

V 
H 
V 
H 

Dowd 
Dowd 
Dowd 
Matheron 

Spherical,  0.7 + 9.34 Sp (h|103.8) 
Spherical,  0.0 + 9.5 Sp (h|98.4) 
Spherical,  0.0  + 4.8 Sp (h|81.4) 
Exponential,  1.93 + 5.89 Exp(h|1.23 

SHG 1 
1 
2 
2 

V 
V 
V 
V 

Dowd 
Dowd 
Dowd 
Dowd 

(Class 1) Exponential, 0.0 + 179.6 Exp (h|146.7) 
(Class 2) Exponential, 0.0 + 11.54 Exp (h|21.3) 
(Class 1) Exponential, 1.96 + 158.3 Exp (h|194) 
(Class 2) Linear, 0.0 + 0.13 h 

FTB 1 
1 
2 

V 
H 
V 

Dowd 
C-H 
Dowd 

Exponential,  0.0 + 190.5 Exp (h|181.8) 
Linear, 1.46 + 0.168 h 
Spherical, 0.0 + 29.3 Sp (h|121.7) 

CLY 1 
1 
2 
3 
3 

V 
H 
V 
V 
H 

Matheron 
C-H 
Genton 
Dowd 
C-H 

Linear, 3.79 + 0.173 h 
Linear, 4.12 + 0147 h 
Exponential, 0.84+295 Exp (h|752) 
Linear, 0.0 + 0.364 h 
Power, 0.0 + 0.688 h^0.441 

 
 

Table 9.  Spacing between passes (metres)  required to achieve target an estimation error (range of ± 1 standard error) 

which is no more than 10% of the mean  (spacing in brackets achieves a 25% error).  

 

Field Date Mode Point Kriging Block Kriging (10m block) 
HLF 1 

1 
2 
2 

V 
H 
V 
H 

19 
<5 (15) 
<5 (16) 
<5 (<5) 

42 
11 
11 
13 

SHG 1 
1 

V 
V 

<5 (20) 
<5 (24) 

12 
11 

FTB 1 
1 
2 

V 
H 
V 

<5 (17) 
>60 

<5 (24) 

11 
>60 
13 

CLY 1 
1 
2 
3 
3 

V 
H 
V 
V 
H 

<5 (>60) 
<5(<5) 
<5(44) 

14 
7 

32 
10 
17 
21 
17 
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Seasonal stability of EMI Measurements 

 

The results of the initial multivariate geostatistical analysis of the HLF data are given in figures 22 and 23.  

Figure 22 shows the variograms and pseudo –cross- variogram with fitted models, whilst Figure 23  shows 

the kriged estimate of change in ECa, and Figure 24 shows this as a standard variate (i.e. the mean change is 

subtracted then the result divided by the square root of the kriging variance; where this is larger or smaller 

than 1.96 there is evidence of a change in ECa different from the average change). 

 

Over most of this field the change in ECa appears to be uniform, with only relatively small areas in which 

the change is significantly smaller than average (blue in Figure 24) and a smaller area still where the change 

is significantly larger than average.  In short the pattern appears to be very stable.   

 

There are some concerns about this approach.  First, it assumes that the ECa measurements on the two dates 

conform to a linear model of co-regionalisation (Webster and Oliver, 2001).  This may be questionable, and 

the slight strain in the fit of the model (Figure 22) may indicate some non-linearity in the relationship 

between the ECa values on the two dates.  The second problem is a statistical one.  The model of the pseudo 

cross-variogram  has to be fitted with some assumptions when we have few comparisons between the dates 

over distance zero.  These may inflate the cokriging variance so that we underestimate the area over which 

the change in ECa differs significantly from zero. 

 

To try and avoid these problems and provide an alternative analysis the previously mentioned cluster 

analysis was performed.  This was done for each pair of data-sets to be compared, to find 2,3,…8 groups of 

vectors which form compact clusters according to a Euclidean or a Mahalanobis norm.  Then the normalised 

classification entropy for each set of clusters were computed, and selected as the best representation of the 

data clustering for which there was a distinct local minimum in the NCE plot (Fig. 25).  When both the 

Euclidean and Mahalanobis norms had a minimum in the NCE plot that clustering for which NCE was 

smallest was selected (Fig. 26). The results of these analyses are illustrated in Appendix 2, where we show 

the NCE plot in each case, and the cluster centres (i.e. a plot of the ECa values of the ‘typical’ member of 

each cluster).  We also show as a map the cluster with maximum membership at sites across the field, and 

show that for PSK here as an illustration (Fig. 26). 
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Figure 22  Variograms (top, date 1; middle, date 2) and pseudo cross-variograms (bottom) for ECa (vertical 

mode) data collected from HLF, with fitted model. 
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Figure 23  Cokriged estimate of change in ECa from date 1 to date 2 for HLF field (units of mS/m) 

 

 
 

Figure 24  Cokriged estimate of change in ECa from date 1 to date 2 for HLF field expressed as the 

standardised difference from mean change. 
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Fig. 25  Plot of the normalised classification entropy (NCE) from a cluster analysis on HLF data (vertical 

mode). 
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Fig. 26  Plot of the NCE cluster centres for both dates on HLF data (vertical mode). 

 

Considering the results for HLF (vertical mode), the plot for the cluster centres (Fig. 25) shows that the 

relative ECa values of the three clusters are almost identical on the two dates.  This is consistent with the 

result of the multivariate geostatistical analysis on these data, reported above, and gives a similar looking 

map of the cluster centre classes (Fig. 27) as that given in Fig. 24 for the change in ECa.  On average the 

change in each cluster class is very similar (Fig. 26), and there is also a similar consistency in horizontal 

mode. 
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Fig. 27  Spatial plot of the NCE cluster centres for both dates on HLF data (vertical mode). 

 

At some other sites the cluster centres are consistent in their relative values of ECa (i.e. they come in the 

same order)  but the difference between the clusters may be smaller on one date than on another.  In one case 

the difference between the clusters is bigger when the absolute values are smaller (CLY horizontal mode).  In 

other cases the differences were larger on the date when the absolute values were larger (CLY, vertical mode; 

SHG, vertical mode).  The most complex pattern of change in ECa is on FTB field (vertical mode), where 

two clusters are consistently large and small (1 and 2) but a third class changes from ECa values more or less 
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equal to those in the large class (when overall ECa is large) to virtually equal to those in the small class 

(when overall ECa is small) ) (Appendix 2). 

 

Relating EMI to Crop and Soil Measurements 

 

Data manipulation 

Particle size (sand, silt, clay %), bulk density and organic carbon have been measured as topsoil and subsoil 

variables.  Available water capacity however, has been derived from these other variables using pedotransfer 

functions, and so cannot be used in the analyses reported here since they are not in any sense random.  We 

wished to consider all soil properties at both depths in both the analysis of partial effects of each variable 

and in the principal components analysis.  This led to some difficulties because, while more than seventy 

locations had been sampled on each field, analyses on all variables were only available for a much smaller 

subset of the sites (Table 10 below). 

 

Table 10. The total number of samples collected from each site and the number on which all variables 

were measured at all depths. 

 

No. Field Total number of samples 
from each sites 

Total number of samples 
with all variables measured 

at all depths 
1 HLF 74 15 
2 SHG 70 34 
3 FTB 87 4 
4 CLY 121 86 

 

For this reason we considered combining the data from all fields into a single analysis.  This was done, and a 

principal component analysis was conducted with the combined soil data set.  Figure 28 below shows the 

data projected onto the first principal components.  The numbers refer to the fields (as in the first column of 

Table 10 above).   

 

It is clear that the CLY field (4 in Table 10 and Fig. 28) is very different from the other three.  For this reason 

we decided to combine HLF, SHG and FTB fields into a single data set (56 points) to be analysed together, 

and to analyse the data from CLY separately. 
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Figure 28  Projection of soil data from all fields onto first two principal components. 

 

ECa values at each soil sample site were obtained by ordinary point kriging from observations within 25 

metres, using the variograms reported previously.  In some cases the ECa data were rather sparse so could 

not be kriged at the sites.  Because we have combined the soil data for three fields, it was necessary to find 

comparable measurements of ECa.  It was possible to identify vertical mode measurements taken in Spring 

(February/April) or late summer (August/September) for each of the three fields in the combined data set.  

However it was not possible to provide a comparable data set in horizontal mode, since, no horizontal mode 

data were collected on SHG field, and on the other fields horizontal mode data collected at comparable times 

were sparse and could only be obtained by kriging at relatively few locations. 

 

The ‘Diviner’ water content data, measured on dates close to a set of ECa measurements, were analysed 

separately for each field.  A regression was computed of ECa (horizontal and vertical modes) on the water 

content in the first 30cm and the water content from 30cm to 100cm and any available static soil properties.  

The same regression was then computed after dropping the water content data, and the two models were 

compared to test the partial effect of water content. 

 

Data for spectral reflectance (visible red) of the bare soil surface were available from SHG field.  These were 

kriged to the soil sampling points, and the same analyses conducted as for ECa data. 

 

Analyses 

Principal Components Analysis 

Combined data-set HLF, SHG & FTB 

 

Figure 29 shows the cumulative percentage of the variation in the original soil data set accounted for by the 

principal components, whilst Table 11 shows the latent vectors for each principal component - i.e. the 

loading given to each soil variable to determine the value of each component.  Note from Fig. 29 that nearly 

90% of the variation is accounted for by the first four principal components.   
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Figure 29.  Cumulative percentage of variation accounted for by principal components of soil data. 

 

Partial effects by multiple regression analysis 

Table 12 below shows the Akaike information criteria (AIC) for the full regression model (ECa regressed on 

all soil properties) and then for models with each soil property alone dropped in turn. 

 

In the regression of spring ECa (vertical) on static soil properties (Table 12) there are significant partial 

effects of bulk density (both depths), organic carbon and clay content (subsoil) and sand content (topsoil).  

The largest effect on the model arises from removing the topsoil sand content as a contributor, and the next 

largest from removing bulk density in the subsoil.  Note again that, if the partial effect of a variable is not 

significant, this does not mean that it has no physical effect.  Only topsoil sand content has a significant 

partial effect on the late summer measurements of ECa.  This may reflect the smaller overall variability of 

the signal.  As the soil becomes drier overall so differences in conductivity between areas with contrasting 

moisture characteristics may become less marked. 
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Table 11 Latent vectors for each principal component. (BD=Bulk density, C=Carbon) 

 

Soil 
layer 

Soil 
variable 

Principle Component 

  PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 
Clay -0.438 -0.176 0.107 0.082 0.197 -0.501 -0.468 0.5 
Sand 0.444 0.027 -0.129 -0.081 -0.3 0.419 -0.533 0.479 

Organic 
C 

0.081 -0.837 -0.282 0.05 0.38 0.251 0.045 -0.027 

Top 

BD -0.314 0.233 -0.059 -0.733 0.43 0.328 -0.117 -0.009 
Clay -0.425 -0.238 -0.014 -0.055 -0.508 0.128 -0.447 -0.534 
Sand 0.432 0.159 0.088 0.132 0.465 -0.2 -0.525 -0.481 

Organic 
C 

0.338 -0.212 -0.233 -0.614 -0.258 -0.581 0.062 -0.052 

Sub 

BD -0.158 0.293 -0.909 0.224 0.038 -0.091 -0.045 -0.025 
 

 

Table 12 Partial effects of soil properties in regressions of ECa data ‘ a,’ the variable portion of the Akaike 

information criterion is given for each model.  The highlighted (bold text) values of a are larger than 

that for the full model, indicating a significant partial effect. 

 

Soil 
Layer 

Variable 
modelled 

ECa (vertical mode, 
Spring). 

ECa (vertical mode, 
Autumn). 

 Full model 
(Wald statistic 
and p value) 
 
a 
 

 
117.7, p<0.001 
 

236.92 

 
28.93, p<0.001 
 

151.45 

Clay 235.61 149.46 
Sand 250.87 154.16 
Organic C 235.95 150.86 

       
Top 

Bulk density 239.08 150.60 
Clay 238.25 149.66 
Sand 236.04 149.49 
Organic C 238.08 149.63 

       
Sub  

Bulk density 245.77 150.17 
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Regression on principal components. 

 

Table 13 and 14 below show the results of regression of ECa on the principal components of the soil 

variables. 

 

Table 13  Regression model of ECa (vertical , Spring) on principal components of soil properties 

 

Error structure 

Model  Spherical
Spatial dependence ratio 1 
Distance parameter 
/metres 

39 

Overall Inference 

AIC 236.92 
Wald 117.73 

p <0.001 

PC Coefficient variance t ratio p 
     
1 -5.221 0.375 -8.53 <0.001 
2 -4.054 1.104 -3.86 <0.001 
3 -1.929 1.399 -1.63 >0.05 
4 -0.553 1.827 -0.41 >0.05 
5 -1.654 2.541 -1.04 >0.05 
6 8.653 3.717 4.49 <0.001 
7 -5.961 10.733 -1.82 >0.05 
8 -15.3 32.027 -2.7 0.01 

 

Of the principal components of the static soil properties PC1 has the largest effect on ECa (Spring) - Table 

13.  The next largest is PC6 then PC2 then PC8.  The effects of the other principal components are not 

significant.  To aid interpretation we plot the elements of the latent vectors below.  Figure 30 shows the 

elements of the vectors for PC1 and PC6 (with the largest effects on ECa).  Each point corresponds to a soil 

property.  The larger the value associated with a property (positive or negative) the larger its contribution to 

the principal component.  Thus a soil with large clay content in the topsoil and subsoil and small sand 

content, large bulk density in the topsoil and small organic carbon content in the subsoil will have a large 

and negative value of PC1.  Since PC1 has a negative regression coefficient in Table 13 we see that such 

soils are also expected to have a large ECa (vertical mode, spring).  The large circular symbol in Figure 30 

shows where in the projection the soils are expected to have a large ECa, the small symbol in the opposite 

corner indicates where ECa will be smallest.  
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Table 14  Regression model of ECa (vertical, Autumn) on principal components of soil properties 

 

Error structure 

Model  Spherical
Spatial dependence ratio 1 
Distance parameter 
/metres 

41 

Overall Inference 

AIC 151.45 
Wald 28.927 

p <0.001 

PC Coefficient variance t ratio p 
     
1 -2.686 0.549 -3.63 0.001 
2 -1.269 1.284 -1.12 >0.05 
3 0.481 1.163 0.45 >0.05 
4 1.630 1.458 1.35 >0.05 
5 -3.999 2.204 -2.69 0.012 
6 5.983 4.026 2.98 0.006 
7 -6.835 19.650 -1.54 >0.050 
8 -4.957 40.508 -0.78 >0.050 
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Figure 30  Elements of the latent vectors for PC1 and PC6 of static soil properties in the combined data set 

(T=Topsoil, S=Subsoil) 

 

Thus, particularly large ECa are expected from soils with large clay content, particularly in the subsoil, large 

bulk density in the topsoil, small sand content, particularly in the subsoil  and small organic carbon content 

in the subsoil.  Figure 31 similarly presents the latent vectors for PC2 and PC8.   This indicates that larger 

organic carbon content in the topsoil will be associated, other factors being equal, with larger ECa, as will 

low sand content in the topsoil. 
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Figure 31   Elements of the latent vectors for PC2 and PC8 of static soil properties in the combined data set. 

 

Principal components 1 and 6 are also the two most important in the regression of the late summer ECa 

measurements.  PC5 is the only other significant one.  The latent vectors, in Table 11,  show that the 

dominant variables in this component are the clay and sand content of the subsoil. 

 

CLY data-set 

 

Note that the organic carbon data used here(at site CLY) were obtained at the University of Reading by loss 

on ignition.  Note also that the particle size data used here were determined by hand texturing in the case of 

the overall regression models.  The particle size data used later in the analysis of the Diviner data were 

determined in the laboratory.  These data sets are separated because the laboratory determination was 

made after removal of calcium carbonate. 

 

The ECa data used in the overall regression models (not with the Diviner data) are limited to the vertical and 

horizontal mode data collected on the third and final occasion (6/6/02) since on previous dates coverage of 

the whole field was limited. 

 

Figure 32 shows the cumulative percentage of the variation in the original soil data set accounted for by the 

principal components.  Note that over 75% of the variation is accounted for by the first four principal 

components.  Table 15 shows the latent vectors for each principal component - i.e. the loading given to each 

soil variable to determine the value of each component. 
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Figure 32.  Cumulative percentage of variation accounted for by principal components of soil data from 

CLY. 

 

Table 15 Latent vectors for each principal component from CLY analysis. 

 

Soil 
layer 

Soil 
variable 

Principle Component 

  PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 
Clay -0.164  0.07  -0.338 -0.879 -0.182 0.014 -0.074  0.208  
Sand 0.404  0.217  -0.348 0.219 -0.369 -0.561 0.16  0.38  

Organic 
C 

-0.328  0.549  0.068 0.255 -0.333 0.5 -0.066  0.394  

Top 

Bulk 
density 

0.436  -0.093  -0.321 -0.013 0.333 0.546 0.488  0.226  

Clay -0.292  -0.388  -0.502 0.22 -0.508 0.172 0.19  -0.374  
Sand 0.418  0.459  0.21 -0.211 -0.327 0.131 0.202  -0.601  

Organic 
C 

-0.163  0.499  -0.577 0.133 0.471 -0.1 -0.195  -0.324  

Sub 

Bulk 
density 

0.475  -0.167  -0.17 0.064 -0.148 0.283 -0.782  0  

 

Partial effects by multiple regression analysis  

 

Table 16 below shows AIC for the full regression model (ECa regressed on all soil properties) then for 

models with each soil property alone dropped in turn for the CLY data-set. 

 

Regression on principal components. 

 

Table 17  below show the results of regression of ECa on the principal components of the soil variables.  

Note that the regression of the vertical mode ECa on the principal components was not significant, the results 

in the table are for the horizontal mode only. 
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There is only a significant regression of the ECa in horizontal mode on the soil properties at this site.  This 

could be because in vertical mode, when the signal from deeper parts of the profile dominate, variation in the 

depth of soil over the chalk has a dominating effect.  We do not have a direct measurement of this variable. 

 

In the regression of ECa (horizontal) on the static soil properties all have a significant partial effect.  The 

strongest effect is of bulk density in the subsoil, in fact when this variable is dropped the overall regression 

model is no longer significant.   

 

Table 16  Partial effects of soil properties in regressions of ECa data - a, the variable portion of the Akaike 

information criterion is given for each model.  The highlighted values of a are larger than that for 

the full model, indicating a significant partial effect. 

 

Soil 
Layer 

Variable 
modelled 

ECa (vertical mode, 
Spring). 

ECa (vertical mode, 
Autumn). 

 Full model 
(Wald statistic 
and p value) 
 
a 
 

Not Significant 
 

 
26.53, p<0.001 

 
17.68 

Clay  20.14 
Sand  19.06 
Organic C  17.84 

       
Top 

Bulk density  18.04 
Clay  17.76 
Sand  20.85 
Organic C  20.56 

       
Sub  

Bulk density  25.64 
 

Principal component PC2 of the static soil properties has the strongest effect on the ECa (horizontal) signal, 

followed by PC7 and PC8.  Plots of these components are shown in Figure 33 below.  Note that sand content 

in the subsoil appears to be positively associated with ECa (horizontal) here as is organic carbon content at 

both depths.  Bulk density in the subsoil is strongly and negatively associated with ECa. 
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Table 17  Regression model of ECa (horizontal) on principal components of soil properties for CLY field. 

 

Error structure 

Model  Spherical
Spatial dependence ratio 1 
Distance parameter 
/metres 

135 

Overall Inference 

AIC 17.68 
Wald 26.53 

p <0.001 

PC Coefficient variance t ratio p 
     
1 -0.181 0.013 -1.59 >0.05 
2 0.45 0.024 2.9 0.006 
3 0.172 0.017 1.32 >0.05 
4 0.261 0.027 1.59 >0.05 
5 0.123 0.035 0.66 >0.05 
6 0.201 0.037 1.04 >0.05 
7 0.413 0.031 2.35 0.024 
8 -0.414 0.033 -2.28 0.028 
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Figure 33   Elements of the latent vectors for PC2 and PC7 (left) and PC2 and PC8 (right) of static soil 

properties in the combined data set.  

 

Soil hydrology data at “Diviner” tube locations on each site. 

 

Table 18 below shows the results of regression analysis on sets of static soil properties and Diviner 

measurements of water content, and the effect of dropping the water content measurements from the model.  

Conclusions here must be tentative because of the relatively small data-sets.  Out of the eight data-sets there 
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was only a significant partial effect of the Diviner measurements in three instances (SHG field spring 

measurements, and FTB field, vertical-mode measurements in spring and late summer).     

 

 

Relating Spectral Reflectance of bare soil at SHG field to soil data 

 

A separate principal component analysis was conducted on the soil data for SHG field for this purpose, and 

the latent vectors are shown in Table 19 below. 

 

Table 20 shows the partial effects of each soil property in the regression of visible red reflectance (VR) on 

the measured soil variables, and Table 21 shows the regression of VR reflectance on principal components 

of the soil properties. 

 

In the regression of visible red reflectance on static soil properties only topsoil clay content has a significant 

partial effect (Table 20), and when this variable is dropped the overall regression model is not significant.  

Only PC6 of the principal components of the static soil properties on SHG field has a significant 

contribution in the regression of VR reflectance.  Examining the latent vector for PC6 in Table 19 shows that 

this will have large (negative) values for soils with large clay content in the topsoil and also relatively large 

sand content in the subsoil. Organic carbon content (which is often important in determining VR reflectance 

of soil material) has small weightings in this PC 

 

At the time of measurement it was observed that there was a good deal of variation in the structure of the 

soil surface, which had recently been worked to a seedbed.  This may explain why particle size distribution 

appears to be important, because this will contribute to the structure, and since variation in structure of the 

soil surface will have a marked effect on its overall bi-directional reflectance properties. 

 

Summary 

There is evidence for a complex of separate and correlated effects of soil properties on signals measured by 

sensors.  Soil texture is an important factor, but bulk density and the carbon content may also be important.  

With optical sensors soil structure may be important too.  These results caution against any 

oversimplification as to which factors determine measured sensor signals, and suggest that a more general 

conceptual model of how a particular soil profile is likely to respond to the ECa instrument is probably 

necessary. 
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Table 18  Results of regression of ECa data on soil properties and water content at Diviner  tube transects. H= horizontal mode; V = vertical mode of EMI use. 

Site Mode Date (ECa) Date 
(Diviner)

Number of 
static 
predictors 

RMS (f) p RMS(d) AICc* (full 
model) 

AICc (Diviner 
data dropped) 

 
HLF H 17/8/00 30/6/00 4a  ** 

V 17/8/00 30/6/00 4  ** 
      

SHG V 11/2/00 21/2/00 8b 1.12 0.05 53.73 1.36+ 47.81 
V 23/8/00 15/8/00 6c 30.37 0.03 26.84 120.2 94.35 

      
FTB V 19/9/01 20/12/01 5d 68.08 0.007 133.9 146.36 152.88 

H 19/9/01 20/12/01 5d 7.57 0.01 9.09 93.61 88.16 
V 21/03/01 23/3/02 5d 30.31 0.006 55.11 131.48 137.17 
         

CLY H 6/6/02 26/6/02 8b 1.25 0.024 3.96 128.35 89.66 
V 6/6/02 26/6/02 8b 3.43 0.006 15.6 143.49 110.21 

 
* Bedrick, E.J. and Tsai C-L.  1994.  Biometrics 50, 226-231. 
**Neither the full model nor the reduced were significant 
+In this case the conventional AIC is used since there are too few 
data 
a Topsoil Clay, Sand, OC, BD 
b Topsoil and subsoil Clay, Sand, OC, BD 
c Topsoil  Clay, Sand, OC, BD and subsoil Clay, Sand. 
d Topsoil and subsoil Clay, Sand, topsoil BD 
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Table 19 Latent vectors for each principal component of soil data on SHG field. 

 

Soil 
layer 

Soil 
variable 

Principle Component 

  PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 
Clay -0.421  -0.115  0.097 0.099 -0.347 -0.59 -0.425  0.375  
Sand 0.434  -0.013  0.048 -0.221 0.045 0.373 -0.696  0.367  

Organic 
C 

0.139  -0.714  0.514 0.434 0.068 0.106 0.04  -0.035  

Top 

Bulk 
density 

-0.324  0.26  -0.248 0.74 0.09 0.386 -0.249  -0.005  

Clay -0.419  -0.161  0.122 -0.326 -0.219 0.269 -0.361  -0.653  
Sand 0.423  0.094  -0.112 0.231 0.25 -0.522 -0.362  -0.53  

Organic 
C 

0.362  0.319  0.239 0.214 -0.796 0.076 0.092  -0.125  

Sub 

Bulk 
density 

-0.157  0.522  0.761 -0.032 0.347 -0.038 -0.034  0.017  

 

 

Table 20 Partial effects of soil properties in regressions of VR data - a, the variable portion of the Akaike 

information criterion (AIC) is given for each model.  The highlighted (bold text) values of a are 

larger than that for the full model, indicating a significant partial effect. 

 

Soil 
Layer 

Variable 
modelled 

Visible red reflectance. 

 Full model 
(Wald statistic 
and p value) 
 
a 
 

 
20.78, p = 0.008 

-261.28 

Clay -251.86 
Sand -261.71 
Organic C -263.10 

       
Top 

Bulk density -261.70 
Clay -262.07 
Sand -263.17 
Organic C -262.31 

       
Sub  

Bulk density -262.59 
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Table 21 Regression model of VR reflectance on principal components of soil properties 

 

Error structure 

Model  Spherical
Spatial dependence ratio 1
Distance parameter 
/metres 

41

Overall Inference 

AIC  151.45
Wald  28.927

p  <0.001

PC Coefficient variance t ratio p 
     
1 0.0027 4.9E-06 1.22 >0.05 
2 0.0013 5.3E-06 0.56 >0.05 
3 -0.0022 8.9E-06 -0.74 >0.05 
4 -0.0015 1.11E-05 -0.45 >0.05 
5 -0.003 1.86E-05 -0.7 >0.05 
6 -0.019 3.02E-05 -3.46 0.002 
7 -0.0186 9.96E-05 -1.86 >0.05 
8 0.0222 0.000219 1.5 >0.05 

 

GROUND PENETRATING RADAR (GPR) 

 

The profiles indicated below (Figs. 34 – 36) are pseudo depth sections with a two way travel time (in 

nanoseconds) on the left hand Y axis and a distanced profile in metres on the X axis.  Additionally, using an 

assumed GPR velocity of 0.1 m/nanosecond, an interpreted depth axis has been superimposed on the right 

hand Y axis, and is given in metres below the ground surface. 

 

Reflectance Measurements of Sub-surface Features 

 

HLF data year 1 

The HLF data acquired in year 1 (processed by Earth Science Systems) allows a fairly deep “view” into the 

soil profile to be made, due to the sandy nature of the upper soil material with a low electrical conductivity.  

Radar reflections have been measured down to around 4m below ground level, and the traces for transects 1 

& 2 (Lines 1 & 2) are given in Fig 34 below, whilst those for transects 3 & 4 (Lines 3 & 4) are given in Fig. 

35.  

 

There are zones of differential penetration e.g. below 16m along transect 1 (Line 1 Tramline 6; in Fig. 34) 

where the reduced depth may be due to more clay-rich soil. There appears to be some dipping reflectors in 

the deeper parts of some profiles. These have been highlighted on the sections in red (Fig. 34; Line 1) and 
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are interpreted as possibly bedrock strata beneath the soil layer. Within the soil layer, there are numerous 

reflection events indicative of more prominent soil layers (flat or slightly dipping boundaries highlighted in 

blue) (Fig 34 & 35; Lines 1, 3 & 4) and point source reflectors (green diffraction hyperbolae) (Fig 34 & 35; 

all Lines) caused by underground services / drains, buried rocks or voids. 

 
Fig. 34     GPR reflection with depth traces for transects 1 and 2 at HLF in year 1.  For explanation of 

coloured lines see text.  Total depth shown is 4.0 m. 
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Fig. 35     GPR reflection with depth traces for transects 1 and 2 at HLF in year 1.  For explanation of 

coloured lines see text.  Total depth shown is 4.0 m. 

 

CLY data year 2. 

 

The 320m long profile presented in Figure 36 shows the data acquired at CLY in August 2002. The section 

represents distance along the surface on the horizontal axis and depth below ground level on the vertical 

axis. Note that although the scale shows depths down to >2 metres, no useful reflections were obtained. 

 

The black and white traces on the sections represent the amplitude or strength of reflected radar energy. If a 

subsurface horizon such as a soil layer or geological layer was within the depth range of exploration, a 

distinct reflector would be observed (as in Figs. 34 & 35 above).  Unfortunately, due to limitations described 

above (clay-rich soil), the depth of exploration was severely restricted to a few centimetres and no useful 

data could be obtained.  The blue lines indicated on Fig. 36 are patches where “ringing” due to the 

absorption of electromagnetic energy has occurred in the soil, probably caused by a very large clay content 

at these locations. 

 

 
 

Fig. 36. GPR reflection with depth traces for transects 1 – 4 in one continuous line at CLY in year 2.  For 

explanation of coloured lines see text. Total depth shown is 2.5 m 
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Novel Measurements with GPR 

 

The “air launched“ survey carried out over the small area centred over transect 1, and preliminary processing 

showed that the GPR signal amplitude response could be classified following low pass filtering, spherical 

exponential control (SEC) gain, and ‘de-wow’ processing.  Figure 37 shows a colour coded plan map of the 

site – time sliced to highlight a depth section between 14-35 nanoseconds two-way travel time 

(approximates to 1 – 2 m soil depth).  In Figure 37 the colour coding ranges from blue where a low 

amplitude response was received, to red where there was a high amplitude response.  In the terrain under 

consideration, which corresponds roughly to drier sandy material over shallow (25 – 50 cm depth) limestone 

with pockets of deeper (2 m or more) moister loamy sand  between ridges; the blue areas would signify the 

shallower limestone ridges, and the red the high amplitude response of the deeper more variable loamy sand 

soil material. 

 

 
Fig. 37.   Colour coded plan of air launched GPR signal of patch over transect 1 at HLF field in year 1. Blue 

= low amplitude response, Red = high amplitude response. 

 

SPECTRAL REFLECTANCE 

 

The spectral reflectance measurements made during the autumn of 2002, can also be mapped across the site.  

This has been done for the ‘visible red’ wavelength readings, at 660 nm in Fig. 38, which shows clearly the 

wider spacing of these measurements made down the 24 m tramlines, compared with the  6m spaced EMI 

measurements in Fig. 12a.  Visible red has been mapped as this tends to be more indicative of changes in 

soil colour and type than the ratio of red/infra-red that is used in vegetation indices (and is more influenced 

by moisture and surface structure).   

 



 75

An appraisal of Fig. 38 does not really suggest a repeat of the pattern seen in maps of ECa for this site (Fig 

12) or the mapped soils (Fig. 3).  The two ‘hotspots’ seen about mid-field to the left and on the right hand 

edge, do not really correspond with anything except that they are in the smaller value ECa region.  

 

It should be remembered that this type of sensing of the surface of the soil is susceptible to the effects of 

factors such as surface moisture, aspect, roughness of tilth and other factors which have a more indirect 

relationship with soil type.  The conclusion is that the mapping potential of this type of sensing should be 

limited to surface properties (notably organic matter, see Lark 2000b for example where topsoil organic 

carbon was significantly related to visible red reflectance).  Furthermore, it would be necessary to define a 

strict protocol for defining appropriate surface conditions before data are collected.  It is highly likely that 

most information from spectral reflectance will come from measurements on a crop where soil induced 

variation in moisture stress can be detected by the normalised difference vegetation index.   
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Fig. 38 Visible red (660 nm) reflectance measurements made from a vehicle-borne sensor made at site SHG 

in October 2002. 
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 CONCLUSIONS 

 

ELECTRO-MAGNETIC INDUCTION SENSOR 

 

Soil properties measured; accuracy and temporal stability. 

 

From previous scientific knowledge, soil ECa in British soils is likely to be governed by two main variables:  

particle size distribution (texture) and soil moisture.  The interpretation of ECa maps requires some, though 

not necessarily extensive, knowledge of the soil materials and underlying geology.  However, our findings 

demonstrate that spatial ECa measurements, and a knowledge of the soils in the area, can be useful for 

identifying zones within fields that may warrant differential management.  They may also be used to guide a 

more focused soil survey to delineate the boundaries between soil types and to allow more meaningful 

sampling of soils for soil nutrient analysis or other purposes. 

 

Differentiating variations in texture 

The evidence from the HLF data-sets showed clearly the potential of EMI techniques to distinguish between 

soil types based on clay or sandy loam textures .  At SHG the main soil types were all clays or clay loams, 

and the main determinant between them was the amount of clay in the upper subsoil and/or the interaction 

between texture and soil hydrology.  In this case, ECa values distinguished the heavier less permeable soils 

(Evesham and Oxpastures)  from more permeable and freely draining soil (Waterstock and Cottenham), 

during both wet and dry times of the year.  The choice of operating mode proved important in some cases, in 

that inclusions of clay in a predominantly sandy subsoil at FTB, could be detected using the vertical mode, 

but were barely identified using the horizontal mode. 

 

Where ECa variation across a field was chiefly caused by soil type, this pattern remained remarkable stable 

across seasonal fluctuations in the moisture regime.  However, a cluster analysis on the changes in readings 

between two dates can reveal more clearly the distinction between two soil types based on their hydrology 

(SHG, Appendix 2), or the presence of subsoil clay which is less susceptible to a change in signal caused by 

the hydrology (FTB, Appendix 2).   

 

The principal component analysis on the variations in ECa with soil physical variables clearly showed that 

subsoil clay and organic matter contents, and topsoil sand and organic matter contents are major 

determinants of the variability of ECa across a site (Fig. 30).  Topsoil bulk density also proved of important.  

Since bulk density and clay content seem to be important in determining ECa values then the measurements 

are likely to be informative about soil hydrological conditions.  
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Differentiating variations in soil hydrology 

The ability of EMI to record differences in the water content of soils can be useful in one of two ways.  

Firstly it can identify regions within fields that behave differently hydrologically to those in the rest of the 

field, such as valley features at both HLF (Fig. 11) and SHG (Fig. 12).  Similarly, it can also locate reserves 

of water deeper in the profile that are not apparent from surface topography, such as at HLF (Fig. 11).  The 

vertical mode of operation proves more apt at this usage, and once again the difference in readings made 

during different seasons highlights regions of maximum and minimum change more clearly (Figs. 24 & 27), 

when geo-statistical and cluster analysis techniques are employed. 

 

Secondly, the general ability of clayey soils to hold water enables changes in depth of any clayey layer to be 

assessed which will not be visible from the surface (CLY, Fig. 14 & 15). 

 

The soil moisture content itself proved surprisingly less useful in explaining variability in the ECa 

measurements across fields (Table 18).  It is thought that this may be because the amounts held in the soil 

pore space (except at extremes of wetness and dryness) is itself governed by static soil properties such as 

texture and bulk density.  Though this effect does compound the differences due to these features and make 

spatial differentiation easier (see above section). 

 

The effect of extreme wetness on the signal can be a problem under certain circumstances, as in the case of 

measurements made at FTB in a very permeable soil during a period of high moisture deficit.  In this case 

temporary saturation of the surface soil provided a fairly uniform distribution of ECa measurements made in 

the horizontal mode of operation.  This masked a spatial pattern which was more apparent in measurements 

made in the vertical mode.  However, this effect could be turned to an advantage, if the location of areas of 

impeded drainage due to plough pans or compacted topsoil was the purpose of the survey. 

 

Geostatistical considerations 

 

It is necessary to evaluate critically the random function models that we assume underlie our data in a 

geostatistical analysis.  Given the density with which sensor data can be collected there is scope to validate 

alternative models in a rigorous way using the methodology of Lark (2000).   

 

Matheron's estimator of the variogram is the most efficient statistically, and analysis of data on the original 

scale is always to be preferred since it avoids complications associated with back-transformation of the final 

results.  Thus if a variogram obtained by Matheron's estimator from the original data is supported by the 

validation step then this should be used.  Alternatives may be considered in the following sequence. 

 

(i)  A data transformation should be considered.  It may be that a variogram model can be validated for data 

on a transformed scale, but not on the original scale. 
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(ii)  Robust estimators of the variogram should always be considered and robustly estimated variograms 

compared to those obtained by Matheron's estimator in any model validation. Robust estimation may be 

used on the original or transformed data, and both should be tried since the robust estimators assume 

normality of the underlying process. 

(iii)   When data have a complex distribution such as a bimodal, the possibility that there are two or more 

distinct regions requiring a separate spatial analysis should be considered.  Regions may be identified from 

the data, or from other sources (e.g. soil maps).   McBratney et al. (1991) advocated such a procedure, but 

given the sparseness of data in most soil studies it has not been widely followed.  Again, the validation 

procedure may be applied to evaluate separate variogram models within the sub-regions.  

 

Recommended protocol for the use of EMI on farms 

 

The research reported here combined with other research and practical experience demonstrates that EMI is 

likely to be a useful technique for targeting such features as: 

• changes in soil type due to texture. 

• changes in soil type due to differential hydrology. 

• subsoil water reserves in permeable material. 

• location of shallow soils and bedrock near the surface. 

• drought prone regions within fields. 

• clay subsoil features in otherwise sandy material. 

• general patterns of soil physical features over wide areas. 

• location of buried pipes, old hedgerows, etc. 

 

The manner in which EMI is best used will to some extent be guided by the reason for the survey; e.g. to 

delineate soil type boundaries, identify soil management zones, map saline or droughty areas.  However, 

there are some general points to consider. Crucially, some a priori knowledge of the soils on site is very 

useful if  the capabilities of the EMI instrument are to be fully exploited. 

 

1. The EMI sensor is best used when housed in a non-metallic cart and towed behind an ATV over bare 

ground or an established crop that is not too tall.  Such equipment has been successfully used on cereal 

crops at tillering stage with no crop damage. Under these circumstances, the EMI instrument (and maybe 

also the GPS antenna) should be at least 3m away from the vehicle or other metal components to avoid 

interference of the EMI sensor.  An operating speed of around 10–15 kph is recommended, depending 

upon the size of the field, width of passes and terrain evenness. Since data is recorded at time intervals, 

the faster the speed of travel, the fewer data-points are recorded. If ground is too rough, excessive 

‘bounce’ of the cart can occur which may result in false data. Depending upon the purpose of the survey; 

the instrument can also be hand held or towed along single transects across features of interest. if GPS is 

not available, location can be estimated by dead-reckoning, use of landmarks or other survey techniques. 
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2. The orientation of the EMI sensor can help to either emphasise features in the upper soil profile in the 

horizontal mode or in the upper subsoil in the vertical mode.  If changes in clay content of the topsoil, or 

the presence of impeded water due to compaction or panning at the base of the topbsoil are the sort of 

features of interest, then the horizontal mode of operation should be used.  If changes in subsoil texture, 

depth of soil, or the presence of deeper moisture reserves are under consideration, then the vertical 

orientation would be better.  If little is known of the soil problems or changes, but it is hoped to identify 

management zones in relation to yield maps, then the vertical mode is probably the better general purpose 

option. 

 

3. Although the patterns revealed by EMI sensing were similar irrespective of whether the equipment was 

used under wet or dry soil conditions, there are practical advantages to using EMI in the autumn, winter 

or spring months but not at times following recent heavy rain or when soils are waterlogged. It is 

important that there is not surplus water in the soil waiting to drain away since this water will affect the 

ECa reading yet may not reflect the characteristics of the soil.  Provided EMI is used correctly, there is 

little advantage to be gained in most situations by repeat use of the technique. 

 

4. It is clear from these results that a single spacing between passes will not be optimal for all sites. 

However, a spacing of about 20 m would be a practically acceptable compromise at any site studied here. 

Ideally some form of pre-calibration to establish the ideal between-pass spacing would be desirable for a 

particular field by automating the robust analysis procedure used above. Four or five passes could be 

made in a field at a narrow spacing of about 6 m, then after a pause while the data are analysed, the 

optimal spacing could be identified and the rest of the field surveyed at a density  planned to ensure that 

the final map is of adequate precision.  Defining 'adequate precision' remains a problem, which will only 

be solved as more experience is gained in the use of ECa data, and loss functions become defined for 

errors of over- or under-estimation of the local ECa. 

 

EMI surveys are currently being offered commercially by several companies, who may also combine it with 

other supporting soil investigation or agronomic advisory services.  Costs vary, but around £20 per ha is 

common. Fields of large size can be surveyed rapidly using a cart-based sensor drawn by an ATV with GPS 

equipment, and timing is flexible so that it can be carried out at times of the year when little or no crop 

damage is incurred.  Fields need only be surveyed once, but to make the best use of resulting maps and data-

sets for precision farming, EMI maps must be interpreted in combination with supporting information from 

conventional, though targeted, soil examination in the field using an auger and spade.  

 

In conclusion, EMI mapping can offer good value for money on farms that have significant soil variation 

within fields, especially when there is a desire to understand, interpret and manage this variation by use of 
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precision farming methods.  It is the best direct method of obtaining soil physical information currently 

available though cannot be used in isolation of direct soil examination in the field. 

 

GROUND PENETRATING RADAR 

 

Soil properties measured; accuracy and temporal stability. 

 

The applicability of GPR to field survey proved to be severely limited by the soil material found on site.  At 

the site where soil depth was most difficult to visually assess, and barely distinguishable from a fragmented 

chalk bedrock, CLY, it proved impossible even to obtain a set of readings.  This was due to the fact that the 

soils had a high clay content in the topsoil (21–36 % in the top 15 cm) that effectively reflected the signal 

before it had even penetrated the main body of the soil profile (Fig. 36). This was unfortunate in that the 

ability to measure the depth of soil is often quoted as an agricultural use for GPR. 

 

Where the instrument was used on sandy material (HLF) rather more information was gained, relating in the 

main to the location of bedrock or free-water interfaces in the profile (Fig. 34).  The information which GPR 

provides and EMI does not, is of course an estimate of the depth in the soil profile at which any features 

occur (when soil is sandy in nature). However, the operation of GPR sensing  is slow and cannot cover the 

ground as quickly as for EMI. It is not normally used to supply a two dimensional map.  

 

A map of the reflected radar signal can, however, be made if the instrument is used in the ‘air launched’ 

manner behind an ATV.  The plan obtained (Fig. 37) is superficially similar to those obtainable by EMI, but 

is not a measure of any easily definable variable, but rather the integrated response to several.  Further 

technological development will be necessary before this becomes a readily used technique.  

 

No protocols are given for the use of GPR to help arable crop management. However, if the use of GPR is 

developed in future, it could prove most suitable for targeting such features as: 

• depth of soil profile in sandy materials. 

• depth to clay rich layers. 

• depth to water table during dry periods in permeable soil. 

• location and depth to buried pipes, boulders or other hardened point source features. 

 

Currently, GPR is only suitable for targeting specific features that are already suspected, and where a depth 

location is required.  It is a service which is not currently offered commercially to farmers, though specialist 

geophysical contractors are available with the equipment and knowledge to use it (price negotiable but 

c.£650 per day for measurements on up to a 3 km transect). We do not recommend GPR for use by farmers 

to obtain soils information, except in highly specialised situations. 
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SPECTRAL REFLECTANCE 

 

Soil properties measured; accuracy and temporal stability. 

 

Although the project evaluated one map of visible red reflectance which seemed to offer a coherent pattern 

of variation across the field (Fig. 38) this could not be interpreted with regard to soil type.  This is because 

neither multiple regression and partial effects, nor principal components analysis adequately identified any 

soil physical component as a correlating variable (Tables 19-21).  Topsoil clay content did have a partial 

effect (Table 20) but this was thought to act mainly through its effects on structure which plays a major role 

in determining surface roughness and thereby reflectance, but which is largely unpredictable. At present, 

vehicle- and air-borne surveys of bare soil by spectral reflectance analysis reveal only limited and quite 

specific information about the surface soil on a site.  As such, they cannot yet really be recommended for use 

in commercial within-field survey work. 

 

The potential use of spectral reflectance techniques to measure soil properties in the field is in its infancy, 

and is likely to be of more use when carried out on a cropped soil rather than bare soil. Conventional aerial 

photography has been available for many years and has a proven ability to help map soil characteristics and 

patterns especially where this are reflected in crop growth (e.g. drought). Archived aerial photographs are an 

under-utilised resource that farmers could make more use of.  Future development of multi-spectral airborne 

or satellite imagery may provide alternative information sources of value for helping map soil patterns based 

on patterns of crop growth revealed in these images. 

 

OVERALL CONCLUSIONS AND RECOMMENDATIONS 

 

EMI has been shown to be a reliable method for obtaining information on soil patterns that may occur in 

fields. Although EMI can not provide quantitative information on soil properties, it can help target field 

investigations and provide the basis for delineating areas or zones within fields which can be considered to 

have similar soil properties. Such zones can be used for purposes of soil nutrient sampling or as a basis for 

reaching decisions on the implementation of variable rate application of lime or fertilisers. 

 

As with any technology, the practical use of EMI by farmers will need to be targeted. Use on soil landscapes 

which are intrinsically variable (e.g. soils developed on glacio-fluvial material) is likely to be more cost-

effective than on other landscapes which are know to have less variability (e.g. many clay-lands). Its use 

must be combined with manual soil examination but this can be much less and more targeted than would 

otherwise be possible. Farmers should also consider other potential information sources on soil properties, 

such as existing archives of aerial photographs that exist going back many years. Although there is a high 

element of ‘pot luck’ in terms of timing and location of these photographs, ones showing patterns of crop 

growth can be very informative about soil patterns. Simple aerial photographs can be obtained to order and 
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forthcoming airborne and/or satellite imagery may also provide useful information on soil patterns as 

reflected by variations in crop growth. 

 

Future work on EMI should be focused on demonstrating the practical integration of EMI with other 

techniques for the cost-effective gathering of information and making decisions on the management of the 

spatial variability of crops both within and between fields on a whole farm (i.e. precision farming). Its value, 

use and cost-effectiveness as part of an integrated approach will then become more clear to farmers.  

 

The potential value of EMI to measure soil mineral nitrogen (SMN) is another potential direction. Nitrate 

(NO3) is the main component of SMN and has an important effect on ECa. The sensitivity of ECa to changes 

of SMN is not known, but bearing in mind the crucial importance of SMN for making correct N decisions, 

the advent of NVZs and the current high cost of soil sampling and analysis for SMN, development of a 

sensor-based method would be attractive. 
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APPENDIX 1 

 

SOIL PROPERTIES FOR THE SENSOR SITES  

 

THE CLAYS, BENSON, OXFORDSHIRE 

 

Wallop clayey, lithoskeletal chalk; brown rendzina; wetness class 1 

Brief profile description 

0-25cm Ah Dark brown moderately stony silty clay loam or silty clay; strong fine 

subangular blocky structure; calcareous. 

25-30cm BCu Dark brown, moderately stony silty clay; weak medium angular blocky 

structure; calcareous. 

30-40cm 2Cu Fragmented chalk and occasional flints. 

At 40cm 2Cr Weakly bedded chalk. 

 

Frilsham fine loamy material over lithoskeletal chalk; typical argillic brown earth; wetness 

class 1 

Brief profile description 

0-25cm Ap Dark brown slightly stony sandy clay loam or clay loam. 

25-50cm EBt Strong brown, slightly stony sandy clay loam or clay loam; moderate 

medium angular blocky structure. 

50-70cm Bt Brown, slightly stony sandy clay loam or clay loam; moderate coarse 

angular blocky structure. 

At 70cm 2Cu Hard white chalk rubble. 

 

Soham fine loamy material over lithoskeletal chalk; typical calcareous brown earth; 

wetness class 1 

Brief profile description 

0-30cm Ap Dark greyish brown slightly stony sandy clay loam; calcareous. 

30-50cm Bw Brown or strong brown, slightly stony sandy clay loam; weak medium 

angular blocky structure; calcareous. 

50-55cm Cu Yellowish brown, extremely stony clay loam; very calcareous. 
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FIELD 107, HEYDOUR LODGE, LINCOLNSHIRE 

 

Elmton fine loamy, lithoskeletal limestone; brown rendzina; wetness class 1 

Brief profile description 

0-25cm Ap Brown slightly or moderately stony clay loam or sandy clay loam; 

calcareous. 

At 25cm R Limestone 

 

Cranwell coarse loamy; lithoskeletal limestone; brown rendzina; wetness class 1 

Brief profile description 

0-25cm Ap Brown slightly or moderately stony sandy loam; calcareous. 

At 25cm R Limestone 

 

Wilsford sandy; stoneless drift; typical brown sand; wetness class 1 

Brief profile description 

0-25cm Ap Dark brown stoneless sandy loam or loamy sand. 

25-55cm Bw Brown, stoneless loamy sand or sand; weak fine subangular blocky 

structure. 

55-120cm Cu Yellowish red or brownish yellow, stoneless sand; single grain 

structure. 

 

Haselor swelling clayey material passing to clay with interbedded limestone; typical 

calcareous pelosol; wetness class 3. 

Brief profile description 

0-25cm Ah Very dark greyish brown slightly stony clay; calcareous. 

25-55cm 

Bw(g) 

Olive brown, mottled, slightly or moderately stony clay; strong coarse 

angular blocky structure; calcareous. 

55-85cm Cr Grey, fine grained limestone bands with interbedded clay shale. 
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Oxpasture fine loamy or fine silty drift over clayey material passing to clay or soft mudstone; 

stagnogleyic argillic brown earth; wetness class 2. 

Brief profile description 

0-25cm Ap Dark brown, slightly mottled, slightly stony silty clay loam or clay loam. 

25-45cm 

Eb(g) 

Brown, slightly mottled, slightly stony clay loam; moderate coarse 

subangular blocky structure. 

45-75cm 

2Bt(g) 

Yellowish brown, mottled, stoneless clay; strong coarse angular blocky 

structure. 

75-100cm 

2BCg 

Yellowish brown with many grey mottles, stoneless clay or silty clay; 

strong fine platy, prismatic or massive structure. 

 

 

FOOTBALL FIELD SHUTTLEWORTH, OLD WARDEN, BEDFORDSHIRE 

 

 

Bearsted coarse loamy material passing to sand or soft sandstone; typical brown earth; 

wetness class 1 

Brief profile description 

0-25cm Ap Dark brown slightly stony sandy loam or sandy silt loam. 

25-45cm Bw Brown, slightly stony sandy loam or sandy silt loam; weak fine 

subangular blocky structure. 

45-70cm BCu Brownish yellow, slightly or moderately stony sandy loam or loamy 

sand; weak coarse angular blocky or massive structure. 

70-120cm Cu Pale yellow, stoneless loamy sand; single grain structure. 

 

Cottenham sandy loam top sandy material passing to sand or soft sandstone; typical brown sand; 

wetness class 1 

Brief profile description 

0-25cm Ap Dark brown slightly stony sandy loam. 

25-60cm Bw Reddish brown, slightly stony loamy sand; weak coarse subangular 

blocky structure. 

60-100cm Cu Yellowish red, slightly or moderately stony loamy sand or sand; single 

grain structure iron stone fragments. 
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Cottenham loamy sand top sandy material passing to sand or soft sandstone; typical brown sand; 

wetness class 1 

Brief profile description 

0-25cm Ap Dark brown slightly stony loamy sand. 

25-60cm Bw Reddish brown, slightly stony loamy sand; weak coarse subangular 

blocky structure. 

60-100cm Cu Yellowish red, slightly or moderately stony loamy sand or sand; single 

grain structure iron stone fragments. 

 

Oxpasture fine loamy or fine silty drift over clayey material passing to clay or soft mudstone; 

stagnogleyic argillic brown earth; wetness class 3. 

Brief profile description 

0-25cm Ap Dark brown, slightly mottled, slightly stony silty clay loam or clay loam. 

25-45cm 

Eb(g) 

Brown, slightly mottled, slightly stony clay loam; moderate coarse 

subangular blocky structure. 

45-75cm 

2Bt(g) 

Yellowish brown, mottled, stoneless clay; strong coarse angular blocky 

structure. 

75-100cm 

2BCg 

Yellowish brown with many grey mottles, stoneless clay or silty clay; 

strong fine platy, prismatic or massive structure. 

 

Hanslope clayey chalky drift; typical calcareous pelosol; wetness class 2 

Brief profile description 

0-25cm Ap Dark greyish brown slightly stony clay or clay loam; slightly calcareous. 

25-60cm 

Bw(g) 

Light olive brown, slightly mottled, slightly stony clay; moderate medium 

subangular blocky structure; calcareous. 

60-100cm 

BCg 

Yellowish brown, mottled, slightly or moderately stony clay; moderate 

medium angular blocky or prismatic structure; calcareous with chalk 

stones. 
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SHAGSBY FIELD, CHICKSANDS, BEDFORDSHIRE 

 

Evesham swelling clayey material passing to clay or soft mudstone; typical calcareous pelosol; 

wetness class 3.. 

Brief profile description 

0-25cm Ap Dark greyish brown stoneless clay; calcareous. 

25-40cm 

Bw(g)1 

Olive brown, slightly mottled, stoneless clay; moderate medium 

subangular blocky structure; calcareous. 

40-75cm 

Bw(g)2 

Light olive brown, slightly mottled, stoneless clay; strong medium 

subangular blocky structure; calcareous. 

75-120cm 

BC(g) 

Grey, slightly mottled, stoneless clay; massive structure; calcareous. 

 

Bearsted coarse loamy material passing to sand or soft sandstone; typical brown earth; 

wetness class 1 

Brief profile description 

0-25cm Ap Dark brown slightly stony sandy loam or sandy silt loam. 

25-45cm Bw Brown, slightly stony sandy loam or sandy silt loam; weak fine 

subangular blocky structure. 

45-70cm BCu Brownish yellow, slightly or moderately stony sandy loam or loamy 

sand; weak coarse angular blocky or massive structure. 

70-120cm Cu Pale yellow, stoneless loamy sand; single grain structure. 
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Waterstock fine loamy drift with siliceous stones; gleyic argillic brown earth; wetness class 2. 

Brief profile description 

0-25cm Ap Brown slightly stony clay loam. 

25-40cm Bt Yellowish brown, slightly stony clay loam; moderate medium 

subangular blocky structure. 

40-55cm Bt(g) Yellowish brown, slightly mottled slightly stony clay loam; moderate 

medium subangular blocky structure. 

55-85cm 2Btg Pale yellow, mottled, slightly stony clay loam; weak fine angular blocky. 

85-120cm 

3BCtg 

Brown, mottled, slightly to moderately stony sandy loam or clay loam; 

structureless. 

 

Cottenham sandy loam top sandy material passing to sand or soft sandstone; typical brown sand; 

wetness class 1 

Brief profile description 

0-25cm Ap Dark brown slightly stony sandy loam. 

25-60cm Bw Reddish brown, slightly stony loamy sand; weak coarse subangular 

blocky structure. 

60-100cm Cu Yellowish red, slightly or moderately stony loamy sand or sand; single 

grain structure iron stone fragments. 

 

Oxpasture fine loamy or fine silty drift over clayey material passing to clay or soft mudstone; 

stagnogleyic argillic brown earth; wetness class 3. 

Brief profile description 

0-25cm Ap Dark brown, slightly mottled, slightly stony silty clay loam or clay loam. 

25-45cm 

Eb(g) 

Brown, slightly mottled, slightly stony clay loam; moderate coarse 

subangular blocky structure. 

45-75cm 

2Bt(g) 

Yellowish brown, mottled, stoneless clay; strong coarse angular blocky 

structure. 

75-100cm 

2BCg 

Yellowish brown with many grey mottles, stoneless clay or silty clay; 

strong fine platy, prismatic or massive structure. 

 

 

Note: although Football and Shagsby fields have a similar range of soil series, in the former the sand is up-

slope from the clay whereas the reverse is true in the latter. 
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The clay content of the material in The Clays depends on the method of analysis - hand texturing gives a 

higher proportion clay than laboratory measurements because of the dispersion methods used in the 

analyses. 

 

 
TOPSOIL TEXTURE GROUP 

The classes in the triangular diagram are simplified into the following texture groups: 

 

Texture group Texture classes 

Sandy Sand, loamy sand 

Coarse loamy Sandy loam, sandy silt loam 

Fine loamy Clay loam, sandy clay loam 

Coarse silty Silt loam 

Fine silty Silty clay loam 

Clayey Clay, silty clay, sandy clay 

 

 

STONINESS 

NSRI uses the following groupings to relate percent stone content (volume basis) to a descriptive term. 

 

Stoneless Less than 1% 

Very slightly stony (few) 1 to 5% 
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Slightly stony (common) 6 to 15% 

Moderately stony (many) 16 to 35% 

Very stony (abundant) More than 35% 

 

WETNESS CLASS 

The duration and degree of water-logging are described by the system of wetness classes grading from 

Wetness Class 1, well drained, to Wetness Class 6, almost permanently waterlogged within 40 cm depth.  

The incidence of water-logging depends on soil and site properties, under-drainage and climate.  The classes 

given for each soil assume an appropriate level of under-drainage. 

 

1 Soil profile is not waterlogged within 70 cm depth for more than 30 days1 in most 

years2 

2 Soil profile is waterlogged within 70 cm depth for 30 to 90 days in most years 

3 Soil profile is waterlogged within 70 cm depth for 90 to 180 days in most years 

4 Soil profile is waterlogged within 70 cm depth for more than 180 days, but not 

waterlogged within 40 cm depth for more than 180 days in most years 

5 Soil profile is waterlogged within 40 cm depth for 180 to 335 days and is usually 

waterlogged within 70 cm depth for more than 335 days in most years 

6 Soil profile is waterlogged within 40 cm depth for more than 335 days in most 

years 

 

1 The number of days specified is not necessarily a continuous period 

2 In most years is defined as more than 10 out of 20 years. 
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APPENDIX 2. 

 

HLF (FIELD 107, PASKS FARM) 

 

Vertical Mode 

 

NCE plot, 3 selected     Cluster centres 
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 Horizontal Mode 

 

NCE plot, 3 selected     Cluster centres 
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FTB  (FOOTBALL FIELD, SHUTTLEWORTH FARMS) 

 

Vertical Mode 

 

NCE plot, 3 selected     Cluster centres  

0 

0.1 

0.2 

0.3 

0.4 

0.5 

no
rm

al
is

ed
 c

la
ss

ifi
ca

tio
n 

en
tro

py

2 3 4 5 6 7 8 
number of classes

Football field Vertical

10 

20 

30 

40 

50 

60 

2001 2002 

1

2

3

Football field Vertical
Cluster centres

514150 514200 514250 514300 514350 514400

244800

244850

244900

244950

Football Field Vertical EMI cluster map (2001 & 2002)

   1  

   2  

   3  



 96

SHG  (SHAGSBY 4 FIELD, LODGE FARM.) 

 

Vertical Mode 

 

NCE plot, 4 selected     Cluster centres  
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CLY  (THE CLAYS, CROWMARSH FARM) 

 

Vertical Mode 

 

NCE plot, 2  selected     Cluster centres  
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CLY  (THE CLAYS, CROWMARSH FARM) 

 

Horizontal Mode 

 

NCE plot, 2  selected     Cluster centres  
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