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1 ABSTRACT 

The project investigated whether it would be possible to remove the main technical 

hindrance to precision application of herbicides to arable crops in the UK, namely 

creating geo-referenced weed maps for each field. The ultimate goal is an information 

system so that agronomists and farmers can plan precision weed control and create 

spraying maps. The project focussed on black-grass in wheat, but research was also 

carried out on barley and beans and on wild-oats, barren brome, rye-grass, cleavers 

and thistles which form stable patches in arable fields. Farmers may also make special 

efforts to control them.  

Using cameras mounted on farm machinery, the project explored the feasibility of 

automating the process of mapping black-grass in fields. Geo-referenced images were 

captured from June to December 2009, using sprayers, a tractor, combine harvesters 

and on foot. Cameras were mounted on the sprayer boom, on windows or on top of 

tractor and combine cabs and images were captured with a range of vibration levels 

and at speeds up to 20 km h-1. 

For acceptability to farmers, it was important that every image containing black-grass 

was classified as containing black-grass; false negatives are highly undesirable. The 

software algorithms recorded no false negatives in sample images analysed to date, 

although some black-grass heads were unclassified and there were also false 

positives. 

The density of black-grass heads per unit area estimated by machine vision increased 

as a linear function of the actual density with a mean detection rate of 47% of black-

grass heads in sample images at T3 within a density range of 13 to 1230 heads m-2.  

A final part of the project was to create geo-referenced weed maps using software 

written in previous HGCA-funded projects and two examples show that geo-location 

by machine vision compares well with manually-mapped weed patches.  

The consortium therefore demonstrated for the first time the feasibility of using a 

GPS-linked computer-controlled camera system mounted on farm machinery (tractor, 

sprayer or combine) to geo-reference black-grass in winter wheat between black-

grass head emergence and seed shedding. 
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2 SUMMARY 

Concerns about food security may be exacerbated by increased demand for food 

associated with predicted increases in the UK population. The UK population is 

predicted to increase by 4.3 million to over 65 million by 2018 and, if the current rate 

of increase continues, the population would reach 71.6 million by 2033 (ONS, 2009). 

On the other hand, UK cereal and oilseed production could decline if herbicides lose 

approval for use due to the European Union (EU) Directive 91/414/EEC, the EU Water 

Framework Directive and restrictions due to the EU Parliament’s Environment, Public 

Health and Food Safety Committee (Clarke et al., 2008). Retailers also have to 

address concerns of consumers about pesticide inputs to crops. There is, therefore, a 

need for solutions to the problem of maintaining crop yields and production in ways 

which meet both legislation and market acceptability, and minimise environmental 

impact while successfully controlling weeds, pests and diseases. This project focuses 

on weed control aiming to contribute towards achieving these goals in the long-term. 

 

Weed patches. Weeds often occur in patches in arable fields. These patches may 

relate to differences in topography, aspect, fertility or soil type and conditions within 

the field, or quite simply to the place where the weed was/is being introduced. Since 

patches of non-wind dispersed weeds are relatively stable, weed mapping merits 

further study in order to raise the accuracy of weed maps and the ease of mapping to 

reach acceptable standards for precision farming and SSWM (site-specific weed 

management). 

 

Mapping patches. The attractions of map-based patch spraying are both economic 

and environmental. Lutman & Miller (2007) reported, however, that “few farmers 

have adopted site-specific weed management” because of “a great reluctance … to 

spend time creating maps. They would much prefer automated detection systems”. 

The lack of an automated system for weed mapping is, therefore, a clear obstacle to 

adoption of SSWM and is the main problem addressed in this project. 

 

The project, therefore, sought to prove the concept of automating the weed mapping 

process using machine vision. If the concept is proven, then, subject to further 

development, the main technological hindrance to the precision application of 

herbicides to arable crops in the UK, could be removed. The long-term goal is 
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therefore to help maintain crop productivity and reduce production costs, while 

satisfying existing EU regulations on the approval and use of herbicides and perhaps 

allowing retention of products likely to lose approval. The project particularly focussed 

on weed control in key UK arable crops wheat and barley, but results should also be 

relevant for oilseed rape, potatoes, sugar beet and field scale pulse crops.  

 Why only a one-year project to prove the concept? The main difficulty of 

automating weed mapping is weed identification by machine vision and so before 

embarking on a project to develop a complete system, it was essential to demonstrate 

the feasibility of (a) using farm machinery to capture images of sufficient quality and 

(b) developing algorithms to identify weeds using these images. An adequate system 

must cope with different crop backgrounds and lighting levels, and identify different 

weeds, but for proof of concept, the project has particularly focussed on black-grass in 

winter wheat. 

 

Real-time versus offline systems. Previous research including the DEFRA/HGCA 

LINK patch weeding project, demonstrated the possibility of using a weed map to 

control the sprayer and apply herbicides on a spatially selective basis. As pointed out 

by Lutman et al. (2002), “map-based patch spraying has a number of advantages 

over real-time treatment. The availability of the weed map prior to treatment provides 

an opportunity for the user to reflect on product choice and dose prior to use, and to 

estimate precisely product requirements so that the risk of putting too much herbicide 

solution in the sprayer is minimised.” Images captured in real-time must therefore be 

processed offline to identify weeds and create weed maps. The data collection rates 

and total storage capacity required for this are challenging but within the capability of 

state-of-the-art commercially-available computers, GPS, and digital imaging 

hardware. Also, performing the machine vision task offline affords the opportunity to 

apply a higher level of computing power than would be feasible in a field-based real-

time computer vision system. 

 

The ultimate goal of creating weed maps is to provide an information system so that 

agronomists and farmers can plan precision weed control and create spraying maps 

and the overall approach to precision weed control is illustrated in Figure I. In addition 

to the particular focus on black-grass in wheat, some research was carried out on 

barley and winter beans and on wild-oats, barren brome, rye-grass, cleavers and 

thistles. These weeds were chosen as they frequently occur and persist in relatively 
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stable patches in arable fields, farmers have to make special and sometimes 

expensive efforts to control them, and resistance to herbicides is problematical in 

grass weeds. 

 

Image capture. The project explored the feasibility of automating the process of 

mapping black-grass in fields by capturing geo-referenced images using cameras 

mounted on farm machinery. Images were collected from June to December 2009, 

using sprayers and tractors (June 2009), combine harvesters at harvest (August 

2009) and tractors pre- and post-drilling (October 2009). Supplementary image 

capture was carried out at various times to December 2009 walking through parts of 

fields using a camera on a monopod. Images were captured with a range of vibration 

levels and at speeds up to 20 km h-1. Analysable images were obtained at 14 km h-1 

but not at 20 km h-1. 

 

The machine vision system employed used a computer-controlled high resolution 

digital SLR camera (Nikon D90, capturing at 0.5 frames per second (fps), 4288x2848 

pixels per image) and some research was also carried out with a progressive scan, 

digital video camera (up to 30 fps, 1280 x 960 pixels per frame). Cameras were 

mounted on the sprayer boom, on windows or on top of tractor and combine cabs. A 

detailed hardware specification is provided in the report. 

 

Image analysis. Geo-referenced, time/date stamped images were captured in the 

field. The most challenging part of the project was to use these images to identify 

grass-weeds in fully-grown crop canopies. Given the timescale of the project, the 

project management committee agreed to focus on proving the concept using black-

grass in wheat at T3. For acceptability to farmers and HGCA levy payers in general, it 

is very important that every image containing black-grass is classified as containing 

black-grass; false negatives are hazardous. The software algorithms developed 

asuccessfully identified black-grass in the images analysed to date, although 

significant numbers of black-grass heads were unclassified. It is important to 

recognise that these results are from a single season and a small number of fields. 

This absence of false negatives in images illustrates the considerable progress made 

in this short project. From a practical perspective, and to satisfy wider environmental 

concerns both of DEFRA and the general public, false positives are also undesirable as 

weed control would then be demanded when unnecessary. 
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Figure I. System concept of precision weed control based on weed mapping 

in the first season and control in the next. 

In practice, mapping may continue in the second and subsequent seasons to update 

the weed map and improve its accuracy. The system aims to automate the drudgery 

of weed mapping but expert, local knowledge from agronomists and farmers is 

indispensable, especially as highlighted. 
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We have not only analysed images for presence or absence of black-grass but also 

estimated the density of black-grass heads per unit area by machine vision. For 

acceptability to levy payers, almost every black-grass head at low density needs to be 

detected (to avoid false negatives) but the higher the density, the lower the detection 

rate needed. Although the images where every head was detected had low densities, 

the correlation between the percentage of heads detected and black-grass density was 

not significant and there was a mean detection of 47% of black-grass heads in all 

images at T3 within a density range of 13 to 1230 heads m-2. 

 

Improving performance. Failure to detect occurred partly because results presented 

were for only a partial segmentation of histogram hue and value bands and partly due 

to background clutter and occlusion of black-grass heads by each other or by other 

objects in the image. A significant number of objects in images were classified 

incorrectly and so these heads are false positives. Flowering (anthesis) did not affect 

detection, but very dark heads, which will have a low HSV value signal may not be 

classified. 

 

Why are there false positives? The main reason for the false positives for black-grass 

detection is that a preliminary classifier was used based on the average width, length 

and some basic shape and colour characteristics. As this classifier is expanded to 

include the full set of features necessary to classify objects as black-grass, wild-oats, 

barren brome, crop heads and leaves, the numbers of false positives and undetected 

black-grass heads will decline. The purpose at this stage was to demonstrate 

detection of black-grass heads in each image. 

 

One important part of the research was to make the algorithms adaptive to variable 

conditions. This leading edge research was achieved without using the expensive dual 

or multi-spectral cameras favoured by some, using instead high resolution visible-only 

cameras. In terms of background rejection and object segmentation, we have 

demonstrated performance levels that meet or exceed those of multi-band cameras. 

This was achieved through a combination of hue, saturation, and value filtering and by 

taking advantage of the greater image detail provided by a camera with a 4288x2848 

pixel charge coupled device image sensor and matching optical system. All images 

were converted from RGB (red-green-blue) to HSV (hue-saturation-value) signals 
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before processing. The adoption of this approach largely explains the absence of false 

negatives in this research. 

 

Weed mapping. A final part of the project was to create geo-referenced weed maps. 

The software for this was written in previous HGCA-funded projects and the process is 

therefore relatively straightforward. As proof of concept, we provide two examples 

showing that geo-location by machine vision compares well with manually-mapped 

weed patches. 

 

The consortium demonstrated for the first time the feasibility of using a GPS-linked 

computer-controlled camera system mounted on farm machinery (tractor, sprayer or 

combine) to geo-reference black-grass in winter wheat between black-grass head 

emergence and seed shedding. A follow-on project funded by the UK government 

Technology Strategy Board will seek to refine the algorithms for black-grass, adapt 

them for other important weeds and develop a pre-commercial system. 

 

2.1 Key Take-Home Messages for HGCA Levy Payers 

The concept of automated mapping of uncontrolled black-grass in winter wheat has 

been proven in principle and should be developed to aid farmers and agronomists in 

site specific weed management and detection of potential herbicide resistance. 

 

Funding is, however, required to make the system of use to levy-payers. Specifically 

research is needed as follows:  

• Algorithm development to ensure algorithms are adaptive to different 

conditions found in UK and in different seasons, in different crops, to different 

weed species and at different crop and weed growth stages; 

• Software development to link maps created at different times in order to 

improve confidence of users in the maps and to confirm inter-seasonal 

correlations of infestations on a field scale; 

• Application testing in the field combined with economic analysis; and 

• Development of a pre-commercial system capable of scanning whole fields as 

an integrated, cab-mounted system unit including portable camera(s), GPS 

receiver and single board computer. 

 



1 

 

3 TECHNICAL DETAIL 

3.1 Introduction 

Concerns about food security may be exacerbated by increased demand for food 

associated with predicted increases in the UK population. The UK population is 

predicted to increase by 4.3 million to over 65 million by 2018 and, if the current rate 

of increase continues, the population would reach 71.6 million by 2033 (ONS, 2009). 

On the other hand, UK cereal and oilseed production could decline if herbicides lose 

approval for use due to the European Union (EU) Directive 91/414/EEC, the EU Water 

Framework Directive and restrictions due to the EU Parliament’s Environment, Public 

Health and Food Safety Committee(Clarke et al., 2008). Retailers also have to address 

concerns of consumers about pesticide inputs to crops. There is, therefore, a need for 

solutions to the problem of maintaining crop yields and production in ways which 

successfully control weeds, pests and diseases while meeting both legislation and 

market acceptability, and minimising adverse environmental impacts. This project 

focuses on weed control aiming to contribute towards achieving these goals. 

 

Weeds often occur in patches in arable fields (Heijting, 2007; Lutman & Miller, 2007). 

These patches may relate to differences in topography, aspect, fertility or soil type 

and conditions within the field, or quite simply to the place where the weed was/is 

being introduced. Since weed patches of non-wind dispersed weeds are relatively 

stable (Heijting et al., 2007; Lutman & Miller, 2007), weed mapping merits further 

study in order to raise the accuracy of weed maps and the ease of mapping to reach 

acceptable standards for precision farming and site-specific weed management 

(SSWM). 

 

The attractions of map-based patch spraying are both economic and environmental. 

For example, SSWM could reduce the black-grass control cost in winter wheat by 

£31/ha if the application were limited to 55% of the field (Lutman & Miller, 2007). 

Gerhards & Oebel (2006) found that “herbicide use with a map-based approach was 

reduced in winter cereals by 20–79% for grass weed herbicides” with 85% to 98% 

control efficacy. Lutman & Miller (2007) reported, however, that “few farmers have 

adopted site-specific weed management” because of “a great reluctance … to spend 

time creating maps. They would much prefer automated detection systems”. Gerhards 
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& Christensen (2003) likewise concluded that “weed monitoring systems are a critical 

component in the utilization of the ideas and knowledge developed in research 

projects on site-specific weed control”. The lack of an automated system for weed 

mapping is, therefore, a clear obstacle to adoption of SSWM (Miller & Lutman, 2008) 

and is the main problem addressed in this project. 

 

This proposal, therefore, aims to prove the concept of automating the weed mapping 

process using machine vision. If the concept is proven, then, subject to further 

development, the main technological hindrance to the precision application of 

herbicides to arable crops in the UK, could be removed. "Precision in decision making 

leads to decreased use of inputs, less environmental emissions and enhanced 

profitability—all essential to sustainable systems" (Day et al., 2008). The long-term 

goal is therefore to help maintain crop productivity and reduce production costs, while 

satisfying existing EU regulations on the approval and use of herbicides and perhaps 

allowing retention of products likely to lose approval. The project particularly focuses 

on weed control in key UK arable crops wheat and barley, but results will also be 

relevant for oilseed rape, potatoes, sugar beet and field scale pulse crops.  

 

Why only a one-year project to prove the concept? The main difficulty of automating 

weed mapping is weed identification by machine vision. An adequate system must 

cope with different crop backgrounds and lighting levels. In addition, some important 

weeds are similar in appearance to the crop and need to be identified in dense crop 

canopies. In the vegetative growth stages, when weed control needs to be applied, 

some weeds are particularly challenging to identify even by trained personnel and are 

probably impossible to distinguish from the crop by machine vision (e.g. wild-oats, 

black-grass, meadow-grasses and barren brome in cereals; charlock in oilseed rape). 

 

Several research groups are investigating weed identification by machine vision with 

varying success, with a view to developing both real-time systems for weed 

identification and immediate treatment and/or map-based systems (e.g. Dammer & 

Wartenberg, 2007; Gerhards & Christensen, 2003; Gerhards & Oebel, 2006; 

Nordmeyer, 2006, 2008; DEFRA Horticulture Link project on volunteer potatoes in 

vegetables in the UK). None of these systems is yet commercialised and their 

application to broad-acre crops, such as winter cereals, is difficult due to the variable 

emergence times of weeds, the problem of identifying vegetative grass weeds in 
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cereal crops, not to mention the implicit need to redesign sprayers with multiple 

nozzles/booms to cope with different herbicides for different weed groups. Even if 

identifications were feasible, the large areas and high work rates required in arable 

farming systems give other problems for real-time control systems. There may be 

safety issues in relation to the transport and/or disposal of unused herbicides in 

sprayers at the end of each day. A novel approach to weed mapping is, therefore, 

required. 

 

Previous research including the DEFRA/HGCA LINK patch weeding project, 

demonstrated the possibility of using a weed map to control the sprayer and apply 

herbicides on a spatially selective basis (Lutman et al., 2002). The project builds on 

this previous research. As pointed out by Lutman et al. (2002), “map-based patch 

spraying has a number of advantages over real-time treatment. The availability of the 

weed map prior to treatment provides an opportunity for the user to reflect on 

product choice and dose prior to use, and to estimate precisely product requirements 

so that the risk of putting too much herbicide solution in the sprayer is minimised.” 

Images captured in real-time must therefore be processed offline to identify weeds 

and create weed maps. The data collection rates and total storage capacity required 

for this are challenging but within the capability of state-of-the-art commercially-

available computers, GPS, and digital imaging hardware. Also, performing the 

machine vision task offline affords the opportunity to apply a higher level of 

computing power than would be feasible in a field-based real-time computer vision 

system. 

 

3.1.1 Weed Sensing and Identification 

Weed identification from captured images is the greatest challenge of the project and 

is linked to the weed sensing system in use. Weed sensing methods and site-specific 

weed control technologies have been reviewed recently by Christensen et al. (2009) 

and a detailed review is not included here. It is, however, necessary to explain why 

we have rejected the use of bispectral cameras. Weis (2007), like several others, used 

image analysis to distinguish weeds from crop plants and to identify some weeds and 

crops to species level. He used a dual camera system, one with a near infra-red (NIR) 

sensor and the second with a visible (VIS) image capture sensor. Other researchers 

are endeavouring to use single or paired multispectral cameras to detect weeds (e.g. 
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Gerhards & Oebel, 2006; Dammer & Wartenberg, 2007; Schuster et al., 2007; 

Hamouz et al., 2008). The analysis of differences between the VIS and NIR images 

also requires that the two images be correlated in space and time, which is achievable 

but relatively expensive with respect to computer hardware/software requirements. In 

addition, by reducing captured images to binary, Weis’s algorithms may discard 

information about leaf surface pattern/texture, which may be valuable for weed 

identification and also makes separation of overlapping weeds more difficult. For these 

and other reasons which will become apparent from the algorithms developed in this 

project, it will be argued that dynamically filtered colour images from a single high-

resolution camera can provide superior performance to the use of greyscale VIS and 

NIR images, and – importantly for a system that is ultimately intended for commercial 

rather than research use – at much lower cost. 

 

3.1.2 Patch spraying 

Miller (2003) and the recent HGCA-funded review (Lutman & Miller, 2007) have shown 

that precision targeting of applications of herbicides to weed patches in fields is 

technically feasible. The challenge to date has been “the development of sensing 

systems as components in electronic controls [and] is likely to be a key factor 

influencing the direction of such future developments” (Miller, 2003). Progress in such 

systems for arable crops has been slow since the end of the last DEFRA LINK patch 

weeding project in 2002. Hague et al. (2006) did, however, report on a machine 

vision system for automatically generating weed and crop density maps in cereals but 

it was only applicable for widely spaced cereals (25 cm between crop rows) and at 

early growth stages (well before canopy closure). Moreover this system was not 

designed to identify weed species, simply to identify weedy parts of the fields. 

Gerhards & Oebel (2006) described an advanced experimental prototype system 

which includes elements of both real-time weed detection and patch spraying. The 

system failed to identify 11-27% of weeds as it progressed through the field at a fast 

walking pace (5-8 km h-1). This machine is probably the most advanced of its kind and 

demonstrates that weed identification is feasible with machine vision, albeit at a very 

slow work rate in the field. For adoption, much faster work rates are essential and 

sprayer designs would need to be altered to allow more than one chemical to be 

applied concurrently. The authors also indicated that “camera technology and image 
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analysis algorithms [would] need to be improved”. Perhaps significantly, the authors 

did not consider the economics of the system. 

 

3.1.3 Specific objectives for proof of concept 

The project therefore aimed to establish the feasibility of automating the weed 

mapping process in arable fields in the UK. The sponsors asked the consortium to 

focus primarily on black-grass (Alopecurus myosuroides Huds) but, as weeds seldom 

occur in isolation, we have also included some preliminary research on wild-oat 

(Avena fatua L.), barren brome (Anisantha sterilis (L.) Nevski), cleavers (Galium 

aparine L.) and thistle (Cirsium arvense (L.) Scop.). 

Specific objectives of the project were as follows: 

1. To develop a machine vision system capable of capturing images automatically 

during agricultural field operations; 

2. To prove the concept that images captured by the machine vision system in (1) 

could be used to identify and geo-reference specific weeds in the field at 

appropriate times of the year; 

3. To demonstrate that (a) geo-referencing of weeds in images could be matched 

with the physical locations of weeds of the same species in the field and (b) 

that the data of geo-referenced, weed plants/patches could be used to generate 

weed maps. 

 

3.1.4 Hypotheses 

Weed identification is an important and challenging element of automating the weed 

mapping process. 

 

The first hypothesis of this proposal is negative: the accuracy of grass weed 

identification by machine vision based on a single visit to a field is generally 

inadequate to identify weeds to species level with precision needed to create post-

emergence herbicide application maps. 

 

The working hypothesis is that accurate grass weed identification can be achieved in 

cereal crops after inflorescences have emerged. 
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A further hypothesis is that the accuracy of the density of grass weeds as estimated 

by machine vision will be close to 100% at densities less than one per square metre 

but will decrease as weed density increases. 

 

An ultimate hypothesis, which the timescale of the project did not allow to be tested is 

that by integrating a priori expert knowledge of farmers and agronomists of species 

present in a field with information from geo-referenced images captured automatically 

at different times of the year during normal field activities (cultivation, planting, 

spraying, fertilising, harvesting), weed maps will be developed with sufficient accuracy 

so that farmers with advice of their agronomists can first create and then utilise 

variable rate herbicide application maps for precision weed control. 

 

3.2 Materials & Methods 

General systems requirements for a possible prototype production level system were 

identified from which specifications for both hardware and software were derived. 

 

To prove the concept within the one-year schedule, it was necessary to get a trial 

image capture system up and running rapidly. This was because the principal 

challenge of the project was the demonstration of the machine vision system rather 

than the image capture process. We therefore used a variety of manual, semi-manual 

and semi-automated systems for image capture (Figure 1). 

 

3.2.1 Hardware for Proof of Concept 

3.2.1.1 Image Capture Computer 

Image and position data captured in the field using a GPS receiver and cameras were 

transferred to a ruggedised tablet PC, model DR7 86 EX with port expansion block and 

external USB DVD drive. All components were either powered from internal batteries 

or an external 12V power supply. The Unibrain camera was linked to the tablet PC via 

a firewire connection while the Nikon D90 was connected with a USB link. The GPS 

receiver was connected via a USB link. Image capture control software was written so 

that images could be captured from both cameras and the GPS receiver concurrently. 

In order to fulfil the project’s second objective, the demonstration of this semi-
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automatic system was considered to be of less importance than the reliable capture of 

field images. Therefore, where performance was compromised, we opted to allow the 

D90 camera to capture images on to its own internal memory card and transferred 

them offline to the intended digital storage system. The date and time that each 

image was taken as well as the geo-location was included in each image file header. 

 

3.2.1.2 Camera 

The Nikon D90 (a digital SLR camera) was used to capture high quality images as 

soon as possible after the start of the project. Such a high-resolution camera was a 

deliberate choice so that we could establish the minimum image quality needed for 

reliable weed identification. Conversely, the frame rate was low but satisfactory for 

proof of concept. To achieve faster frame rates and based on an early version of the 

prototype specification in the results (section 3.3.1.3) Concurrent Solutions LLC 

selected and supplied a Unibrain Fire-i 785c (Colour): 4605 digital video camera with 

a 1/3" progressive scan CCD which under computer control is designed to capture 

images of 1.2 Mpixels (1280 x 960) at rates of up to 30 fps. 

 

3.2.1.3 GPS Receiver 

Three receivers were used. For semi-automatic image capture, we used a Raven 115 

GPS Receiver and/or the GPS receiver built into the Nikon D90 camera. For manual 

weed-mapping and ground truth assessments we used a Garmin hand-held unit 

(model eTrex H, high sensitivity GPS navigator).  

Interface. The GPS receiver communicates with the on-board computer through 

either a serial port or USB interface. The Raven GPS receiver was set to sample at 10 

geo-references per second. 

Power. The GPS receiver was powered by a 12V DC power supply. 

 

3.2.1.4  Machine Vision Processing Computer 

A feature of this project is that the machine vision processing was done offline. That 

is, it was done in a separate computer system in the laboratory rather than on-board 

the carrier system. Also the amount of processing time that can be used on an image 

was not restricted to the interval of time between the capture of two successive 

images. This restriction severely limits the detection and plant identification 

performance of a real-time computer vision system. 
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For off-line processing, a quad-core Central Processing Unit (CPU) with a clock speed 

of 2.83 GHz with 4 GBytes of RAM running Windows XP OS was used. To provide a 

flexible machine vision algorithm processing system, the unit contained an Intel CUDA 

(Compute Unified Device Architecture, Nvidia, 2007) parallel computing architecture 

developed by NVIDIA with dual graphics processing cards (nVidia GeForce 260GTX) 

being used as general-purpose parallel processing units to augment the CPU and 

achieve corresponding speed-ups in computations per second. 

 

These graphics processing cards use the revised G200b GPU chip. They each have 9 

Texture/Processor Clusters (TPC) with 24 Stream Processors per cluster. This gives a 

total of 216 Stream Processors per GPU. Each card has a GPU core clocked at 576Mhz, 

a Shader frequency clocked at 1242Mz and also has 896MB of gDDR3 RAM rated at 

999MHz (1998MHz effective). This system was equipped with a 1TByte hard drive with 

2TBytes of external drive space. 

 

3.2.2 Image Capture 

The farms supporting these activities are indicated below with lists of the dates, times, 

and details of crop for images collected during this research. 

 

3.2.2.1 Farms, Dates of Image Capture and Weeds Present 

Phillimore Farms (Oxon) – 

June 2009: wheat and barley growth stages (GS) 59-71.  

Wheat: black-grass, barren brome, meadow brome (all with 

inflorescences before seed shedding) 

Barley: wild-oat, cleavers (field margin only), barren brome 

August 2009: wheat GS 91-93 – black-grass (after seed shedding) 

Computer-controlled Nikon D90 SLR camera and Unibrain DV camera 

mounted on combine harvesting winter wheat. 

December 2009: winter bean: black-grass, cleavers (seedlings)  
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Sonning Farm, Reading – Several visits. Camera mounted at roof height of tractor 

using a range of viewing angles and forward speeds of 9, 14 and 20 km h-1 (Figure 

1A). 

Wide range of pure cereals, plus cultivated oats as a model weed in wheat near 

isogenic lines with different Rht genes to provide oats against dwarf, semi-

dwarf and ‘tall’ genotypes of wheat. 

Syngenta, Cambs – 

June 2009: wheat and barley GS 59-71 with camera mounted on spray boom 

(Figure 1B) with images captured at a range of forward speeds: 

Wheat: black-grass, wild-oat, poppy, bindweed, thistle, mayweed 

Barley: black-grass, wild-oat, thistle 

August 2009: wheat and barley GS 91-93 (Figure 1 C, D) 

Black-grass and wild-oat (after seed shedding); thistle (green, flowering) 

October 2009: winter wheat (post-harvest and post-emergence):  

Black-grass, wild-oat (seedlings) (images collected using D90 camera 

mounted on cab of tractor operating at different forward speeds. In addition, a 

range of images were captured manually using the monopod). 

Other locations and times 

Herbiseed: seedlings and plants of black-grass and wild-oats (Figure 1E), 

seedlings of couch and cleavers (camera on monopod) 

Cereals 2009: grass weed plots in cereals (hand-held camera) 

Other farms near Reading: barren brome in wheat (June 2009); wild-oat and 

black-grass in wheat (June 2009). (Camera on monopod). 
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Figure 1. Camera mounting and image capture systems. 
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3.2.2.2 Mounting Systems  

For manual monitoring (Figure 1E), the camera was sometimes handheld or more 

usually elevated on a monopod (Velbon RUP-43 or similar, maximum length 1.6 m). 

For mounting on cabs, the GPS unit had a magnetic base, which attached easily and 

securely. Cameras were mounted using high performance suction pads (Manfrotto 

model 241FB with Manfrotto model 056 three dimensional camera mount to allow 

maximum flexibility of viewing angles, see for example, Figure 1C – Manfrotto, 

Bassano, Italy). For mounting on the spray boom, it was essential to increase the 

height of the camera to obtain an appropriate viewing angle for image capture and to 

mimic what would be necessary to minimise spray drift on to the lens. Two such 

mounting systems were made, the first (Figure 1B) with 1.5 inch square section 

aluminium containing a monopod camera mounting insert to allow heights of 80-

100 cm and a complete range of viewing angles (made by TAG, Silsoe Spray 

Applications Unit). A second system was made from mild steel with a 90 cm fixed 

length and fixed 45° viewing angle (made by University of Reading, Crops Research 

Unit). 

 

3.2.2.3 Performance Testing 

To assess performance of the image analysis system, zones within 44 images were 

selected for more detailed analysis. All were captured in winter wheat fields around 

the T3 spraying time in June 2009. By capturing at this time, the images essentially 

represent failure of weed control and indeed in most cases, no weed control had taken 

place. Thirty-five of these images contained black-grass and some also contained 

wild-oat panicles. They were chosen to test the hypotheses that failure to detect 

would increase with increase in black-grass density due to occlusion and to confirm 

that non-detection would be low at low density. Images were chosen to achieve a 

wide range of actual black-grass densities (from 0 to 1230 m-2). Thirty-two images 

were from ‘The Railway’ field, Cambridge on 22 June (as Figure 1D) and three from 

Icknield Farm on chalk downland near Wallingford, Oxon (Table 1). The former were 

captured automatically with the camera mounted on a sprayer boom; the latter, 

manually using a remote control with the camera mounted on the monopod. 

 

In addition, to test the robustness of the algorithm, nine images were selected 

containing no black-grass. Two of these images were captured on 22nd June in 

‘House’ field near Cambridge, where winter barley was being grown (Table 1). The 
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remaining seven images were taken on 2nd June 2009 from experimental plots 

containing mixtures of winter wheat and cultivated oats at Sonning Farm, Woodlands 

Field, near Reading (Table 1). The three fields were selected to broaden the range of 

environments used for performance testing. 

 

Table 1. Image capture details for algorithm testing (June 2009). 

Farm 

location 

Camera 

height 

above 

ground, 

m 

Camera 

viewing 

angle 

Focal 

length, 

mm 

Number 

of 

images 

with 

black-

grass 

Number 

of 

images 

without 

black-

grass 

Dimensions* 

of processed 

image, m2 

Cambridge 2.20 45° 50 32 2 1.19 

Sonning 2.56 28° 32 0 7 2.16 

Icknield 2.90 45° 46 3 0 4.57 

*All images were taken with the same resolution of ~12 million pixels. 

 

Where applicable, the number of black-grass heads in each image was counted both 

manually and also assessed by the machine vision software, developed in this project. 

Head counts, were converted to densities per square metre after calculating image 

ground area using the following formulae to calculate the field of view (Fov) 

(horizontally and vertically) in the image: 

)))*2(())cos(/((2 LengthVert FCCDwAHFov ÷××=  

 

)))*2(())cos(/((2 LengthHoriz FCCDhAHFov ÷××=  

 

Where H is the height of the camera above the ground (m), A is the viewing angle of 

the camera, CCDw is the width of the CCD and CCDh is the height of the CCD. 

 

A confusion matrix was constructed to show identified heads and failure of 

identification. A calibration curve of numbers of black-grass heads detected as a 

function of the actual number in the image was plotted. False positives were examined 

in a sample of images to assess reasons for their incorrect classification and to 

facilitate further software development in a follow-on project. 
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3.3 Results 

3.3.1 Objective 1: Specification of Image Capture and Machine Vision 

Hardware 

Projected performance requirements of specific components of the Weed Mapping 

system are given here. These components include the on-board computer, digital 

camera(s), GPS receiver and the machine vision processing computer. 

3.3.1.1 General Systems Requirements 

The hardware specification can be derived from a surprisingly few basic systems 

requirements. 

 

User requirements: Farmers and other end-users essentially and ultimately require 

the system to collect images of sufficient resolution to support identification of the 

weeds present by machine vision and that images are to be collected over entire fields 

during normal field operations. It is a prerequisite that machinery speed during field 

operations should be unaffected by the fact that image capture is also occurring. It is 

also clearly essential that the system should require no interaction with the machinery 

operator during the actual field operation. Self-evidently some interaction would be 

required before and afterwards. These requirements are sufficient to derive a 

comprehensive set of hardware specifications for the cameras, data collection 

computers and the GPS receiver. 

 

Pixel size: Based on preliminary analysis of field images and machine vision software 

tests, the current critical dimension dcr that must be resolved in order to identify 

inflorescences of black-grass and wild-oat in wheat at GS 61-65 (T3) has been 

determined to be 2.5 mm. With at least 2 pixels (resolution cells) across this critical 

dimension we have set the projected pixel size Spix at the target plant to be 1.25 mm. 

Note that for seedling identification, the critical dimension dcr that must be resolved in 

order to identify cotyledons of broad-leaved weeds and to distinguish leaves of grass 

weeds has been determined to be 0.6 mm. With at least two pixels (resolution cells) 

across this critical dimension we have set the projected pixel size Spix at the target 

plant to be 0.3 mm. Based on weed patch persistence, the ability to correlate geo-

located images taken a different growth stages, it may be sufficient to detect the 
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presence of grass weeds at the cotyledon stage. Calculations below relate to black-

grass heads rather than seedlings. 

 

Not all systems or users may require image capture from the entire field and indeed a 

lot of research has been carried out on vegetation sampling. Should this requirement 

be for partial sampling, the proportion of the field captured clearly depends on the 

platform width (e.g. a spray boom), the number of cameras, their resolution and the 

pixel size required for weed identification. The fraction of the field photographed 

decreases with increases in boom width, and with decreases in image and pixel 

resolutions (Table 2). To capture the majority of a field with the resolution required 

for black-grass recognition at T3, one high resolution camera (4288 horizontal pixels) 

would be required for every 5.4 m of boom width (Table 2). 

 

Frame rate: The rate at which images must be collected is determined by the work 

rate of the carrier vehicle. We express this rate in units of hectares per hour and we 

assume that the speed of carrier vehicle will not be changed in order to collect images 

so the collection rate must match the work rate. That is, the images are collected at 

the same rate that the carrier vehicle covers the field in the performance of its 

primary function (e.g. cultivating, planting, spraying or harvesting). 

 

For the purposes of calculation, assumed work rates for cultivation, planting, spraying 

and harvesting are 5, 0.2, 20 and 1 ha h-1, respectively. The most challenging 

operation with respect to the data storage capacity and data transfer rate is crop 

spraying with a work rate of 20 ha h-1. This work rate coupled with an assumption of a 

12 hour working day has been used to derive the required data collection rate as well 

as the total storage capacity requirements. 
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Table 2. Maximum potential fractions of fields (%) which could be 

photographed by a one or two camera machine vision system. 

Calculations are shown for camera(s) of three image resolutions and two pixel 

resolutions (0.3 or 1.25 mm), mounted on 6-36 m spray booms. For the purpose of 

this table, it is assumed that images are isometric (i.e. that pixel size is constant 

throughout the image). 
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3.3.1.2 On-board Computer 

The purpose of this computer is to capture field images and geo-referencing data 

consisting of time-tagged GPS locations. The date and time that each image is taken 

must be associated with the images in some manner. Currently this is accomplished 

by including date and time in the image file header. 

 

Central Processing Unit / Main Board. The critical limiting function of the on-board 

system is the rate at which data (images) can be transferred from the camera(s) to 

the mass storage device. Any CPU/Motherboard combination that does not degrade 

the maximum data transfer rate is acceptable. As an example specification a dual-core 

CPU with a clock speed of 2.0 GHz or faster is recommended as a minimal 

configuration. 

 

Random Access Memory (RAM). There is no critical requirement associated with 

the amount of RAM for the on-board computer. However, there are standard minimal 

recommendations for common operating systems. One to two GBytes of RAM for Linux 

or Windows XP OS is recommended while 3-4 GBytes are recommended for Windows 

Vista or Windows 7. 

 

Mass Storage. Given the highest required field coverage rate and assuming a 12 

hour working day the total bytes of storage capacity required is given by: 

12 h x 20 ha h-1
 x 104 m2 ha-1

 x 1.252 mm2 per pixel x 106 mm2 m-2
 x 3 bytes per pixel 

=  11.25 x 1012 bytes per 12 hour day = 10.23 terabytes 

where 1 terabyte = 1,099,511,627,776 bytes. This total storage capacity requirement 

is a worst-case situation assuming that a sprayer will cover an average of 20 ha h-1 

over a 12 hour day. With herbicide/pesticide replenishment, refuelling, regular breaks 

and time to travel between fields, a typical storage requirement could be set to a few 

terabytes for a commercially viable weed mapping system. 

 

While the total storage capacity specification for this system may be overly 

conservative, this value is a reasonable basis to determine the maximum required 

data transfer rate. Based on the above analysis we can derive the maximum data rate 

for image capture to be: 

11.25 x 1012 bytes/(12 x 3600) seconds = 260 Mbyte s-1 
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The maximum data rate for a standard mechanical hard-drive is around 

150 MByte s-1. Therefore a raid disk array could be used to attain a higher data. An 

alternative to the disk array is the use of a solid state hard drive (SSHD), because 

these have data transfer rates typically eight times higher than mechanical hard 

drives. In addition, SSHDs are less susceptible to vibration as they have no moving 

parts. SSHDs cost two to three times as much as mechanical HDs (for the same 

storage capacity). While the purpose of a specification is to indicate the performance 

requirements rather than direct the use of a particular device, a solid-state hard drive 

is recommended. 

 

Human Interface. Any appropriate interface that permits system control and 

monitoring is sufficient. The minimal specification is a video monitor to support the 

review of incoming images, evaluation of the system status including available mass 

storage, and system operation and user/input device(s) to start and stop data 

collection programs. For this project we have used a 10 inch touch screen for input 

and output to the computer during image capture in the field and an attachable 

keyboard and mouse for data transfer and system configuration management. 

 

Power. The system must be able to run on a single 12 V DC supply fed from the 

agricultural machinery in use and so the current must not exceed 20 Amps. The power 

connection interface must be compatible with accessory power sources provided on 

the carrier vehicles. This will include a standard AUX 12V power connector (e.g. 

cigarette lighter) interface. As a prototype system will be carried into the field by an 

unknown variety of different vehicles we cannot predict all auxiliary power connection 

configurations. The system must, therefore, have its own battery power source 

available as an alternative. 

 

3.3.1.3 Camera 

Charge-coupled Device (CCD) Resolution/Format. The required resolution of the 

digital camera is coupled to the size of the coverage of the camera's field-of-view 

(FOV) in the direction of carrier platform motion, projected onto the ground. The 

amount of ground area covered by the camera is a function of the focal length of the 

lens system attached to it. This specification is best expressed in the following 

formulae: 
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pix

length
pix S

P
H =  

where Plength is the projected length of the image in the direction of carrier platform 

motion, Spix is the projected size of a pixel (in the same units), and Hpix is the number 

of vertical (height) pixels required on the CCD. We can compute the FOV angle of the 

selected camera/lens system by:  

( )
( )ang

vert
length V

FOVH
P

tan
2/sin2 ××

=  

where H is the height of the camera above the ground and Vang is the camera bore 

sight angle measured below horizontal. 

 

Lens System. Typically, there is a limited number of options for the number of pixels 

(Hpix x Wpix) in the CCD. Therefore it is sometimes useful to pick a camera and then 

choose a lens that achieves the required projected resolution on the critical dimension 

of the target plant. For example, given a camera with a CCD resolution of 3000x4000 

pixels (i.e. 12 Mega-Pixels) 1/3" format (i.e. physical size of CCD), we can determine 

the required focal length lens system to achieve a projected pixel size of 1.25 mm. 

 

First, a 1/3" format CCD has dimensions 3.6 mm x 4.8 mm which is a 6 mm diagonal. 

This diagonal dimension is used to determine the angle of view of the camera/lens 

system, θ.  

f
D
2

tan2 1−×=θ  

where D is the effective diameter of the lens aperture and f is the focal length of the 

lens. Given the distance from the camera to the object being resolved, we can use 

simple geometry to convert this angle into a distance. For an object distance of 

approximately five metres, this camera would need a 10.5 mm focal length lens to 

achieve the aforementioned project pixel size of 1.25 mm at a distance of 5 m. 

Software was developed to facilitate these calculations more easily (Figure 2). 
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Figure 2 Screenshot of Lens Calculator for required focal length to achieve 

the pixel size at a known distance from camera lens 

 

 

Controls. Digital cameras are equipped with a wide variety of controls for 

automatically setting the aperture size (effective diameter), the integration time 

(equivalent to shutter speed) and for automatically adjusting the focus. The camera(s) 

used in this application need to adjust for varying light levels while maintaining a 

short integration time, to prevent image motion blur. For this reason the camera must 

be capable of fixing the integration time while permitting auto-focus and auto-iris. 

 

Image Capture and Data Transfer Rates. The data transfer rate derived above of 

260 Mbytes s-1 is based on the fastest carrier platform (sprayer) running at the 

maximum work rate (field coverage rate) of 20 ha h-1. This is a systems requirement 

meaning that it could be achieved with one or more cameras transferring image data 

to one or more on-board computers. Taking one system as an example, it is assumed 

that images are being collected by a single camera with CCD resolution of 3000 x 

4000 pixels (i.e. a 12 Mega-Pixel camera). Such a camera would need to collect 

images at a minimum rate of 7.2 frames s-1. 

1
161

1

2.7
10123

260 −
−−

−

=
××

sframes
framepixelspixelbytes

sMbyte
 

Of course, if more cameras and data collection computers were used the frame rates 

for each camera could be reduced accordingly. 

 

3.3.1.4 GPS Receiver 

Interface. The GPS receiver can communicate with the on-board computer through 

either a serial port or USB interface. 



20 

 

 

Data Sample Rate. The current data rate for the GPS receiver is set at 10 per 

second, with a minimum rate of one per second. 

 

Precision. The single sample location precision is set at 5 m with a differential GPS 

(multiple sample) precision of approximately 1 m. 

 

Power. The GPS receiver must provide its own power or be compatible with the 12 V 

DC power source provided by the carrier platform through a standard connector. 

 

3.3.1.5  Machine Vision Processing Computer 

A feature of this project is that the machine vision processing is done offline. That is, 

it is done in a separate computer system in the laboratory rather than on-board the 

carrier system. Since the computations are not real-time the hardware and 

performance specifications depend on the speed at which this off-line processing must 

be achieved. At this time, in the absence of a prescribed processing speed, 1/10 real-

time is selected as a somewhat arbitrary baseline. This means that we have allotted 

10 hours of machine vision processing for each hour of image collection. Of course, 

since machine vision processing of separate images is independent and completely 

parallelizable, any desired data processing rate can be achieved by multiplication of 

computing hardware. 

 

In order to be able to modify and extend the machine vision algorithm processing 

system, we are specifying a multi-processor system such as the Intel CUDA (an 

acronym for Compute Unified Device Architecture, a parallel computing 

architecture developed by NVIDIA (2007)). This approach uses graphics processing 

units (graphics accelerator cards) as additional processing units to augment the 

central processing unit (CPU) of the computer and achieves corresponding speed-ups 

in computations per second. For image and graphics processing applications such as 

this, the CUDA achieves an order of magnitude better performance for the same 

hardware cost as compared with standard architecture multi-core (or many-core) 

CPUs. 
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Central Processing Unit/Main Board. The most cost effective choice of currently 

available state-of-the-art (SOA) commercial desktop computer hardware is a quad-

core processor on a main board (motherboard) capable of running two or three 

additional graphics processing units. 

 

Graphics Processing Units. Following the Intel CUDA guidelines (NVIDIA, 2007) 

these graphics processing units (GPUs) should run at 2.0 GHz or greater and provide 

~1 GByte of random access memory (RAM). 

 

Random Access Memory (RAM). This system should be equipped with a minimum 

of 8 GBytes of compatible high speed random access memory. 

 

Mass Storage. The amount of storage depends on the number of hectares of field 

data that will be archived. It is recommended that the system be equipped with at 

least a 2 terabyte hard drive and an additional capability to store and access 12 more 

terabytes through external drives. The system should be able to access additional 

storage as needed through a local area network and or internet connection depending 

on the eventual configuration of the prototype system. 

 

3.3.2 Objective 2a. Specification of Software for Machine Vision and 

Geo-referencing for Weed Mapping in Cereal Crops 

The purpose of the machine vision software is to differentiate between the cereal crop 

and a number of weeds including black-grass, barren brome, wild-oats and cleavers at 

some stage during the crop planting/growth/harvest cycle. While no specific 

performance level requirements have been placed on this research by the sponsors, it 

being a proof of concept, the researchers have agreed to endeavour to achieve best 

possible performance and to report the levels achieved within the time-span of the 

project. Improvements are expected as a wider range of images becomes available. It 

is also true that performance will vary with growth stage and environment. In the 

following, we will provide details of specific algorithmic methods and give a 

specification for the overall approach being implemented. 
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3.3.2.1 Signal-Level Processing 

Signal-level processing refers to the image processing functions applied to bitmap 

images. At this level, every pixel of the image is treated in the same manner. The 

purpose of signal-level processing is to prepare the image for extraction of a set of 

features applicable to solving the specific machine vision problem(s) of the 

application. All signal-level processing must support the extraction of image features 

at a pixel resolution of 1.25 mm as indicated in the General Systems Requirements 

above. 

 

3.3.2.2 Syntactic-Level Processing 

The purpose of syntactic-level processing is to extract a list of pertinent features 

about potential objects of interest in the images. These include object area, perimeter, 

shape, internal colour and texture patterns, as well as object locations within the 

image. One of the side benefits of syntactic-level processing is a significant data 

reduction, from millions of pixels to several bytes of data for each candidate object of 

interest. 

 

3.3.2.3 Semantic-Level Processing 

In semantic-level processing the number and relative locations of the candidate 

objects collected in syntactic-level processing are used to extract meaning about the 

image containing the candidate objects. The relationships between candidate object 

features support object type classification decisions, i.e. weed identification. 

 

3.3.2.4 Geo-Referencing Software 

Geo-Positioning. In this project we relied on the built-in software provided with the 

GPS receiver to determine the location of the camera carrier platform at the time each 

image was taken. The precision of this position measurement is of the order of one 

metre using the built-in differential GPS software. This level of precision assumes that 

a sufficient number of GPS satellites are detected to support the position 

measurement. In the unlikely event that there is not a clear line-of-sight to the GPS 

satellites the data collection process should notify the software user and/or tag the 

images with a message indicating that precision measurements will be at a lower 

precision. 
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Direction Determination. The direction of motion of the carrier platform will be 

specified using a combination of position measurements. The resulting precision of the 

direction of motion will be assumed to meet or exceed the precision achievable 

through an application of simple geometry to the position measurements and their 

uncertainties. 

 

For example, given two position measurements with a precision of ±1 metre and 

separated by a distance of 20 m, the worst-case error in direction would be  

arctan (2/20) = 11.3 degrees. 

 

The expected error in direction based on a best fit to North position measurements, 

assuming straight line motion, would be given by the worst-case error reduced by the 

root summed square (RSS) of the North measurements. 

 

For example, given ten measurements over a distance of 20 m each with a precision 

of one metre, the expected error in direction is  

arctan (2/20) /(10)1/2 = 11.3/3.16 = 3.6 degrees. 

 

Absolute Plant Location. The position of each object of interest in an image is 

determined using a projection of the image given the known position and orientation 

of the camera with respect to the location and heading (direction of motion) of the 

carrier platform at the time the image was taken. In addition the field-of-view of the 

camera must be known to determine the extent of the image as projected onto the 

ground. Details of this calculation are provided in the section 3.3.1.3. 

 

3.3.3 Objective 2b: Implementation of Software Specification for Grass 

Weed Identification in Cereal Crops 

This section gives details of and results from the three levels of software constructs 

for computer processing of field images in order to identify grass weeds in commercial 

cereal crops (see sections 3.3.2.1, 3.3.2.2, 3.3.2.3). Most of this research has 

concentrated on black-grass with a smaller amount of work on wild-oat (which has not 

been reported here). Image processing functions were mostly implemented using 

OpenCV (Bradske & Kaebler, 2007) an open source image processing library available 
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for a wide variety of computer operating systems and hardware platforms including 

Microsoft OS and Intel PC processing systems. 

 

3.3.3.1 Segmentation 

Segmentation of an image is one of the first steps of image analysis used when trying 

to identify the content of an image. It is generally regarded as the process of 

separating background information from foreground information. Of course what is 

background and what is foreground depends on the problem being solved. 

Segmentation can be an easy first step in extracting information, as the following 

example will show. 

 

At early growth stages, living green plants in the foreground are easily separated from 

the background soil using an excessive green filter to isolate the greener parts of an 

image (Figure 3). The segmentation problem becomes more difficult at later crop 

growth stages after canopy closure, when the task is to separate two or more 

overlapping, living, green plants from each other in a single image 

 

Figure 3. Images of living plants before (left) and after (right) segmentation 

using a simple excessive green thresholding filter. Upper pair are mostly 

broad-leaved. Lower pair are black-grass (circled) and wheat at Cambridge 

on 15 October 2009. 
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3.3.3.2 Segmentation based on Hue and Value Thresholding adaptively 

variable according to Image Content 

A problem that was encountered early in the project was a failure to segment 

satisfactorily using normal thresholding techniques. The vegetation in the images to 

be processed, which is the result of nine months’ plant growth and development and 

is often characterised by dense canopies, are by their very nature extremely complex. 

Standard thresholding techniques fail to segment the majority of the image into 

objects that can be usefully stored. 

 

Rather than segmenting on dominant green, which separates green plants from 

everything else, it is more effective to segment closed canopies on multiple 

overlapping hue and value passbands in different colours and brightness levels, as this 

helps to separate plants by species and growth stage. The exact passband into which 

a plant falls is not critical, but rather a reduction in image complexity. The image is 

then segmented further by separating objects grouped by their dominant orientation. 

Each technique will be described in turn. 

 

A brief review of the field images collected for this research makes it clear that an 

alternative approach is needed. Rather than hard-coding the band values into the 

source code, the hue passbands are set based on the image content itself. Converting 

from RGB to HSV (Figure 4) reduces the number of colour parameters from three to 

one and makes it easier to generate multiple segmentations based on narrow bands of 

colour. Also, the overall brightness of objects (value) can be used to segment the 

image by object group. 
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The program constructs histograms from the hue and value channels to find the 

predominant colour and value bands which are likely to represent large groups of 

similar objects. The peaks and valleys of the histogram can be used to set the hue 

and value band limits for each segmentation. 

 

Each segmented band is converted into greyscale and passed to an edge detection 

filter. This filter creates contours along object edges. A high spatial resolution of the 

images is essential for this edge detection process and is a major reason why this 

visible-only approach is needed to achieve high performance levels in weed 

identification. These contours are stored as the outlines of candidate objects. The end 

result of the algorithm is, therefore, objects that come from different hue/value bands 

in the image. This process provides a way to extract more objects from an image than 

normal segmentation. The key element is that the bands’ values used for 

segmentation are a function of the image characteristics avoiding reliance on any 

hardcoded values. Since all these candidate objects are eventually recombined into a 

single list before they are passed to the classifier, the particular segmentation path 

taken by each object is not an issue. 

 

Figure 4. Comparison of the three colour signals in an RGB (Red, 

Green, Blue; the cube on the left) system with HSV (Hue, Saturation, 

Value; the cylinder) signals. Colour in HSV is a single signal, the value 

signal is a measure of darkness/brightness and saturation is the colour 

saturation. 
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3.3.3.3 Segmentation by Orientation Filtering with a “Rotating Bow tie” 

As is evident in Figure 5 objects of interest in an image can sometimes occlude each 

other. In these cases colour and value band segmentation fails to separate them. In 

order to combat this and to extract whole candidate objects, a method of separation 

by orientation has been included, called the rotating bow tie method. 

 

 

An image ‘pipeline’ is first used to extract the information of interest. A series of filters 

is thus applied to the original image in succession, each new filter processing the 

output of the previous filter. The image is transformed to greyscale (Figure 6), in 

order to remove the colour information (which is not needed for ‘rotating bow tie’). 

 

 

 

Figure 6. Scene showing the image after converting to grey scale. 

 

Figure 5. An original image before any processing has taken placed. 

 



28 

 

 

The image is then run through an orientation filter (similar to a Sobel operator 

template) that brings out groups of pixels with that particular orientation (Figure 7). 

 

The reason the algorithm is called a rotating bowtie is that each pass of the filter has 

a template of values in a pattern that resembles a bow tie. The current bow tie 

algorithm uses eight different filters each filtering a range of 22.5° thus accounting for 

the full range of 180° for object orientations. 

 

The greyscale image is then blurred by using a smoothing (Gaussian) filter to remove 

areas with high spatial frequency noise from one pixel to the next that may reduce the 

accuracy of the orientation extraction operation (Figure 8). 

 

A greyscale threshold is then applied passing those regions of the image whose 

brightness exceeds the threshold (Figure 9 left side). The image is still cluttered with 

many small regions where the threshold has been exceeded. Since we have a known 

viewing geometry and a known target set we can determine the smallest possible 

valid candidate object. All smaller objects are eliminated (Figure 9-right side). 

 

Figure 7. Scene showing the image when a horizontal orientation filter 

has been applied to Figure 6. 
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The regions that pass these filters can be used to extract other features from the 

original images such as colour, texture, average width and so on. The resultant binary 

image contains objects which can be retrieved for later computations in the classifier 

(the semantic processing stage when objects are identified by plant type). 

 

The result of these two segmentation techniques means that the initial segmentation 

algorithm is robust against illumination changes and also changes in colour of the 

objects of interest. The overall process is now summarized and the next step of 

classification will be described. 

 

Several new machine vision algorithms for weed detection and identification have 

been developed specifically for this project. Each image is passed through multiple 

signal processing pipelines (data flow paths indicated by a vertical column in Figure 

10). The functions applied in the pipelines are pixel-level operations, which means 

that the functions are being applied to every pixel in the image. The names of these 

Figure 9. The image after thresholding (left) and discarding small 

objects (right). 

 

Figure 8. Scene showing the image in Figure 7 after ‘smoothing’. 
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functions are included in (Figure 11) which shows a more detailed view of the three 

levels of processing for one of the pipelines. 

 

The signal level processing includes image conditioning functions such as the HSV 

histogram generation, thresholding, median filtering, canny (edge detection) and 

dilate and erode function which help to remove small variations in the candidate 

object shapes. Most of the bit-level functions are well-known by the machine vision 

and image processing communities and are available in the open literature. At the 

next level, the pixels (bits) of the image are replaced with a list of candidate objects 

which means that the amount of data required drops from millions of bytes to a few 

thousand bytes depending on the number of candidate objects detected. The first step 

is object segmentation which has been described in detail above. A list of edge points 

for the contour and a median line (called the object skeleton) are generated and used 

to support feature extraction. Features are extracted and added to each candidate 

object description by analyzing the portion of the original image corresponding to the 

boundary contour and skeleton. All these data are then passed to the next level of 

processing for object classification (identification of the object type). Currently we are 

working with two levels of classifier. The first is a non-parametric one to separate 

invalid objects (artefacts). The second is a classical principal components analysis 

(PCA) classifier in which the most important (i.e. distinguishing) features are used to 

associate sample objects with the nearest object model. Details of these two 

classifiers appear below. 
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Figure 10. Illustration of multiple signal processing pipelines applied to an 

image to isolate objects for segmentation and classification.  

The steps indicated are implemented at each stage to extract candidate objects 

from the image which include the plant types of interest. These objects from all 

pipelines are then combined before classification. 
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A simple non-parametric method based on set intersection has been implemented to 

eliminate artefacts. Figure 12 illustrates the process by showing the distribution of 

values over four of the features for black-grass and for the artefacts surrounding 

black-grass. For each feature we see that the means of the black-grass and the 

associated artefacts are similar. However due to the random nature of the artefact 

values it is very unlikely that all the features for a particular sample will be close to 

the mean values for black-grass. We can, therefore, set boundary values for each 

feature that will lead to an object passing the black-grass ‘test’, but which will lead to 

rejection of the artefacts for one or more of the features. In other words an artefact 

will be accepted as a candidate valid object for further processing only if it is in the 

membership set of all features. 

 

Many of the candidate objects are not valid objects but are artefacts of skeletonisation 

(a function of syntactic processing). The vast majority of these have features unlike 

any object of interest (e.g. they might be leaves and therefore not of interest in a 

wheat crop with black-grass at T3) and they can, therefore, be easily removed. 

Artefact removal is important to reduce the computational load on the subsequent 

pattern classification process. 

 

 

Figure 11. Details of functions for a single Image Processing Pipeline. 
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Figure 12. Feature values for black-grass and artefacts in a training set of 

objects. 

The x-axis is the object index. Symbols are black-grass (blue) and artefacts (pink). 

The figure is an example of the use set intersection to reject artefacts from further 

consideration in the classification process. Shaded areas are y-axis values 

containing valid candidate objects. 
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Figure 13 shows the output of two different signal processing pipelines. Each pipeline 

is processed separately to extract candidate objects for feature extraction. The 

determination of the object width feature along the skeleton is shown. 

 

 

 

The candidate object lists are passed to the next level of processing for object 

identification. At this stage the relative positions, orientations, similarity in colours and 

textures between neighbouring objects are used to support the determination of plant 

types. In this semantic processing level we are extracting meaning from the 

relationships between the syntactic elements. 

 

Both general and expert knowledge are needed to support the object identification 

process. Expert knowledge includes details about the physical characteristics of plants 

and the effects of a variety of environmental conditions on plant growth. The machine 

vision system has no innate understanding of the physical world. To achieve the best 

performance it is necessary to codify essential general knowledge into the process as 

well. A general knowledge rule base formulated for weed identification is therefore 

required, an excerpt from which is shown (Table 3). 

 

Figure 13. Two pipeline outputs with width feature detection shown in 

bottom right. 
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Such rules are used as the basis for the development of valid object detection and 

recognition functions by the algorithm developer. Although many of the rules of 

general knowledge seem obvious to the human observer, the machine vision system 

cannot make use of them without explicit implementation. For example the first-

principles rule "Light is from above" is used to predict that the top portions of plant 

leaves and seed heads will tend to have higher colour values (are brighter) than the 

bottom portions. A human observer automatically interprets this as an indication of 

the shape (e.g. convex rather than concave) but the machine vision system can make 

no such contextual assumptions. 

 

The exploitation of expert and general knowledge leads to the development of 

probabilistic models for each plant type. The presence or absence of any particular 

feature may not be essential to determine the species of a particular plant, but, based 

on a propensity of features a plant can be correctly classified with high probability. 

 

Table 3. Rules used in developing valid object detection in images after 

segmentation. The lists of numbers on the right indicate whether a rule 

is derived from other rules or is based on first-principles (1). 

Rule        Statement
1 First principles
2 Light is from above. 1
3 Plants grow toward light. 1
4 Gravity bends plants and plant parts downward. 1

5
Each plant type of interest, physical characteristics are well known and 
distinguishable. 1

6 Plant sizes of each type are relatively uniform. 1
7 Camera geometry is fixed and known. 1
8 Land base is relatively flat and horizontal. 1
9 Crop density relatively uniform. 1
10 Taller plants will have a generally higher value (brightness). 2

11 Light levels drop as perpendicular to surface points away from direction of light. 1

12
For a given material colour, there is a deterministic relationship between the 
hue saturation and value as a function of light level. 1

13 For black-grass heads, the object centroid will be on or below the skeleton. 4 5
14 Two objects cannot occupy the same space at the same time. 1

15
Co-located skeletons from separate processing pipelines represent the same 
object and should be combined. 14

16
A method for stitching together skeletons of black-grass heads is possible 
based on predictable changes in HSV with light level. 5 11 12

17 Object contours can be simplified based on known plant shapes. 5

18
Candidate objects with skeletons that fall within the contour of identified 
objects can be eliminated as redundant and/or artefacts. 14 17

Rule List
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Different plants may have similar physical characteristics, however the collected 

features of each plant make it distinguishable from others (at least for the plant 

species of interest in this study). If we think of each of the features extracted by the 

machine vision system as a dimension in a multi-dimensional feature space, then each 

plant can be placed at particular location in this feature space. The features of plants 

of the same species will tend to be located near each other in feature space. A feature 

space model can then be built for each plant type comprising the mean, μ, and 

covariance, Σ, of the feature sets of each sample, x. 

 

 

 

Having established a model for each plant type, it is then possible to determine the 

model with which a particular plant sample should be associated (if any). Some 

features of plants are more consistent than others, so the significance of the 

difference between the model and a particular sample depends on this level of 

uncertainty. We use the Mahalanobis distance (Duda et al., 2001), D, to place the 

appropriate significance on each dimension of feature space. 

 

 

 

where Σ-1 is the inverse of the covariance matrix of the model. The Mahalanobis 

distance from two different models can be computed to determine the relative 

distances. If a sample must be assigned to a model then we choose the smallest value 

of D. Alternatively, association with a particular model can be based on a maximum D 

beyond which a particular sample remains unassigned. 

 

For proof of concept, seven features were used for object identification as black-grass 

at T3 (Table 4). A few characteristics of the sample covariance table are worth noting. 

When two features are independent their corresponding covariance element will be 

close to zero. A number of the features are, however, highly correlated (Table 4). 

Hence, knowing one feature, the likely value of the correlated feature can be 

predicted, and so little new information is obtained by including both in the feature 

set. Also, the relative sizes of the variances (on the main diagonal of Table 4) vary 

greatly which means feature values must be normalised to ensure that the larger ones 

do not dominate and bias the classifier. 

( )( )txx μμ −−=∑

)()( 12 μμ −−= ∑ − xxD t
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Table 4. Covariance matrix of features used for identification of black-grass. 

A average hue
skeleton 
length

average 
width

contour 
area

 length of 
perimeter orientation

perimeter to 
bounding 
box area 
ratio

average hue 70.32 -214.41 -13.88 -3543.72 -444.34 -73.23 -0.01
skeleton length -214.41 4358.52 170.84 67274.90 9140.05 82.49 -2.35
average width -13.88 170.84 17.95 4397.28 380.06 16.30 0.10
contour area -3543.72 67274.90 4397.28 1500000 146057.00 2622.13 -7.65
length of perimeter -444.34 9140.05 380.06 146057.00 19311.50 127.83 -5.41
orientation -73.24 82.49 16.30 2622.13 127.83 1864.27 -0.84
perimeter to bounding 
box area ratio

-0.01 -2.34 0.09 -7.65 -5.40 -0.83 0.02

 

 

The issue of bias can be solved by using principal components analysis (PCA) to 

compute the eigenvalues and eigenvectors to normalize the object models. The 

eigenvalues for a highly diverse training set of images used to develop algorithms, are 

on the diagonal of the QR factorisation of the covariance (Table 5). Each eigenvalue is 

a linear combination of the features listed in Table 4. The values off the diagonal are 

residuals mainly due to rounding errors of the QR factorisation. Based on their relative 

magnitudes (the first three values along the diagonal in bold type comprise most of 

the variation), it may be inferred that classification of objects in images as black-grass 

will require no more than three principal components. 

 

Table 5. QR factorisation from principal components analysis of training set 

of images of isolated black-grass heads at wheat crop GS 59-71. Eigenvalues, 

in descending order of magnitude, are in bold type on the diagonal from top 

left to bottom right of the table. 

1518000 -7.81E-12 -2.93E-12 -5.03E-11 -4.34E-11 -1.18E-11 -9.08E-13
5.66E-27 6354.19 0 -9.15E-12 8.78E-13 5.30E-13 -1.45E-14
1.56E-33 8.95E-04 1859.14 -8.08E-13 1.24E-12 2.68E-13 1.72E-14
1.95E-55 -7.50E-24 3.73E-17 57.816 -1.53E-05 -1.55E-12 -1.85E-13
3.03E-63 3.12E-30 -1.50E-23 -1.53E-05 18.608 2.44E-08 9.82E-15

-7.99E-72 -5.49E-39 2.71E-32 5.03E-14 2.44E-08 3.973 1.49E-14
-1.86E-114 -2.54E-80 8.75E-74 8.81E-53 5.07E-47 -1.01E-37 0.010581
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3.3.4 Performance of System 

3.3.4.1 Ability to Capture Images from Moving Farm Machinery. 

Images captured at 9 and 14 km h-1 were sufficiently well-focussed for image 

analysis, while those captured at 20 km h-1 would be too blurred for analysis (Figure 

14). These images were, however, captured on a non-robust camera platform, and 

the use of a better damped system should give better images at higher speeds. 

 

3.3.4.2 Results of using Pipelines 

The hypothesis that fewer black-grass heads would be detected at high than at low 

densities was tested using the images as described in section 3.2.2.3. Quantitatively 

this is clearly true (Figure 15A), but, surprisingly, the proportional detection appeared 

to be independent of black-grass density (Figure 16), the slope of the regression line 

not differing significantly from zero. It should be noted, however, that every black-

grass head was detected in two images at a low density, shown as images with 100% 

detection in Figure 16. It should also be noted that at low densities greater variability 

in detection rate is expected due to the small numbers of heads present in a single 

image – sometimes only one or two – and so failure of detection has a very large 

effect in percentage terms. The absence of any false negatives is important from the 

point of view of the end-user. There are, however, significant numbers of false 

positives, and false positives were also recorded in three out of nine images 

containing no black-grass as indicated in the confusion matrix (Table 6).

Figure 14. Images captured at tractor speeds of 9, 14 and 20 km h-1 

(kph) using the Nikon D90 camera mounted on an extension piece 

attached to the roof of tractor cab (Figure 1A). 
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Figure 15. Correlation of black-grass head density in images as estimated by 

machine vision with actual density based on visual inspection of the image. 

Comparison in (A) is based on 35 images containing black-grass. There are no false 

negatives. False positives have been excluded in (A) and are included in (B). Key: 1:1 

relationship (⎯⎯⎯); objects classified as black-grass heads in 35 images containing 

black-grass (�); objects classified as black-grass heads in nine images not containing 

black-grass (  in (B) only). Regression lines in both (A) and (B) were fitted omitting 

the latter. 
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Table 6. (A) Confusion matrix for images indicating absence of false 

negatives but presence of some false positives. The classification of black-

grass heads in these images is shown in (B). 

A) Image counts 
Black-grass in 

image 

No black-grass 

in image 

Black-grass detected in image 35 3 (false positives) 

Black-grass not detected in 

image 
0 (false negatives) 6 

   
B) Head counts 

Actual black-

grass heads 
Not black-grass 

Objects classified as black-

grass 
244 171 

Black-grass heads not 

detected 
336 N/A 

 

Figure 16. Percentage detection of black-grass heads by machine vision in 35 

images in winter wheat crops at T3 at different actual black-grass head 

densities.  
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3.3.4.3 Demonstration of Detection at Low Density 

Images captured in Cambridge on 22 June 2009 (Figure 17 A-H) demonstrate that 

images containing only one (Figure 17B,H) or very few (Figure 17D,F) black-grass 

heads are correctly classified as containing black-grass even though in Figure 17D two 

heads were not classified. It is noteworthy that all the heads in Figure 17B,F,H were 

correctly classified. 

 

At very high densities of 1230 and 715 heads m2 represented by 43 and 25 black-

grass heads in Figure 18A and C, respectively, again there is no difficulty in detecting 

some of the heads. Failure to detect occurs partly due to background clutter and 

occlusion of black-grass heads by each other or by other objects in the image. For 

example, the clump of unclassified heads in the middle of Figure 18A is probably due 

to occlusion whereas at the edges of the images, a failure to classify may be due to 

clutter. There is, however, a significant number of objects in these images which are 

classified incorrectly and so these heads are false positives. Flowering (anthesis) did 

not affect detection (Figure 18), but very dark heads, which will have a low HSV value 

signal may not be classified as exemplified in Figure 19. 

 

Why are there false positives? The main reason for the false positives for black-grass 

detection is that a preliminary classifier is currently in use based on the average 

width, length and some basic shape and colour characteristics. However, this classifier 

does not have the full set of features necessary to reject candidate objects that are 

incompatible with expert or general knowledge rules about the physical characteristics 

of black-grass. For example, the introduction of a feature that took into account the 

variability of an object would probably reduce the number of false positives. 
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Figure 17. Detection of black-grass by machine vision at low densities. 

Original images (A,C,E,G) and the same (B,D,F,H) with black grass heads either 

correctly classified ( blue) or incorrectly not classified ( red). NB there are no 

false positives. 
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Figure 18. Detection of black-grass by machine vision at high densities. 

Original images (A,C) and the images (B,D) with black-grass heads either correctly 

classified ( blue) or incorrectly not classified ( red). White objects are false 

positives which were misclassified as black-grass. In A, the arrow points to a flowering 

head, which is classified correctly in B. 
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Figure 19. Detection of dark black-grass heads in the background of an 

image. 

Key: A) original image and the images (B) with objects correctly classified by the 

machine vision system as black-grass ( blue) or or else not classified ( red) or 

misclassified (white objects). 

 

 

3.3.5 Optimal Times for Weed Detection 

Times when identification is likely to be possible using an image capture / machine 

vision system such as that developed in this project are indicated for weeds likely to 

occur in patches and for which site specific weed control would be useful are listed in 

Table 7. Images have been captured for all the species listed (and others not listed) 

but algorithm development has focused on black-grass at wheat GS 59-71. The basis 

on which autumn-germinating seedlings of black-grass might be geo-located and 

classified as grass weeds would be in inter-rows before canopy closure as illustrated in 

Figure 3 given pixel size of 0.3 mm (section 3.3.1.3, pixel size specification). 

 



45 

 

Table 7. Optimal detection times for weeds in patches by the machine vision 

system developed in this project. Key: ; Detection and identification possible; ⌧ 

Detection and/or identification difficult for reason given. 

 

 

3.3.6 Objective 3: Demonstration of Concept of Weed Mapping based 

on Detection of Weeds in Geo-referenced Photographs. 

The technology and software required for this part of the project were largely 

developed for the previous weed-mapping project. In this report, therefore, it is only 

necessary to show that images captured using the machine vision system will be 

adequate for creation of weed maps. There are two parts to the question: 

1. Can we geo-reference weeds? 

2. Can we create a weed map from geo-referenced images? 

This project differs from others in one important respect, namely that the aim is to 

produce maps of weeds in one season so that farmers and agronomists have high 

quality information on which to base their control strategy in a following season. 

Although not required for this project and difficult to achieve in the short-timescale of 

this project, farmers and agronomists will be particularly interested in the answer to a 

third question:  

3. Are patches of uncontrolled weeds in one season correlated with infestations in 

the next? 
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Figure 20. Geo-referenced image locations plotted as point references on a 

Google Earth Satellite image of part of a field. 

Large green dots represent geo-location of images captured at T3 in June 2009. No 

wild-oats were present in these images. The small red and blue dots are geo-locations 

of images captured at harvest in August 2009 using a small plot combine (Figure 1D), 

the blue and red representing the presence or absence, respectively, of wild-oats in 

the images. The yellow quadrilaterals represent the boundaries of two manually-

mapped wild-oat patches immediately prior to harvest in August 2009. 

 

 

Superimposing image geo-locations on a Google map provides a reasonable visual 

correlation of GPS locations of weeds in images captured by machine vision with 

actual location in-field according to the Garmin handheld GPS receiver (
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Figure 20). Acknowledging that much more extensive validation is needed, the 

implication of this preliminary analysis is that an acceptable accuracy of geo-

referencing by machine vision is achievable. 

 

Given weed densities in images at known geo-locations, we have confirmed that data 

from the machine vision software in this project are compatible with and can be 

imported into Patchwork Office software and algorithms developed in the previous 

weed mapping project in order to create weed maps. Two examples to confirm the 

process are provided for proof of concept only (Figure 21). Interpolation can be used 

to estimate densities between image locations (Figure 21b) although interpolation 

would not necessarily be acceptable in a commercial version. 

 

Figure 21. Partial screen shots of maps of weed densities in arbitrary units a) 

at image geo-locations and b) interpolated over field. Maps created with 

arbitrary data for a field used in this project. Maps produced by Nick Walters of 

Patchwork Technology Ltd., using Patchwork Office software and algorithms developed 

in the previous weed mapping project. 

 

 

a) b) 
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Finally, were geo-referenced patches of uncontrolled weeds in one season correlated 

with infestations in the next? Again only a preliminary analysis is provided given the 

time-scale of the project. When images were captured at approximately identical geo-

references in wheat in June 2009 and in winter beans in December 2009, there is a 

good coincidence of locations where the images contained patches of uncontrolled, 

seed-producing black-grass heads in winter wheat at T3 in June 2009 with seedlings 

in winter beans in December 2009 (Figure 22) suggesting that mapping uncontrolled 

black-grass in one season could be a good indicator of a high likelihood of a black-

grass infestation in the following season. 
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Key:  

Blackgrass present in June 2009 

(heads ) and in December 2009 

(seedlings ) 

 

Blackgrass absent in June 2009 

Figure 22. Geo-referenced image 

locations of two field visits, 

Phillimore Farms, near Reading, 

showing parts of the same field 

where black-grass was A) present or 

B) absent with inflorescences at T3 

in wheat in June 2009 or as 

seedlings in winter beans in 

December 2009. Image capture 

locations are shown on a Google 

Earth satellite image. 

A 
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3.3.7 Discussion and Conclusions 

3.3.7.1 Overview 

The project has established the feasibility of the concept of automatically collecting 

images on farm machinery in the field, analyzing those images and implementing 

software sufficient to support the development of a prototype automatic weed 

mapping system. Images were of insufficient quality when captured at 20 km h-1, but 

images captured at slower speeds could be used for image processing. It is considered 

that this performance is fit for purpose as spraying should not be carried out at 20 

km h-1. 

 

3.3.7.2 System Hardware 

A preliminary image collection system was put together using a laptop computer, GPS 

receiver and high-end digital camera. Brackets and other attachment methods were 

used to fit the camera to existing farm vehicles to collect images. 

 

3.3.7.3 Image Collection 

Primarily, the field images analysed were for T3 and harvest of wheat. Samples of 

other images were collected at other growth stages and allowed deduction of optimal 

times for weed identification. Sufficient images were obtained to support image 

requirements analysis and for the development of algorithms and software for 

detection of black-grass in wheat. Preliminary analyses for wild-oats and barren 

brome and for seedlings of black-grass have not been included in this report apart 

from the use of the excessive green filter on black-grass seedlings (Figure 3). 

 

3.3.7.4 Image Analysis 

The analysis of field images concentrated on issues of resolution, geometry, frame 

rate, platform motion and field coverage. As a result of this effort the baseline 

parameters for a prototype image collection system have been established and are 

reported above. We established a functional relationship between a camera CCD size, 

lens field of view and the minimum object feature size necessary to support object 

detection and classification functions. 

 



51 

 

3.3.7.5 Algorithm Definition and Design 

We determined a methodology for image processing that successfully segments, 

detects and classifies black-grass (and wheat) plants in complex environments. This 

methodology uses a series of bit-level operations on the entire image to separate 

objects and regions of interest from the background clutter. It reduces the bitmap 

images to a list of features and syntactic elements that define candidate objects’ 

shape and location in the image. These syntactic elements include a skeleton following 

the main axis of the object and a contour that defines its border. A preliminary 

classifier has been developed that can differentiate black-grass from the background 

clutter with a consistently high probability (Figure 16) so that false negatives can be 

avoided (Table 6). The research needed to reduce the numbers of false positives will 

be described later. 

 

Existing software from Patchwork Technology for the generation of a weed map from 

geotagged images was evaluated to show that our weed detection software was 

compatible with the mapping software (Figure 21). 

 

3.3.7.6 Software Development 

The algorithms described have been implemented and tested on a desktop computer. 

The emphasis in the project has been to establish functional performance of the 

detection and identification algorithms and to determine the computational loads 

anticipated for large-scale processing. 

 

3.3.8 Research needed to bring to a Pre-commercial System 

3.3.8.1 Overview 

An important objective in applying for a follow-on project would be to develop and 

test a pre-commercial prototype weed mapping system, which could be rapidly taken 

into production. Many of the elements of the system that have been tested as a proof 

of concept could be integrated into a prototype design. 

 

3.3.8.2 System Hardware 

The prototype system will need to be enclosed in an attachable housing and may 

provide its own power if necessary. A major goal will be to resolve manufacturing 

methods and technology (MM&T) to support a commercial version of the system. 
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Prototype Image Capture System. During the current project important lessons 

were learned about the necessary camera resolution, required image collection and 

storage rates, and system field-of-regard coverage. The emphasis in future research 

can be on the transition from a research project to a practical system to support 

commercial agriculture. 

 

Automated Machine Vision Processing and Archival. A major task for future work 

will be to implement a database management system (DBMS) to store and manage 

weed maps. This DBMS needs to interface with the machine vision software with a 

goal of automating the process as much as possible. As part of this automation 

process a means of monitoring the performance through visual inspection of selected 

images should be provided. Also the software should be able to tag for human 

evaluation any images for which computed classification probabilities are low. In other 

words if the machine vision system is experiencing unexpected behaviour (number, 

size or shape of candidate objects or out of normal range features) it will be able to 

tag and set aside those images for review by the farmer or agronomist. 

 

Universal Mounting and Alignment Technique. Another important task for 

commercial development will be to establish a mechanism for attaching and aligning 

the image capture system to the various types of farm vehicles that will carry it. This 

issue is related to our ability to geo-locate objects in the images. In order to perform 

this function, it is essential to know and control the orientation of the image capture 

system with respect to the carrier platform. One technique under consideration is to 

have quick-release mounting brackets permanently attached to each farm vehicle so 

that when the image capture system is re-attached no additional calibration of 

alignment is required. 

 

3.3.8.3 Image Collection and Analysis 

Images need to be collected from a much wider range of environments and in 

different seasons to fill in the gaps for some growth stages (especially T2) and a wider 

range of weed species and in different crops.  
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Alternative Image Collection Methods. Now that the feasibility of machine 

detection and classification of weeds in field images has been demonstrated for high 

resolution images, it is important to determine the most cost-effective means of 

collecting and storing images of sufficient quality to support the machine vision 

system. One alternative of particular interest is the use of high-resolution progressive 

scan digital video cameras. The higher frame rates, shorter integration times and 

larger storage capacities make these cameras an attractive alternative to single frame 

SLR cameras such as the D90. An issue to be resolved is, whether video images can 

be extracted from the stream and whether these frames can be time-referenced to a 

GPS data stream with sufficient accuracy to achieve a geo-positioning precision 

sufficient to support weed mapping. 

 

Image Analysis. Most of the necessary image analysis for black-grass in wheat at T3 

has been completed in this project. Similar studies are required for other weed and 

crop types, as well as other growth stages. 

 

3.3.8.4 Data Correlation Studies 

One of the fundamental assumptions of this weed mapping study is that weed patches 

of the target species persist over several growing seasons. In follow-on research, this 

property should be exploited to refine the weed map knowledge base for the fields 

monitored over several years. During planting or possibly at harvest, regions of the 

field infested with weeds will be covered with newly emerging weed plants. The 

specific type of weed may be very difficult or impossible to determine for these 

images. Since this project has demonstrated that it is possible to identify black-grass 

and other weed types growing in wheat, it will be useful in future research to evaluate 

correlation of weed data extracted from image sets collected at different times during 

the growing season. We postulate that such data correlation will achieve a higher 

probability of weed type identification and more precisely defined weed patch 

boundaries. For this reason, temporal correlation studies are an important topic 

further research in order to improve the confidence of farmers in the system. 

 

It is also important to demonstrate that patches associated with failure of control in 

one season are correlated with seedling emergence in the next. A preliminary 

examination of the season-to-season correlation was shown in section 3.3.5. 
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3.3.8.5 Adaptive Probability Detection 

The ability to detect grass weeds in grain fields is a challenging task. Any methods 

that increase the probability of detection, decrease the number of false negative or 

false positive errors, or that reduce the computational load should be seriously 

considered. In fields in which it has been established that weed patches have been 

present in previous years, there is the opportunity to implement an adaptive 

probability detection model that can take into account the a priori probability of the 

presence of weeds as a function of geo-location. 

 

Local Adaptive Histograms. A couple of shortcomings of the segmentation 

algorithms that have been developed were noted. Some black-grass heads located in 

the background of an image have a lower HSV value signal compared with the 

majority of black-grass heads in an image. This low value signal causes such heads to 

be lost in segmentation using HSV value bands. The second issue is where the HSV 

hue and value signals in areas of an image immediately adjacent to a black-grass 

head are similar to the HSV signal of the black-grass. Such a head then becomes part 

of the image ‘background’ and so is eliminated during segmentation. 

 

Similar problems occur in medical applications such as bone fracture detection or 

analysis of electron micrographs. Techniques like Local Histogram Equalisation have 

been applied to mitigate the problem in medicine. The processing maximises the 

difference in intensity in a small areas of an image rather than throughout the image 

as applied in normal equalisation algorithms. The algorithm proposed is the Contrast 

Limited Adaptive Histogram Equalization (CLAHE) (Saalfeld, 2009), as this technique 

may make it possible to increase the number of less conspicuous heads that are 

segmented and classified. 

 

3.3.8.6 Algorithm Definition and Design 

Future research needs to emphasise the development and improvement of object 

classifiers (both parametric e.g. PCA, Mahalanobis distance and non-parametric e.g. 

the Set-Intersection Method). Semantic methods for identification of weed types will 

be used in which general and expert knowledge is used to analyze the relative 

locations and distributions of the candidate objects. These methods will help improve 

object identification and clutter rejection, and also reduce processing loads. 
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Pipelines and Classifiers for Plant Types. In this project our emphasis was on 

black-grass in wheat, with most algorithm development devoted to T3. While image 

capture and algorithm development has been carried out for other growth stages and 

other weed species, additional work is still needed to generate a fully-functional 

classification system for these growth stages and weeds and so results are not 

presented in this report. The proven machine vision concept demonstrated for black-

grass in wheat at T3 can, however, and indeed should be extended to a broader range 

of weed species. 

 

Expert and General Knowledge Rule Base. An ad hoc set of rules for algorithm 

design was used to support the development of object detection and classification 

algorithms. In future research, the opportunity should be taken to formalize and 

codify an expert knowledge rule base with a comprehensive set of physical 

characteristics for each species that could be detected by the cameras. In addition the 

general knowledge rule base should be extended and validated to ensure that all 

available contextual information is being exploited and that no erroneous or 

misleading assumptions are included. These rule bases will support the algorithm 

refinement process for the machine vision system. 

 

3.3.8.7 Software Development 

Research is needed to increase the processing speed and automation of the overall 

weed mapping process. Specific tasks will include (1) the automatic processing of 

multiple field images in a single program execution; (2) the automatic categorization 

of weed map data into a database management system; (3) the development of 

visualization tools to display and evaluate weed maps at various image scales. 

 

3.3.8.8 Geo-Referenced Object Location 

Another important task will be to implement and demonstrate software for the 

determination of the absolute position of weeds and other plants in images. The issue 

is that a particular plant in an image taken at a specific time is in a position different 

from the position of the GPS receiver. The solution to this problem is one of applying 

the proper geometric transformations to each image position based on the carrier 

platform’s position and direction of motion (heading) at the time the image was 

captured. The feasibility of this process has been demonstrated in this project, but a 
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study is needed to determine the precision of the method and, if necessary, improve 

its performance through multiple sample averaging or image stitching techniques. 

 

3.3.8.9 Other applications 

It will be obvious that there are broader applications of the weed mapping system 

than weed control. Extension to other weeds, which perhaps occur more randomly in 

fields and tend not to form patches, would be useful especially where they are either 

rare or of proven biodiversity value (Wilson et al., 1999; Gibbons et al., 2006). In 

such cases, the decision might be to leave small patches of such weeds untreated in 

order to preserve or enhance the biodiversity value of the field. 

 

The image analysis system not only identifies weeds, but also crops so that the two 

can be distinguished. Applications for crop management can also be envisaged if maps 

of, for example, crop plant populations or ear density were generated. 
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Figure 23. System concept of precision weed control based on weed 

mapping in the first season and control in the next. 

In practice, mapping may continue in the second and subsequent seasons 

to update the weed map and improve its accuracy. The system aims to 

automate the drudgery of weed mapping but expert, local knowledge from 

agronomists and farmers is indispensable, especially as highlighted. 
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3.3.9 Conclusion 

Scope for implementing site specific weed control is therefore considerable and the 

system proposed in section 3.7 is at the leading edge of technology for offline image 

processing. The difficult task of identifying weeds at late crop growth stages has been 

achieved for the first time ever as far as we are aware. 

 

The possibility therefore exists of a system which both utilises the expert knowledge 

of farmers and agronomists of the problem weeds in their fields (Figure 23) and then 

informs them of the precise locations of patches of these weeds and of where 

problems of infestations may arise in future seasons. They may then use these weed 

maps to produce treatment maps (Figure 23) capable of controlling variable rate 

sprayers, which will not only control weeds at lower cost and with lower herbicide 

inputs, but also, by mapping late in the season, will alert them to areas where weed 

control has failed and there is perhaps potential development of herbicide resistance. 

 

3.3.9.1 Key Take-Home Messages for HGCA Levy Payers 

The concept of automated mapping of uncontrolled black-grass in winter wheat has 

been proven in principle and should be developed both as an aid to site specific weed 

management and detection of potential herbicide resistance. 

 

Funding is, however, required to make the system of use to levy-payers. Specifically 

research is needed as follows:  

• Algorithm development to ensure algorithms are adaptive to different 

conditions found in UK and in different seasons, in different crops, to different 

weed species and at different crop and weed growth stages; 

• Software development to link maps created at different times in order to 

improve confidence of users in the maps and to confirm inter-seasonal 

correlations of infestations on a field scale; 

• Application testing in the field combined with economic analysis; and 

• Development of a pre-commercial system as in Figure 23 capable of scanning 

whole fields as an integrated, cab-mounted system unit including portable 

camera(s), GPS receiver and single board computer. 
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