
December 2016 

Project Report No. 565 

Exploiting yield maps and soil management zones

Shibu Muhammed1, Alice Milne1, Ben Marchant2, Simon Griffin3 and Andrew Whitmore1 

1 Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK 

2 British Geological Survey, Keyworth, Nottingham NG12 5GG, UK 

3 SOYL Precision Farming, Newbury, RG14 5PX 

This is the final report of an 18 month project (RD-2012-3875) which started in January 2013 and 
was carried out part-time over three years. The work was funded by a contract for £202,308 from 
AHDB Cereals & Oilseeds and an in-kind contribution of £4,200 from SOYL. 

While the Agriculture and Horticulture Development Board seeks to ensure that the information contained within this document is accurate 

at the time of printing, no warranty is given in respect thereof and, to the maximum extent permitted by law, the Agriculture and Horticulture 

Development Board accepts no liability for loss, damage or injury howsoever caused (including that caused by negligence) or suffered 

directly or indirectly in relation to information and opinions contained in or omitted from this document. 

Reference herein to trade names and proprietary products without stating that they are protected does not imply that they may be regarded 

as unprotected and thus free for general use. No endorsement of named products is intended, nor is any criticism implied of other 

alternative, but unnamed, products. 

AHDB Cereals & Oilseeds is a part of the Agriculture and Horticulture Development Board (AHDB). 



 

 

 

 

 

 

  



 

CONTENTS  

1.  ABSTRACT ......................................................................................................................... 6 

2.  INTRODUCTION ................................................................................................................. 6 

3.  METHODS ........................................................................................................................... 9 

3.1.  Protocols for reliable yield maps .......................................................................... 9 

3.2.  Delineating management zones ......................................................................... 18 

3.2.1.  Smoothed fuzzy k-means cluster analysis ...................................................... 19 

3.3.  Compare the merits of managing soil nutrients at different scales ................ 21 

3.3.1.  Modelling phosphorus in soil ........................................................................... 22 

3.3.2.  Modelling yield and quantifying its spatial variation ........................................ 24 

3.3.3.  Yield response model ...................................................................................... 24 

3.3.4.  Management scales ........................................................................................ 26 

3.3.5.  Using metrics of variation to guide sampling strategies .................................. 26 

3.4.  Assess the extent to which yield maps can be used to manage soil variation 

at the scale of soil management zones ......................................................................... 27 

3.4.1.  Potential for Variable Rate Management based on Lark et al. (2003) ............ 27 

3.4.1.1 Variance ratio (VR) ................................................................................................ 29 

3.4.1.2 The normalized classification entropy (NCE) ......................................................... 30 

3.4.1.3 Standard deviation (SD) ........................................................................................ 30 

3.4.2.  Opportunity index (Yiሻ ..................................................................................... 30 

3.4.3.  Variable Rate Management Score .................................................................. 31 

4.  RESULTS .......................................................................................................................... 32 

4.1.  Comparison of yield cleaning software ............................................................. 32 

4.2.  Delineating management zones to understand the causes of yield variation 40 

4.2.1.  Field-BD .......................................................................................................... 41 

4.2.2 Field-BF .................................................................................................................... 45 

4.2.3 Field-CC .................................................................................................................... 50 

4.2.4 Field-CP .................................................................................................................... 55 

4.2.5 Field-ER .................................................................................................................... 59 

4.2.6 Field-EL .................................................................................................................... 63 



 

4.2.7 Field-HM ................................................................................................................... 67 

4.2.8 Field-HS .................................................................................................................... 70 

4.2.9 Field-LM .................................................................................................................... 74 

4.2.10 Field-PA .................................................................................................................. 78 

4.2.11 Field-TK .................................................................................................................. 81 

4.3.  Compare measuring soil nutrients by different sampling methods ............... 83 

4.3.1. Comparison of P estimated by the sampling schemes ............................................ 83 

4.3.2. Assessing the extent to which yield maps can be used to predict the most 

appropriate sampling scheme ......................................................................... 84 

4.4.  Usefulness of yield maps to manage soil variation at the scale of soil 

management zones ......................................................................................................... 89 

4.4.1.  Potential for variable rate (PVRM) based on Lark et al. (2003) ...................... 89 

4.4.2.  Opportunity index (Yi) ...................................................................................... 90 

4.4.1.  Variable Rate Management Score .................................................................. 93 

5.  DISCUSSION .................................................................................................................... 94 

5.1 Comparison of yield cleaning software ................................................................... 94 

5.2  Delineating management zones to understand the causes of yield variation 95 

5.3  Compare measuring soil nutrients by different sampling methods ............... 96 

5.4  Usefulness of yield maps to manage soil variation at the scale of soil 

management zones ......................................................................................................... 97 

6.  CONCLUSIONS ................................................................................................................ 98 

6.1.  Guidance for farmers ......................................................................................... 100 

6.2.  Future research and knowledge transfer ......................................................... 101 

6.2.1.  Integrating farmer’s knowledge with hard data to inform management 

zones. ............................................................................................................ 101 

6.2.2.  Validation of soil management zones by the yield determining factors at 

field ................................................................................................................ 101 

6.2.3.  Investigate new methods of sampling ........................................................... 101 

6.2.4.  Developing an integrated model that farmers can use .................................. 101 

7.  REFERENCES ................................................................................................................ 102 

8.  APPENDICES ................................................................................................................. 104 



 

8.1.  Description of variogram ................................................................................... 104 

8.2.  Mathematical symbols and abbreviations used. ............................................. 106 

8.3.  Summary statistics for P in each field according to zone and the probability 

that the observed variation in P was explained by the classifications. ................... 107 

8.4.  Parameters of different variograms models for various fields. ..................... 108 

8.5.  Opportunity index (Yi) and its components for different years for different 

fields. 110 

 



6 

1. Abstract 

Combine harvesters often have yield monitors fitted as standard, and many farmers use them to 

create yield maps for their fields. These maps contain important information about the spatial and 

temporal variation of fields. Understanding the variation of a field helps the farmer to make more 

informed management decisions on how he or she might vary inputs such as fertilizer. The objectives 

of this project were to establish robust and accessible protocols for the production of reliable yield 

maps from yield monitor data and create management zones, compare the merits of measuring soil 

nutrients (a) at the field scale, (b) using management zones and (c) using grids, and to assess the 

extent to which yield maps can be used to inform the management of soil variation. In the first 

instance, we reviewed some of the existing software available for cleaning the yield maps and 

evaluated those including the one we have developed (ROTH-YE). A novel statistical method 

developed to filter the values associated with flow delay was included in the ROTH-YE software. 

ROTH-YE performed as well or better than any of the other yield cleaning software we have 

compared in this study. We then went on to use the cleaned monitor data to create management 

zones using a spatially smoothed version of a fuzzy k-means classification. This method identifies 

areas of the field that vary similarly to one another across seasons. In practice, identifying these 

zones is useful for the farmer as it highlights and quantifies differences in yield that should be 

explored further.  

 

Farmers sample their fields periodically to assess the nutrient concentration and pH to formulate the 

fertilizer application rates to the crop. We compared the cost effectiveness of three soil sampling 

schemes: field-based, management zone-based and grid-based. The advantages of using grid- and 

zone-based sampling strategies over field-based ones varied from field to field in our study, although 

for most of the fields grid-based sampling performed better than zone-based sampling. We found 

that the spatial variation of the yield monitor data (quantified by estimating a variogram) could be 

used to predict which sampling scheme was likely to be most profitable. We also explored the use 

of metrics derived from the variogram to help farmers to decide on whether to use uniform or variable 

rate management within a given field. We reviewed two methods from the literature and, based on 

our findings, proposed a new method for farmers to rank their fields for the potential for variable 

management based on these metrics.  

 

 

2. Introduction 

Yield mapping on British arable farms has been possible since the early 1990s, and coupled systems 

of yield monitors and global positioning systems are now routinely fitted on many makes of combine 

harvester.  This means that farmers are gathering a plethora of data on the variation of yields within 

their fields and because this variation often results from variation in soil properties, it holds valuable 
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information that could inform site-specific management. However, the raw data collected from 

farmers’ combine harvesters in the form of yield maps consists of complex signals and there are 

several difficulties associated with the generation and interpretation of these maps. Firstly, yield 

monitor data are often noisy and contain artefacts with various systematic and random sources of 

variation (Stafford et al., 1996; Arslan and Colvin, 2002). These include naturally occurring yield 

variation due to climate and soil–landscape features, management-induced yield variation, and 

measurement errors caused by the yield-monitoring process itself (Simbahan et al., 2004). To be of 

use it is important, as far as possible, to remove the erroneous measurements without losing the 

true variation in the observed yield. A proper understanding of the true variation in the field helps the 

farmer to decide on a uniform or variable rate management within the field. For a variable rate 

management, farmers may wish to manage their land by dividing their fields into management zones 

according to the inherent fertility of the soil or actual crop performance over several years. They can 

then adjust the amount of fertilizer or other agricultural inputs applied to each management zone in 

accordance with each zone’s potential to yield. Several properties of the soil or observations of yield 

are likely to contribute to a farmer's judgement and to the division of his fields into management 

zones, and many methods have been proposed for this purpose (Milne et al., 2012). In dividing large 

fields into smaller zones for precise management we take into account several factors that a farmer 

would want to consider: 

a) Each individual zone should be sufficiently homogeneous that the farmer could treat it as 

uniform 

b) Each zone should be substantially less variable than the field as a whole; 

c) Each zone should be large enough for the farmer to manage separately from the others; 

d) Each zone should be spatially coherent and have smooth boundaries. 

 

Algorithms to identify these factors are not necessarily compatible. In particular, spatial coherence 

and the demand for smooth boundaries might mean that the zones are more variable than they 

would be if they were allowed to be more fragmented with intricate boundaries, and large zones are 

likely to be more variable than small ones. So, delineating zones for management almost inevitably 

requires compromise. Mathematical algorithms exist that use yield monitor data covering several 

seasons and other sensor data to select management zones within which the yield is fairly constant 

for each individual season. Many approaches simply partition the field into areas that constantly yield 

better than average, consistently poorer than average or lie somewhere between. Such strategies 

are based on the assumption that permanent characteristics of soil always lead to the same 

behaviour in each year (Blackmore et al., 2003). Perhaps, the average yield for a particular zone 

might fluctuate between seasons depending on weather, management and variation in the factors 

that limit yield. Therefore, if one wants to understand the observed variation in the field, algorithms 

based on understanding of the processes that account for both within field and year to year variation 

and quantify both are arguably better.   
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Once management zones have been identified, a farmer is faced with the questions: 

(i) what is causing the differences between the zones? and 

(ii) are these differences large enough to consider variable rate management? 

 

Often the reason for the variation between zones will be obvious to the farmer. For example, he or 

she will know if a particular part of the field is prone to drought, and that the effect of this is causing 

the observed variation in yield between the zones. In other cases, the reason might not be clear, and 

the farmer might wish to sample the soil to see if there is some nutrient deficiency or some local 

problem with the pH of the soil.  

 

Generally, fertilizer application rates (uniform or variable) are decided based on soil sampling results. 

It is well accepted that the average soil nutrient concentration within a reasonably uniform area can 

be established by measuring at 10-15 locations on a ‘W’ design across the area. Marchant (2012) 

confirmed that this sampling strategy was adequate for uniform fertilizer applications. However, it is 

not clear how a farmer should establish when the nutrient concentration within a field is sufficiently 

uniform to follow this strategy or whether it would be better to divide to field into smaller management 

zones or even to vary nutrient inputs at the finest scale permitted by the fertilizer spreader. If the 

fertilizer inputs are to vary on a fine scale then continuous maps of soil nutrient concentrations on 

an equally fine scale are required. These could be produced by grid-based sampling of the field. 

There is no general consensus about whether grid-based sampling should be used or whether 

sampling should be based on management zones. The best approach will vary from field to field. 

We have investigated the plausibility of using the variation within yield maps to give some indication 

of which of the sampling strategies is most appropriate. 

 

Understanding the variation on production constraints in the field leads the farmer to decide on 

whether uniform or variable rate management is appropriate in his field. In the latter situation, the 

farmer will vary the inputs (seeds, fertilizer, pesticides, etc.) across each field. Yield monitor data can 

be used as a proxy for variation in the field and it has been proposed that it could be used to make 

a decision on whether variable rate management is likely to be cost effective. Lark et al. (2003) 

describes a methodology for allocating rankings for the ‘potential for variable rate management’ 

based on the variation captured in yield monitor data. Similarly, de Oliveira (2009) presents a method 

for calculating an ‘opportunity index’ that scores the ‘opportunity’ for variable rate management. This 

is based on the variation in yield monitor data and characteristics of the machinery used to apply 

variable rate inputs. We investigated these methods using a number of case studies to see whether 

they could be of potential value to UK farmers. 
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Here we explore the usefulness of yield monitor data to understand both spatial and temporal yield 

variation and act accordingly. The specific objectives include  

 

I. To establish robust and accessible protocols for the production of reliable yield maps from 

yield monitor data 

II. To devise protocols for the robust and efficient implementation of management zones 

III. To compare the merits of measuring soil nutrients (a) at the field scale, (b) using management 

zones and (c) using grids. Determine the situations in which each is appropriate. 

IV. To assess the extent to which yield maps can be used to inform the management of soil 

variation within fields. 

 

 

3. Methods 

We collated yield and soil information from fields from a number of arable farms in the UK. The 

precision agriculture company, SOYL, provided most of the data we used. These data comprised 

sets of yield monitor data from fields in the UK dating back to 2000 for different crops (winter wheat, 

oil seed rape and spring barley). The yield-monitor files contained measurements of latitude, 

longitude, yield (Mg ha−1), time stamps of when the measurements were made (s), the speed of the 

combine (km h−1), GPS satellite information, the date, moisture content of the grain (%), cut height 

(m), working width or swath (m), partial working width, a calibration factor (correction value for too 

little or too much weight), a code that defines the crop being harvested, engine revolutions, angle of 

roll, angle of pitch and harvesting rate (Mg h−1). Some monitor files did not include all of this 

information. For some fields, we also had measurements of nutrient concentrations (P, K, and Mg) 

and pH recorded on 100-m grids at five-yearly intervals and other sensor measurements such as 

electrical conductivity.  

 

3.1. Protocols for reliable yield maps 

We reviewed the current literature to identify methods designed to remove artefacts from yield 

monitor data. Of the methods found, programs were available from Sudduth and Drummond (2007) 

(Yield Editor), Sun et al. (2013) and the Auto−N project (Kindred et al., 2015). These were tested on 

the yield-monitor files that we had collated and are described below. 

 

One of the most common sources of error in yield-monitor data is caused by the delay between the 

crop entering the harvester and its flow (which is used to estimate local yield) being recorded by the 

sensor and is called flow delay. In a commercial combine harvester, the flow delay can be of around 

15-20 seconds (Searey, 1989). Some commercially available yield monitors automatically achieve 

correction for flow delay by applying a time-shift to the data that is specified by either the user or the 
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combine harvester manufacturer. However, the use of such a time-shift is generally not recorded in 

yield monitor files and even when we know that one has been applied, we cannot be sure it was of 

the appropriate number of seconds. Therefore, we require a method to examine the yield data for 

evidence of artefacts due to the flow delay and then to correct the data if necessary. 

 

The use of sub-optimal procedures can make a substantial difference to the yield maps produced 

and hence to the management decisions inferred from them (Griffin, 2010).  Therefore we also 

developed our own program, which we called Roth-YE, for cleaning yield monitor data which 

included many of the standard filters used in other programs, and a novel flow delay filter which was 

used to estimate the true delay.  We now briefly describe each of the programs we obtained from 

the literature search and compare them.  

 

Yield Editor  

Yield Editor was developed by Sudduth and Drummond (2007) to simplify the process of applying 

the filtering techniques for yield monitor data outlier detection and removal. The software allows the 

user to visualise the yield data in the form of a map. It includes twelve filters, which are listed in Table 

3.1.1. The filters are based on extensive literature review by the authors and their own experiences.  

 

The user may choose which of the filters to apply, and these are then applied in a stepwise manner 

to remove the erroneous data. The first filter is a grain-flow-delay filter which adjusts the position of 

the data to account for the time it takes for the grain to travel from the header to the yield monitor. 

The value of the delay is set by the user based on visual inspection of the yield map. Similarly, start 

of pass and end of pass delay filters are set by the user based on visual inspection. Thresholds for 

minimum and maximum combine speeds may be defined by the user, as can minimum and 

maximum yield values. There is a filter to eliminate yield measurements taken where rapid changes 

of velocity have occurred. This again is set by the user but an example of a ratio of 0.2 is given in 

the paper (Sudduth and Drummond, 2007). If the combine operator can record the swath width 

changes during harvest, then that too can be used as a filter. Yield measurements associated with 

widths below a user-set threshold are then removed. Sudduth and Drummond (2007) also included 

a filter to remove yield measurements that lay outside of a given number of standard deviations from 

the mean. This is arguably one of the most commonly used filter in yield-monitor cleaning protocols 

and its values are 2 to 3 standard deviations from the mean. In Yield Editor, the authors suggest to 

choose the standard deviation by systematically changing the value to remove the outliers without 

removing the values that appeared to be part of the true variation in the yield. Users can also remove 

points that lie outside of a defined boundary and remove individual points or areas manually.   

 

The input file to the Yield Editor program must include: latitude and longitude information (which is 

converted to Easting (m) and Northing (m) by the program), flow or harvest rate (lb sec−1), logging 
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interval (sec), distance (inches), swath (inches) and pass number. Yield monitor data collected on 

from UK harvesters may not record all of the necessary information and typically yield is recorded in 

Mg ha−1 rather than as a flow rate and metric units might be used over imperial. Therefore we needed 

to convert the yield monitor data before it could be used in the input file. For example, distance 

travelled by the harvester between each time stamp interval was calculated from the observed speed 

(km h−1) values by multiplying them by the logging interval (s)   

 

Distance	ሺmሻ 	ൌ 	
1000
3600

	x	speed	ሺkm	haିଵሻ	x	logging	interval	ሺsሻ	

 

Harvest rate was estimated from the yield data (Mg ha⁻1) by using data on swath (assumed a 

standard width of 8.89 m), distance  travelled (m) and the logging interval. 

 

Harvest	rate	ሺkg	sିଵሻ 	ൌ 	
1000	Yield	ሺMg	haିଵሻ	x	swath	ሺmሻ	x	distance	ሺmሻ	

logging	interval	ሺsሻ	
 

  

Harvest rate (kg s⁻1) is converted to lb s⁻1 by multiplying with 2.205. 

 

Pass number is another variable that may need to be calculated if it is not directly available from the 

harvester. Pass number is the number of passes (or transects) made by the harvester during the 

course of harvesting a field. Usually, it is calculated by the yield monitor software by counting the 

number of times the header has been raised during its course of travel. Since the header status was 

not available in our monitor files, we estimated the pass number by assuming a new pass was started 

when the harvester turned by more than 90°. 
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Table 3.1.1 The filters used by Yield Editor, Sun et al. (2013) , Auto−N and Roth-YE programs for 

cleaning monitor data. 

 

Filters Yield Editor Sun et al. 

(2013) 

Auto-N 

method 

ROTH-YE 

Flow delay     

Moisture correction     

Start pass delay     

End pass delay     

Max velocity      

Min velocity      

Smooth velocity      

Minimum swath      

Maximum yield      

Minimum yield      

Distance between rows     

Distance between points     

Direction change     

Positional outliers     

Manual selection of points     

Standard deviation: Remove 

points n standard deviations 

from the mean 

    

 

 

Sun et al. (2013) program 

Sun et al (2013) report on an integrated framework for yield data cleaning and estimating an 

‘opportunity index’ for site specific management which provides farmers with the means to assess 

whether the observed variation in yield warrants further investigation. Here we focus on the yield 

data cleaning software. The software requires yield measured as mass per area or data on mass 

flow, distance travelled, harvest width, grain moisture to calculate yield as mass per area. The 

longitude and latitude of these measurements are also required. The order of the variables in the 

input file can be specified by the user as can the units of measurement.  
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The longitude and latitude are converted to Easting and Northing using the Universal Transverse 

Mercator projection. Yield values are discarded above upper and lower thresholds that can be set 

by the user. The default values are given as 0.1 and 10 t ha−1. By default, the program assumes that 

the upper and lower limits of the yield are ±2.5 standard deviations from the mean, although this 

parameter may be adjusted by the user. Values that lie outside of this range are marked for deletion. 

To remove the local extremes in the yield data, a local application of the standard deviation filter is 

included. A local neighbourhood with a search radius of 25m is identified at the nodes of 5 m grid 

across the field. Yield values that lie outside the thresholds are marked for deletion. They are then 

removed when the whole filtering process is completed. The program removes points where the 

distance between two successive measurements on a transect is smaller than a defined limit. This 

accounts for situations where the combine harvester is moving too quickly. It also removes points 

where the distance between neighbouring passes is too small. This accounts for the situation where 

the combine harvester cuts over an area that has been cut in a previous pass. Here, of the two 

passes, the points cut second are removed as these will have erroneous yields estimates.  

 

Auto−N  

The Auto−N program was developed in Excel for cleaning the yield monitor data used in the Auto−N 

project (Kindred et al., 2015). The yields are converted to a yield with standard moisture content 

(15% for wheat) before cleaning. Yield values are screened based on the speed of the combine. The 

program then uses some of the standard filters described above (see Table 3.1.1). Yield values 

associated with speeds less than 0.6 m s−1 or greater than 2.2 m s−1 are marked for deletion. In 

addition there is a filter for removing the yield data measured at the field margins where 

measurements are likely to be erroneous or unrepresentative. The filter works by detecting changes 

in direction of the combine harvester with the assumption that this will happen at the field margins. 

Three co-ordinates are used to estimate the direction of movement of the combine harvester. If the 

absolute change in direction from consecutive estimates of direction is greater than 0.6 radians 

corresponding values of yield are marked for deletion. Yield values that lie outside the mean ±3 times 

the standard deviation of the total population are also marked for deletion. 
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ROTH-YE program 

 

  

Figure 3.1.1 ROTH-YE program showing the different filters that can be applied and a cleaned yield 

map.  

 

The Roth YE program uses the same filters as the Auto−N program but with additional filters for 

maximum yield, the distance between passes, positional outliers and a flow delay filter (Table 3.1.1). 

The program converts latitude and longitude to easting and northings using the ellipsoid and the 

Transverse Mercator projection (Ordnance-Survey, 2015). Default values for the moisture 

adjustment (15%), minimum and maximum combine harvester speed (0.6 m s-1 and 2.2 m s-1), the 

threshold for the change of direction of the combine harvester (0.6 radians), the distance between 

passes (5 m) and the standard deviation filter (mean ± 2.5 SD) are given but the user can adjust 

each of these. The program allows the user to view histograms of the yield measurements and the 

combine harvester speed to help them decide suitable maximum and minimum values (Figure 3.1.2).  

 

If the combine harvester is moving in opposite directions along two adjacent rows, then the flow 

delay can lead to distortions of features in the yield map that cross both rows. For example, Figure 

3.1.3 (a) shows some yield data where there is a large jump in yield 200 m along the row. The 

combine harvester direction alternates for adjacent rows and a flow delay led to this horizontal linear 

feature being badly distorted (Figure 3.1.3 (a)). 
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Figure 3.1.2. Roth-YE program showing histograms of yield and the combine speed. 

 

The flow delay filter included in Roth-YE is an improvement on existing approaches. The flow delay 

is a parameter included in this model, and its value is automatically derived using a measure of the 

yield recorded in adjacent rows. The parameter could be made to vary with the speed of the 

harvester, but in our implementation we have assumed that it is a constant value.  

 

One measure of the similarity between the variation in yield along adjacent rows is the average 

squared difference between pairs of yield measurements recorded at the same distance along the 

rows which we denote ݒୟୢ୨. If, as we would expect, the yield is spatially correlated, then ݒୟୢ୨ will be 

less than the averaged squared difference between two randomly chosen points along the rows. 

However, in the simulated example shown in Figure 3.1.3(a) the flow delay has caused adjacent 

yield values to differ greatly and has therefore inflated the value of ݒୟୢ୨. In Figure 3.1.3(c) we apply 

a series of time-shifts to the data and then recalculate ݒୟୢ୨. We consider both positive and negative 

time-shifts to account for the possibility that too severe a delay has already been applied to the data. 

We assume that the yield data are correctly aligned when ݒୟୢ୨ is minimized as in this example, when 

a delay of 10 time units has been applied. Indeed, in Figure 3.1.3(b) we see that when this delay is 

applied to the yield data that the horizontal linear features in the yield map is evident. 
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We have included an algorithm within Roth-YE to automatically test whether by applying a realistic 

(<30 second) time-shift to the yield data is it possible to decrease the value of ݒୟୢ୨. If this is the case, 

then this shift is applied as part of the data pre-processing. 

 

  

 

Figure 3.1.3. Examples of maps showing the effect of flow delay before (a) and after correction (b) 

and the time shifts applied in terms of the squared difference between points and the time lag (c) 

 

We tested the accuracy of each program for UK conditions, and the ability to produce reliable maps 

from data collected from different combine harvesters yield monitors. Like many programs for 

cleaning yield monitor data, Yield Editor, Sun et al. (2013) and Roth-YE require the user to select 

parameter values that control the removal of artefacts, whereas the parameter values for the Auto-

N program were fixed (see Table 3.1.4)We used two protocols to evaluate Yield Editor. In the first of 

these, we used the set of default values to eliminate points from each yield monitor file (method A) 

Table 3.1.2 . In the second, we made judgments based on visual inspection and statistical 

distributions of the yield and combine harvester speed data to set the thresholds. We also set the 

parameter for the standard deviation filter to 2.5 which was the smallest default of the other methods 

tested (method B) Table 3.1.2. No start pass or end pass filters were applied in method A, but they 

were applied in method B where we found any anomalies at the beginning or end of the rows. For 

the Sun et al. (2013) program we used the default parameter values for all but max and min yield 

Table 3.1.3. These values were not suitable for the UK situation and so we based our parameter 

values on visual inspections of the distributions of the yield data. Similarly, we based the parameter 

values of Roth-YE on default values except for the minimum and maximum for yield and combine 

speed, which we based on visual inspections of the data Table 3.1.5  

 

  

(a) (b) (c)
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Table 3.1.2. Filter parameter values used in the evaluation of the Yield Editor 

Filters Method A Method B 

 Fields 

040001AF 040001B1 040001B3 040001BA 02000157 

Flow delay 0 0 0 0 0 0 

Start pass delay 0 0 0 0 0 0 

End pass delay 0 0 0 0 0 0 

Max velocity (mph−1)* 7 5.0(8) 5.0(8) 5.8(9.3) 5.5(8.9) 4.9(7.9) 

Min velocity (mph−1) 2(0.16) 0.3(0.5) 0.4(0.6) 0.8(1.3) 0.8(1.3) 0.6(1.0) 

Smooth velocity 

(mph−1) 

0.2 Not 

applied 

Not 

applied 

Not 

applied 

Not 

applied 

Not 

applied 

Minimum swath (in) Not 

applied 

Not 

applied 

Not 

applied 

Not 

applied 

Not 

applied 

Not 

applied 

Maximum yield  

(bu ac−1)† 

250(16.8) 268 (18) 327(22) 268(18) 245(16.5) 283(19) 

Minimum yield  

(bu ac−1)† 

0 (0.0) 1.5 (0.1) 1.5(0.1) 1.5 (0.1) 1.5(0.1) 1.5 (0.1) 

Standard deviation 4.0 2.5 2.5 2.5 2.5 2.5 

*Values in parenthesis shows velocity in km h−1 

†Values in parenthesis shows yield in Mg ha−1 (1 bushel/acre = 0.0673 Mg ha−1) 

 

Table 3.1.3. Filter parameter values used in the evaluation of the Sun et al (2013) program. 

Filters Fields 

040001AF 040001B1 040001B3 040001BA 02000157 

Maximum Yield (Mg ha−1) 18 22 18 16.5 19 

Minimum yield (Mg ha−1) 0.1 0.1 0.1 0.1 0.1 

Global Standard deviation  2.5 2.5  2.5 2.5 2.5 

Local Standard deviation  2.5 2.5 2.5 2.5 2.5 

Distance between rows (m) 5 5 5 5 5 

Distance between points (m) 1 1 1 1 1 
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Table 3.1.4. Filter parameter values used in the Auto−N program.  

Filters Values 

Slope change (radians) 0.6 

Maximum speed (m sec-1) * 2.2 (7.9) 

Minimum speed (m sec-1)* 0.6(2.2) 

Minimum yield (Mg ha-1) >0 

Standard deviation 3.0 

*Values in parenthesis shows velocity in km h−1 

 

Table 3.1.5. Filter parameter values used in the evaluation of Roth-YE. 

Filters Fields 

040001AF 040001B1 040001B3 040001BA 02000157 

Max velocity (m sec-1) * 2.2 (7.9) 2.2 (7.9)  2.6 (9.3)  2.5 (8.9)   2.2 (7.9)  

Min velocity (m sec-1) * 0.1 (0.5) 0.2 (0.6)  0.4 (1.3) 0.4 (1.3)  0.3 (1.0)  

Maximum Yield (Mg ha−1) 18 22 18 16.5 19 

Minimum yield (Mg ha−1) 0.1 0.1 0.1 0.1 0.1 

Distance between rows (m) 5 5 5 5 5 

Change of direction (radians)  0.6 0.6 0.6 0.6 0.6 

Standard deviation 2.5 2.5 2.5 2.5 2.5 

*Values in parenthesis shows velocity in km h−1 

 

3.2. Delineating management zones  

We used yield monitor data that had been cleaned by Roth-YE to divide each field into soil 

management zones. The algorithm we chose to use was spatially smoothed version of a fuzzy k-

means classification devised by Lark (1998). In a previous assessment we compared this method 

with other spatial-clustering methods and found it performed the best (Milne et al., 2012). 

Commercially, simpler functions are used in precision farming software and by service providers to 

give yield performance maps, zoning areas that consistently perform well, badly or are inconsistent. 

To indicate the effectiveness of these approaches compared with the cluster analysis approach we 

also produced maps showing the areas of the field that consistently yielded better or worse than 

average in each year. 

 

For many of the fields we studied, we had measurements of phosphorus (P), potassium (K), 

magnesium (Mg) and pH on an approximate 100m x 100m grid across the field. We used this data 

to determine the effectiveness of the resultant zones at explaining nutrient variation. The soil 

samples were not taken at random but on a grid, therefore we used restricted maximum likelihood 

(REML) for this analysis as oppose to an analysis of variance (ANOVA) as REML allows us to 
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account for any spatial correlation between measurements. We used the REML directive in Genstat 

(Payne et al., 2011) to analyse the data. This returns a Wald statistic and usually an F-statistic which 

inform on the null hypothesis that the class means for the soil property are all equal. If the null 

hypothesis is rejected, then the zones can be regarded as different with respect to the particular soil 

property.  

 

We also had other supporting information including soil maps produced by SOYL defining the texture 

and stone content and data on the electronic conductivity of the soil (EC) and elevation data 

measured from sensors. Where this information was available we tried to deduce what was causing 

the variation between zones. 

 

3.2.1. Smoothed fuzzy k-means cluster analysis 

For this type of classification we have measurements of ݌ properties for a number of units which we 

want to classify. In our case, the properties consist of yields of wheat for ݌ years and the units are 

the locations that they are associated with. In practice, the yield monitor data from each year are 

mapped onto a 10-m grid. The value of the yield for a given grid node in a particular year was 

assumed to be the average of the points that lay closest to that node.  We denote the grid coordinates 

as ݔ	 ൌ 	 ሼݔଵ, ,ሻݔଵሺݕ years as ݌ ଶሽ and the yields in the	ݔ ,ሻݔଶሺݕ	 … ,  ሻ. From these data we canݔ௣ሺݕ

create a classification. We standardize each of the ݕ௝, ݆	 ൌ 	1, 2, … ,  .to zero mean and variance one ݌

We choose ݇, the number of classes. Each class ݍ, ݍ ൌ 1,2, … , ݇	 is characterised by a centroid 

vector ࢠതࢗ ൌ ൛ݖଵ̅௤, ଶ̅௤ݖ … ,  are the average values of the variates in classࢗതࢠ  where the elements of	௣̅௤ൟ,ݖ

  and the class centroid		௜௝ݖ The Euclidean norm is used measure the distance between a unit .ݍ

 

௜ଵߜ ൌ ට∑ ሺݖ௜௝ െ ௣̅௤ሻݖ
௣
௝ୀଵ    (3.2.1) 

 

where ݖ௜௝ is the standardized yield at node ݅ in the ݆th year, and ݖ௣̅௤ is the mean of ݖ  in class ݍ in 

that year. We assume that each node belongs to some degree to every class, and we create a 

classification by minimizing a pooled `belongingness': 

 

ܾ ൌ ∑ ∑ ௜௤ߜ
ଶ ௜௤ݑ

ఠ௡
௜ୀଵ

௞
௤ୀଵ     (3.2.2) 

  

in which ݑ௜௤ is the degree of membership of node ݅ to class ݍ, and ߱ is the fuzziness parameter. The 

membership across all classes must sum to 1: 

 

∑ ௜௤ݑ ൌ 1௞
௤ୀଵ      (3.2.3) 
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The parameter ߱ must lie between 1 (in which case we obtain a hard classification) and 2. We set 

߱ = 1:25 to create our classifications. 

 

As above, we must choose ݇. We do so by experimenting with several values between 2 and 5 (the 

most that a farmer is likely to distinguish). For each class we compute the normalized classification 

entropy ߦሺ݇ሻ, proposed by Dunn (1976): 

 

ሺ݇ሻߦ ൌ
ଵ

୪୬௞
∑ ∑ ଵ

௡
௜௤ݑ	௜௤lnݑ

௡
௜ୀଵ

௞
௤ୀଵ    (3.2.4) 

   

We then plot ߦሺ݇ሻ against ݇ and seek a value of ݇ at which ξ (k) falls below the overall trend. Such 

a value is the one we choose.  

 

The next step in the zonation is to smooth the classes. It turns out that the distributions of the 

memberships of the nodes are strongly bimodal, and so, following Lark (1998), we transformed them 

with the symmetric log-ratio to unimodal distributions. We denote the transformed memberships by 

 ෤௜௤, and we smooth them using a weighted average of the transformed memberships in circularݑ

neighbourhoods, ܴ, of radius ݎ: 

 

෤௜௤ݑ   
∗ ൌ ∑ ,ሺ݅ݓ ݆ሻ௝∈ோ  ෤௜௤     (3.2.5)ݑ

   

 Like the original memberships, the transformed memberships must lie in the range 0 to 1 and must 

sum to 1. This means that the weights in R must sum to 1. 

 

The weights are derived from the variograms (see variogram description in Appendix 8.1). We can 

write a simple bounded model in general as    

 

ሻܐሺߛ  ൌ ܿ଴ ൅ ܿଵ݂ሺܐሻ      (3.2.6) 

 

where ܿ଴ is a spatially uncorrelated variance, the `nugget variance', corresponding to white noise, ܿଵ 

is the spatially correlated component of variance, and ݂ሺܐሻ	is the functional form of the variogram 

containing a distance parameter. The weights are then obtained as 

 

,ሺ݅ݓ ݆ሻ ൌ
ଵି௙ሺ୦೔ೕሻ

∑ ሼଵି௙൫୦೔ೕ൯ሽೕചೃ
						∀		j ∈ R   (3.2.7)  

   

where h௜௝ is the separation in distance and direction, the lag, between nodes ݅ and	݆. Note that only 

the functional form of the variogram and its distance parameter affect the weights; neither ܿ଴ nor ܿଵ 

do so. The neighbourhood ܴ defines the region over which the membership values are smoothed, 
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unless the variogram reaches its sill within it. In the latter case the effective range of the variogram 

defines the smoothing region. 

  

The farmer, of course, must have a hard classification; for practical management he or she must 

have each position in the field belonging to one class and one class only. So the final stage in the 

zonation is therefore to assign each node to the class for which its smoothed membership is greatest.  

 

We note that the size of ܴ affects the results. The larger it is the greater is the smoothing. If ܴ is 

small then the classification is likely to be too fragmented; if it is too large then the memberships will 

be smoothed too much and the final classes not sufficiently homogeneous. Lark (1998) proposed a 

coherency index to identify an appropriate radius for ܴ defined as 

  

ܪ ൌ
ఎೌ

∑ ట೜
మೖ

೜సభ
     (3.2.8)  

   

where ߟ௔ is the proportion of pairs of nodes within a distance a that belong to the same class, and  

 the more spatially ܪ The larger is the values of .ݍ is the proportion of nodes that belong to class ݍ

coherent are the classes. We chose ܽ	 ൌ 	10√2 m so that we were effectively comparing each node 

with its neighbours on the grid. 

 

3.3. Compare the merits of managing soil nutrients at different scales  

We compared the cost effectiveness of three commonly used sampling approaches. The sampling 

schemes we considered were  

(i) a W-shaped design across the whole field,  

(ii) a zone-based scheme with W-shaped designs within each zone and  

(iii) a grid-based scheme with samples taken on a 100 m × 100 m grid.  

 

In practice, soil samples taken according to schemes (i) and (ii) are bulked before analysis resulting 

in either a single value for each field or each zone within a field.   

 

Previously, Marchant et al. (2012) compared the suitability of these sampling approaches for 

estimating the field-mean nutrient status. However, the adoption of one of these sampling 

approaches tends to imply that a farmer is aiming to vary fertiliser management at a particular spatial 

scale – the field scale, the management zone scale or the smallest scale at which the fertiliser rate 

can be adjusted. We now go beyond the Marchant et al. (2012) comparison of the sampling 

approaches to consider the cost effectiveness of managing nutrient inputs at these different scales. 
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It is not practical to compare sampling approaches in the field because (i) we would need to apply 

each sampling approach many times to determine its average profitably and (ii) we would need 

perfect knowledge of how the nutrients vary across the field to calculate which approach is most 

profitable. Therefore, we used a geostatistical model to simulate the variation in nutrients across 

fields. We then compared the effectiveness of the three sampling strategies in determining the 

nutrient requirement, and compared the cost effectiveness of each approach by taking into account 

the differences in nutrient inputs, yield and the cost of sampling. We did not expect that there would 

be a single best approach to sampling. We thought that the most cost effective approach would 

depend on the variation of the nutrients in the field. Therefore, we have a circular problem – the best 

sampling strategy varies according to the pattern and scale of nutrient variation in the field but the 

farmer will have little information about this variation before he has sampled. In situations where 

yield is limited by nutrient concentrations, it is reasonable to assume that the yield and nutrient maps 

are correlated and vary across similar spatial scales. Hence the pattern of observed yields would 

reflect the pattern of nutrients and could guide the farmer towards the best sampling approach. 

Therefore, we modelled the yield variation that would have been observed as a result of the variation 

in soil nutrient and explored whether parameters describing properties of the yield variation could be 

used to decide which sampling strategy was likely to be most cost-effective. 

 

3.3.1. Modelling phosphorus in soil 

We used P measurements (denoted z) from fields named Field-BD, Field-ER, Field-GP, Field-LM, 

Field-MC and Field-RH, which are located near Newbury, UK to simulate realistic variation in P 

across the fields. Our data came from well managed fields, but we wanted our simulated values of 

P to limit the yield. Therefore, we scaled the measured data before fitting the models of spatial 

variation. First we used cluster analysis to define zones in each field, and in our model we allowed 

the mean and spatial variation of the nutrient to be different. We used a similar approach to that 

described by Marchant et al. (2012). We standardized the measurements to have a variance equal 

to one by dividing by the standard deviation,ݏ, of the data to give values ̃ݖ௜, ݅ ൌ 1,2, … , ݊. Then we 

characterized the mean and spatial variation within each of the ݌ zones of the field by fitting a linear 

mixed model to the transforms, z෤: 

 

z෤ ൌ Mβ ൅ η                                                         (3.3.1) 

  

where M is an ݊ ൈ  fixed effects design matrix which permits the mean concentrations to differ ݌

between zones. The vector β is of length ݌ and contains the coefficients of the fixed effects (i.e. the 

mean concentration within each zone). The component η ∽ UNሺ0, VሻU where Nሺ0, Vሻ is a vector of 

spatially correlated random residuals with a normal distribution with zero mean and covariance 

matrix V, and U is a diagonal matrix where element  Uሺ݅, ݅ሻ ൌ σ௝ when the ݅th datum of ݖ is in zone ݆ 

(i.e. this is a zone-dependent scaling factor of the variance). 
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We assumed second-order stationarity, so that the fixed effects coefficients β and the variogram 

could be estimated simultaneously by residual maximum likelihood, REML (Patterson and 

Thompson, 1971). Here we have assumed that the spatial variation is represented by an isotropic 

exponential variogram model: 

  

ሺ݄ሻߛ ൌ ܿ଴ ൅ ܿଵ	 〈1 െ exp ቀ
௛

௔
ቁ	〉    (3.3.2) 

 

in which ܿ ଴ and ܿ ଵ  are the nugget and spatially correlated components of the variance, as mentioned  

above, and ܽ is a distance parameter. We simulated values for P on a 10 m × 10 m grid across each 

field using the Cholesky decomposition technique, also known as lower–upper or LU technique 

(Webster and Oliver, 2007). We used the variogram model that  we fitted  to the  transformed  data 

to create a ݐ ൈ  ݐ covariance matrix C and scaled this for each zone independently  as U෡CU෡, where ݐ

is the number of simulated  points on the 10 m × 10 m grid and U෡ is a  diagonal matrix  where element 

෡ܷ෡ሺ݅, ݅ሻ ൌ  when the ݅th  simulated value is in zone ݆. This was then decomposed into its lower and ݆ߪ

upper triangular form where  

 

 U෡CU෡ ൌ LL୘		      (3.3.3) 

 

The simulated values, z∗, are then given by  

 

z∗ ൌ ሺLgݏ ൅ Mୱ୧୫βሻ	     (3.3.4) 

 

where g is a ݐ ൈ 1 vector of random numbers drawn from a standard normal distribution, and Mୱ୧୫ is 

a ݐ ൈ  design matrix. Because g is a vector of random numbers we can simulate many different ݌

realisations of the field using the same basic covariance structure. This is a similar concept to 

drawing random numbers from a distribution and getting a different answer each time. Figure 3.3.1 

shows examples of the simulated values of P. For ease of calculating the yield response (see section 

3.3.3) we converted our simulated P values to mg kg−1 by assuming the soil has a bulk density of 

1.1 g cm−3.  To simulate field measurements with larger variances than in the observed data, we also 

scaled the values of ߪ௝ and simulated values of P. In each additional zone, concentrations of P were 

modified at four scales (0.5, 1, 2, 3) resulting in four sets of runs for fields with two zones and 16 

sets of runs for fields with three zones.  
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3.3.2. Modelling yield and quantifying its spatial variation  

For each realisation of simulated phosphorus, z∗, we simulated the associated yields using a yield 

response model for P. We then computed experimental variograms of the simulated yield values by 

the method of moments and fitted an exponential variogram model.  

 

3.3.3. Yield response model  

The yield response model for P was derived by Marchant et al. (2012) from published data (Johnston 

and Goulding, 1988; Johnston, 2005; Milford and Johnston, 2007; Syers et al., 2008). For every 1 

kg of P added in fertilizer, we assume that 0.18 kg is available to the crop. We also assumed that 

this addition is contained in the top 30 cm of soil and the soil has a bulk density of 1.1 g cm3. This 

means that an addition of 1 kg P ha−1 leads to an increase in the concentration of this layer of ݇ = 

0.054 mg kg−1. 

 

Thus the total nutrient available after addition of a quantity of fertilizer z୤ୣ୰୲ is  

 

୲୭୲ୟ୪ݖ ൌ ୤ୣ୰୲ݖ݇	 ൅   ୱ୭୧୪                                        (3.3.5)ݖ

 

The yield response to added nutrients is modelled by  

 

୰ݕ ൌ ଴ሺ1ݕ	 െ          ௭೟೚೟ೌ೗ሻ                                       (3.3.6)ܤܣ

  

where ݕ୰ is the realized yield, ݕ଴  is target yields and ܣ and ܤ are parameters. We set our target yield 

at 8.8 t ha−1. The model parameters were ܣ ൌ 1.33 and ܤ ൌ 0.68 (see Figure  3.3.2).  
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Figure 3.3.1. Realisations of the simulated phosphorus concentrations (mg kg-1). Note that the 
ranges of phosphorus change substantially from field to field. The scale bars vary accordingly, and 
so the colours that depict the levels of phosphorus cannot be complared between between fields.  

 
 
Figure 3.3.2. Response of yield to added P to a soil with an available P of 2.5 mg kg−1. 
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3.3.4. Management scales 

In each of the simulated fields, we compared three sampling schemes to see which would result in 

a treatment map that gave the greatest profit. Each W-shaped design comprised 10 sampling points. 

In practice, soil samples taken according to these different schemes are bulked before analysis 

resulting in either a single value for each field or each zone within a field. To simulate these we 

calculated the average of the nutrient values from the sample points on each W-shaped design. In 

grid-based designs the aim is to map the variation in a nutrient so that fertilizer rates can be adjusted 

accordingly. We followed the method typically used by precision agricultural consultants and used 

inverse distance weighting to predict the variation in the nutrient between the sampling points.  

 

We estimated the nutrient concentration in the soil at each location on the 10 m × 10 m grid using 

each of the three sampling schemes. This resulted in a single estimate for the whole-field sampling 

scheme, an estimate for each zone for the zone-based scheme and a spatially varying estimate for 

the grid-based scheme. Using these estimates with equations (3.3.5), (3.3.6) and (3.3.7) we 

calculated the amount of fertilizer that should be added (̂ݖ୤ୣ୰୲), noting that this value is not the true 

optimum as it is based on the estimated nutrient supply and not the true nutrient supply, ݖୱ୭୧୪. 

 

For each realisation, ݅ , of the fields we calculated the profit margin under each sampling scheme and 

management scale. We computed the difference in profit margin given by the zone-based, ᇞ୸୭୬ୣ ሺi), 

and grid-based, ᇞ୥୰୧ୢ ሺi), schemes compared with that of the field-based ᇞ୤୧ୣ୪ୢ ሺi) scheme. We also 

computed the excess fertilizer applied under the zone-and grid-based schemes and compared this 

with the field-based scheme. However, we did not consider the beneficial effect of excess P 

applications to the crop in the previous years to the following crop. 

 

We then calculated the profit from applying the nutrient strategies to each field by  

 

∆	ൌ ୵୦ୣୟ୲ܩݕ െ ܼ୤ୣ୰୲	ܩ୤ୣ୰୲ െ  ୱୟ୫୮୪ୣ    (3.3.7)ܩ݊

 

where ܩ୵୦ୣୟ୲ is the  price  of the grain, which we assumed  to be £150 t−1, ܩ୤ୣ୰୲ is the price of fertilizer 

P, assumed to be £0.31 kg−1, ݊ is the number of individual soil samples analysed in the laboratory, 

each costing ܩୱୟ୫୮୪ୣ	 = £5, and ݕ and ܼ୤ୣ୰୲	 are the yield and quantity of fertilizer added, respectively 

(Appendix 8.2). 

 

3.3.5. Using metrics of variation to guide sampling strategies  

In our simulation experiments the effectiveness of each management scale is controlled by the model 

of nutrient variability in the field. A farmer will require simpler metrics to decide on the best approach. 

For each set of simulations, we therefore used multiple linear regression to see how much of the 
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variation in ᇞ୥୰୧ୢ	െ	ᇞ୤୧ୣ୪ୢ and ᇞ୸୭୬ୣ	െ	ᇞ୤୧ୣ୪ୢ could be explained by the distance parameter of the yield 

variogram ܽ and the variance parameter ܿଵ. More importantly, we wanted to compute the probability 

that the grid- or zone-based sampling strategies were more profitable than the field-based strategy 

for given parameters of ܽ and ܿ1. 

 

For each field we fitted the model  

 

ᇞୱୡ୦ୣ୫ୣ	െ	ᇞ୤୧ୣ୪ୢ	ൌ ܾ଴ 	൅ ܾଵܽ ൅ ܾଶܿଵ ൅ ܾଷܽܿଵ      (3.3.8) 

 

to the data, where ’scheme’ is ‘zone’ or ‘grid’. The assumption underlying the model is that the 

residuals are normally distributed about the mean prediction and that the standard error, ݏ୭ୠୱ  for 

predicting a single observation is given by  

 

୭ୠୱݏ 	ൌ 	 	ଶmseݏ ൅ b୘	Vሺbሻb,                                        (3.3.9)  

 

where Vሺbሻ	the covariance function for the parameter is estimates ܾ ≡ 	 ሼܾ଴, ܾଵ, ܾଶ, ܾଷሽ  and ݏଶmse is 

the mean square error.  From this we could calculate the probability that ᇞ୥୰୧ୢ	െ	ᇞ୤୧ୣ୪ୢ൐ 0  for any 

given combination of ܽ and	ܿଵ. We did a similar analysis for excess fertilizer.  

 

3.4. Assess the extent to which yield maps can be used to manage soil variation at the 

scale of soil management zones 

For variable management to be practical the variation in the field must be of sufficiently large 

magnitude and scale. Methods have been proposed to assess this by considering the variation 

captured in yield monitor data. We explored two such methods, the first was proposed by Lark et al. 

(2003) who derived a decision tree to determine a field’s ‘potential for variable rate management’ 

(PVRM) and a second which was first proposed by Pringle et al. (2003) and later developed by de 

Oliveira (2009) which calculates a metric for the opportunity for variable rate management. After 

evaluation of both approaches, we propose a new method for ranking fields for their potential for 

variable rate management.  

 

3.4.1. Potential for Variable Rate Management based on Lark et al. (2003) 

The Lark et al. (2003) approach is based on the hypotheses that the scale and magnitude of variation 

in yield provide the basis for identifying fields where variable rate management is feasible. 

Variograms of the yield map from a particular field indicate the scale and magnitude of the yield 

variation in the field (see Appendix 8.1 for a description of the variogram). A variogram of yield data 

that rises steeply to the sill over a short lag indicates that the variation in yield is dominated by short-

range processes, whereas one which rises less steeply indicates that the variation is dominated by 
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long-range processes (Figure 3.4.1). Similarly, a nugget which is large relative to the sill implies that 

a lot of variation in yield is happening at short spatial scales, and suggests that the variability is too 

intricate for variable rate management to be practical (Lark et al., 2003). Lark et al. (2003) use metrics 

of the variogram and the normalized classification entropy (see Section 3.2) in a decision tree (Figure 

3.4.2) to help farmers to decide whether variable rate management is likely to be appropriate for a 

given field. It was formed using a data mining exercise and so not all of the decision nodes are 

intuitive. The decision tree uses the variance ratio and the standard deviation and the normalized 

classification entropy (Figure 3.4.2). 

 

Figure 3.4.1 Hypothetical variograms indicating short and long range processes leading to the yield 

variability in the field. 
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Figure 3.4.2 Decision tree diagram for potential variable rate of a field derived by Lark et al. (2003). 

The variance ratio (VR) is the ratio of the dispersion variances for a 1ha block to a 0.01ha block. The 

Normalised classification entropy (NCE) is a measure of how distinct management zones based on 

a cluster classification are and the standard deviation (SD) is the square root of the variance for a 

region excluding nugget.  

 

3.4.1.1 Variance ratio (VR) 

Regional dispersion variance is the ratio of the dispersion variance (ߪଶ୆) for a 1ha block B to a 

0.01ha block D 

 

ோܸ ൌ
ఙమాసభ
ఙమాసబ.బభ

	       (3.4.1) 

where ߪଶ୆ is calculated by  

 

ଶ୆ߪ ൌ ∬ ሺx௜୆ߛ െ x୨ሻ dx௜ dx௝       (3.4.2) 

 

The ratio has a minimum value of 1 which relates to the situation where the variance is entirely 

unstructured over these scales. The larger the value the greater the spatial structure of the 

variation in yield. 

Yes No 

Yes 

Yes 

Yes 

No 

No 

No 

VR < 1.985 

VR<1.29 

NCE <0.169 

SD<0.65 

1 

1 

3 

2 

3 

1 Further investigation not  justified 
2 Further investigation may be justified 
3 Further investigation definitely justified 
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3.4.1.2 The normalized classification entropy (NCE) 

The cluster analysis classification which we described above divides the field into zones that have 

similar season-to-season variation. The normalized classification entropy (see section 3.2) gives a 

measure of how distinct the classes are from one and other. The smaller the value of the normalized 

classification entropy the more distinct the class.  

 

3.4.1.3 Standard deviation (SD) 

Standard deviation is a measure of the variance which is manageable in a given block size (1 ha). 

We call it the regional standard deviation ሺܵ஻ሻ. It calculated by integrating the variogram without 

nugget of a 1 ha block B 

   

ܵ஻ ൌ ටሺ∬ ሾሺγሺx௜ െ୆ x௝ሻ െ c଴ dx௜ dx௝ሻ    (3.4.3) 

 

where x௜ and x௝ are pairs of points within B. 

 

By integrating over an area of standard size and shape means that this statistic can be meaningfully 

compared across fields. This standard deviation will be large for variable fields and small for more 

uniform ones. 

 

3.4.2. Opportunity index (࢏ࢅሻ 

De Oliveira’s (2009) presented an opportunity index ( ௜ܻሻ, which enumerates the opportunity for site 

specific crop management in a given field. This is an improvement to Pringle’s (2003) approach and 

estimates the ( ௜ܻሻ based on a set of statistical measures of the yield variogram. The opportunity 

index, ௜ܻ is defined 

 

Y௜ ൌ ඥM௩. S௩	       (3.4.4) 

 

where M௩ is the magnitude of the yield variation and S௩ is the spatial structure of yield variation. The 

magnitude of variation depends on the coefficient of variation (C௩ሻ, which is the average covariance 

of the total field estimated as half the squared yield differences between all pairs of locations in yield 

minus nugget as given below: 

 

C௩ ൌ 	
ଵ

௡మ
൫ൣ∑ ∑ ሺݔ௜

௡
௜ୀଵ

௡
௜ୀଵ െ ௝ሻଶ/2൧ݕ െ ܿ଴൯   (3.4.5) 
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To compare the variation in magnitude between fields C௩ is standardised in to a new areal coefficient, 

aC௩ 

 

aC௩ ൌ ൬ඥ
େೡ
௬ത
൰ ൈ100      (3.4.6) 

 

where ݕത  is the mean yield. 

 

M௩ is calculated as the ratio of aC௩ and the median of aC௩ over all the available fields aC௩ହ଴ 

 

M௩ ൌ
ୟେೡ
ୟେೡఱబ

         (3.4.7) 

 

The spatial structure measure is given by 

 

S௩ ൌ
௥

୓ಽ
        (3.4.8) 

 

where ݎ is the range of the variogram of the yield monitor data (in the case of the exponential 

variogram, the effective range, 2.966 = ݎ ൈ the distance parameter Webster (1985) and if the field 

length is smaller than the range then ݎ is assumed to be 95% of the half of the maximum field length). 

  

The operational length O௅	(ability of the variable rate machinery to react) is the product of the variable 

rate machinery characteristics such as swath (ߚ), speed (ݒ), and time to alter applications (ݐ) (Pringle 

et al., 2003) and is divided by 10000 to convert to hectares: 

 

O௅ ൌ
ఉజ௧

ଵ଴଴଴଴
        (3.4.9) 

 

 In our analysis we assumed values of ߚ, ߭,  .are of 8m, 5 ms−1, 3 sec, respectively (Pringle 2003) ݐ

 

3.4.3. Variable Rate Management Score 

We considered five different methods for ranking fields based on their potential for variable rate 

management. These were (i) the range (ݎ) multiplied by ܿଵ parameter of the variogram (i.e. ܿݎଵሻ, (ii) 

ோܸܵ஻,	 (iii) ܿଵ√ݎ (iv) ோܸඥܵ஻ and (v) ܿଵlog	ሺݎሻ. Using the simulation results described in section 3.3, we 

explored to see how much of the variation in the increased profit achieved from variable rate 

management (i.e. ᇞ୥୰୧ୢ	െ	ᇞ୤୧ୣ୪ୢ from section 3.3.5 above) could be explained by each of these 

metrics. 
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4. Results 

4.1. Comparison of yield cleaning software 

The parameter values used in the evaluation of the yield-monitor cleaning programs are shown in 

Tables 3.1.2 – 3.1.5. For Yield Editor (method B), the Sun et al. program and Roth-YE the maximum 

and minimum yield values were chosen from visual inspection of the yield monitor data (Figure 

4.1.1).  Figures 4.1.2 – 4.1.6 show the raw yield monitor data and the cleaned yield maps for each 

of the fields, and Table 4.1.1 reports the summary statistics of the cleaned data. The raw yield data 

ranges from 0–30 t ha−1 (Table 4.1.1). It is clear that the projections used by Yield Editor and Sun et 

al. (2013) are not suitable for the UK. The field co-ordinates are warped and change their orientation.   

 

Yield ranges were widest in Yield Editor method A. The range of yields were comparable for Yield 

Editor method B, Auto−N and ROTH-YE. Mean yields after cleaning were always higher under Yield 

editor method B, and the lowest coefficient of variation (CV) and standard deviation (SD) were given 

by the Sun et al. program. The Sun et al. program removes the largest number of points, but the 

yield maps tend to be visually more coherent that those produced by the other methods. For 

example, in Figure 4.1.2 there is a clear line of lower values and a clear line of higher values in all 

maps except that produced by Sun et al. These are removed by the local SD filter. However the 

maximum yields tend to be lower than from other programs. The performance of the Auto−N program 

and Roth-YE are similar. They have similar summary statistics and the numbers of points remaining 

after filtering (Table 4.1.1). Roth-YE filters slightly more points out because it has more filters.  
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Figure 4.1.1. Histograms of raw yield monitor data (t ha-1) for five fields.  
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Figure 4.1.2. Raw and cleaned yield monitor data (t ha-1) for field 040001AF using different yield 

cleaning software  
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Figure 4.1.3 Raw and cleaned yield maps for site 040001BA using different yield cleaning software. 
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Figure 4.1.4. Cleaned yield maps for site 040001B1 using different yield cleaning software. 

  



37 

 

 

Figure 4.1.5. Cleaned yield maps for site 040001B3 using different yield cleaning software. 
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Figure 4.1.6. Raw and cleaned yield map for site 02000157 using different yield cleaning software. 
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Table 4.1.1. Summary statistics of the raw and cleaned yield monitor data from each field analysed 

with each program  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Statistics  

Raw data Yield Editor  Sun et al. Auto−N ROTH-YE 

A B 

Field 040001AF 

Mean (t ha-1) 11.7 13.2 13.4 9.6 12.6 13.1 

STD 3.4 1.8 1.9 0.8 1.4 1.4 

CV 0.29 0.14 0.11 0.09 0.11 0.11 

N 4748 4093 4259 3790 4101 4097 

Range (t ha-1) 0–30 2.3 –16.8 8–18 6-12.5 6–18.3 7.0–17.9 

Field 040001B1 

Mean (t ha-1) 11.5 12.3 13.3 9.6 12.5 12.9 

STD 4.05 3.5 2.3 1.5 2.2 2.2 

CV 0.35 0.29 0.17 0.16 0.18 0.17 

N 5187 4112 4623 4071 4435 4438 

Range (t ha-1) 0–30 0-16.8 6.0-20.0 4.4-13.7 4.4-20.4 5.8-19.8 

Field 040001B3 

Mean (t ha-1) 10.5 11.8 12.0 9.0 11.2 11.2 

STD 3.02 1.67 1.4 0.96 1.4 1.3 

CV 0.29 0.14 0.12 0.11 0.12 0.12 

N 6660 5854 6054 5467 5743 5720 

Range (t ha-1) 0–30.0 1.0-16.8 7-16.4 5.2-12.5 5.2-16.7 6.1-16.0 

Field 040001BA 

Mean (t ha-1) 9.3 10.3 10.7 7.9 10.0 10.1 

STD 2.9 2.6 1.5 1.0 1.44 1.4 

CV 0.32 0.25 0.14 0.13 0.14 0.14 

N 5705 5355 5145 4733 4753 4439 

Range (t ha-1) 0–30 0-16.7 5.9-15.3 4.2-10.9 4.3-15.3 5.1-15 

Field 02000157 

Mean (t ha-1) 8.8 9.7 10.4 7.9 9.8 9.7 

STD 3.7 3.1 1.8 1.13 1.7 1.57 

CV 0.41 0.32 0.18 0.14 0.18 0.16 

N 5088 4338 4379 3837 4059 4047 

Range (t ha-1) 0–32.2 0-16.7 4-16.3 3-11.4 1.8-17.4 3.0-15.8 
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4.2. Delineating management zones to understand the causes of yield variation 

We present the results for some selected fields in Figures 4.2.1.1 − 4.2.11.4. In each case, we show 

(i) the cleaned yield monitor data (cleaned using Roth-YE) that we have used in the cluster 

classification, (ii) the classification achieved from the smoothed fuzzy k-means cluster analysis (in 

most cases, we used the most recent four maps only ), (iii) the associated centroid values for each 

zone (i.e. the yield averages per zone) and (iv) the classification based on basic statistics (see 

section 3.2.1). We also present the results of the REML analysis to determine how much of the 

variation in the measured soil properties is explained by the cluster classification, and any other 

information that we had that might indicate causes for the difference in yield variation between the 

zones.      
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4.2.1. Field-BD 

 

Figure 4.2.1.1 Cleaned yield maps of winter wheat from Field-BD. 
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Figure 4.2.1.2 A map showing the areas of Field-BD that yielded better than average (red) in 2000, 

2003 and 2006, worse than average (blue) or changed between better or worse than average 

between seasons (yellow).  

 

Figure 4.2.1.3 shows the class of maximum membership at sites across the field which defines the 

zones. These correspond to the class centroids shown in Fig. 4.2.1.4, presented both using the raw 

data and standardised so that the yield average of the field is zero and the standard deviation is one.  

The centroid values show that Zone 2 yields consistently better than the other two, with the two 

poorer areas tending to be located at the towards the field margins. There is a broad similarity 

between the cluster classification and Fig. 4.2.1.2.  Table 4.2.1 shows summary statistics for P and 

K in each zone. The results of the REML analysis showed that the cluster classification did not 

explain the spatial pattern in P and K (F2,17.5=0.47, p=0.633 and F2,17.4=1.78, p=0.197 respectively).  

We had no other field data from which to deduce a cause for the differences between the zones. 

However, season 2002—2003 (when Zone 3 yielded poorly) is associated with a wetter autumn than 

the other seasons and so this area might be prone to water logging.  
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Figure 4.2.1.3 A map showing the cluster classification for Field-BD. Associated centroid values for 

each zone are show in in Fig. 4.2.4. Zone 1 is shown in blue, zone 2 in green and zone 3 in brown. 

 

Figure 4.2.1.4 The class centroids across seasons for the cluster classes defined for Field-BD field. 

The centroids are shown in terms of (a) yield (t ha-1) and (b) standardised yield where the data is 

transformed so that the mean yield across the field is zero and the standard deviation is 1. Zone 1 

is shown in blue, Zone 2 in green and Zone 3 in brown. 
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Table 4.2.1: Summary statistics of measurements of P and K at Field-BD field according to 

zone. 

 Mean Minimum Maximum Standard 

deviation 

Potassium     

Total population 114.8 93.05 138.5 12.53 

Zone 1 114.1 104.0 120.8 6.752 

Zone 2 113.1 93.05 137.7 13.14 

Zone 3 120.3 103.2 138.5 14.59 

Phosphorus  

Total population 19.27 12.8 31.2 3.99 

Zone 1 18.7 16.6 21.2 1.888 

Zone 2 19.91 12.8 31.2 4.839 

Zone 3 17.8 16.0 21.2 2.107 
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4.2.2 Field-BF 

 

Figure 4.2.2.1 Cleaned yield maps of winter wheat from Field-BF.  

  



46 

 

Figure 4.2.2.2. A map showing the areas of Field-BF that yielded better than average (red) in 2009, 

2011 and 2012, worse than average (blue) or changed between better or worse than average 

between seasons (yellow). 

 

Figure 4.2.2.3 shows the class of maximum membership at sites across the field which defines the 

zones. These correspond to the class centroids shown in 4.2.2.4.  The differences between Zones 

1 –3 are very small, and in practice these zones do not warrant further investigation. The centroid 

values show that Zone 3 yields consistently better than the others for three of the four seasons. 

There is some similarity Zone 3 and the location of the points identified as doing better than average 

(Fig. 4.2.2.2).  Table 4.2.2 shows summary statistics for K, P Mg and pH in each zone. The results 

of the REML analysis showed that the cluster classification did not explain the spatial pattern in these 

nutrients (F3,43=1.65, p=0.192, F3,36=1.78, p=0.168, F3,43=1.11, p=0.356 and  F3,41.7=1.71, p=0.18 

respectively).  We also had data on EC, which can act as a proxy for water, and we found that the 

cluster classification could not be explained by this either (F3,60=1.11, p=0.374).  
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Figure 4.2.2.3 A map showing the cluster classification for Field-BF. Associated centroid values for 

each zone are show in in Fig. 4.2.2.4. Zone 1 is shown in dark blue, Zone 2 in light blue and Zone 

3 in yellow and Zone 4 in brown. 
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Figure 4.2.2.4 The class centroids across seasons for the cluster classes defined for Field-BF. The 

centroids are shown in terms of (a) yield (t ha-1) and (b) standardised yield. Zone 1 is shown in dark 

blue, Zone 2 in light blue and Zone 3 in yellow and Zone 4 in brown. 
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Table 4.2.2: Summary statistics of measurements of P, K, Mg and pH at Field-BF according 

to zone 

 Mean Minimum Maximum Standard 

deviation 

Potassium     

Total population 209.4 157.9 296.5 30.52 

Zone 1 221.5 169.2 296.5 36.0 

Zone 2 206.6 162.8 276.6 36.95 

Zone 3 203.0 157.9 248.7 23.34 

Zone 4 211.1 211.1 211.1 – 

Phosphorus     

Total population 27.54 17.0 49.4 7.501 

Zone 1 24.96 17.6 49.4 7.988 

Zone 2 31.58 21.8 38.8 5.414 

Zone 3 27.65 17.0 44.2 7.617 

Zone 4 24.8 24.8 24.8 – 

Magnesium     

Total population 94.51 68.7 113.8 9.366 

Zone 1 97.73 79.35 112.7 9.669 

Zone 2 89.95 68.7 98.95 9.641 

Zone 3 94.56 82.75 113.8 8.685 

Zone 4 97.2 97.2 97.2 – 

pH  

Total population 7.810 7.31 8.26 0.153 

Zone 1 7.818 7.61 8.06 0.122 

Zone 2 7.886 7.69 8.26 0.177 

Zone 3 7.775 7.31 8.03 0.159 

Zone 4 7.81 7.81 7.81 – 
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4.2.3 Field-CC 

 

 

Figure 4.2.3.1 Cleaned yield maps of winter wheat from Field-CC. 
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Figure 4.2.3.2. A map showing the areas of Field-CC that yielded better than average (red) in 2008, 

2009 and 2011, worse than average (blue) or changed between better or worse than average 

between seasons (yellow).  

 

Figure 4.2.3.3 shows the class of maximum membership at sites across the field which define the 

zones. These correspond to the class centroids shown in 4.2.3.4.  The centroid values show that 

Zone 1 yields consistently better than Zone 2. There is a broad similarity between the cluster 

classification and Fig. 4.2.3.2.  The summary statistics for P, K, Mg and pH are shown in Table 4.2.3 

both for the total population and according to cluster class. Our REML analysis showed there was 

no evidence to relate the cluster classification with these soil properties (K – F1,28=0.14, p=0.712, P 

– F1,28=0.09, p=0.769, Mg – F1,33=0.33, p=0.571, pH –  Wald statistic, χ2=0.79, 28 df, P = 0.382).  
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Figure 4.2.3.3 A map showing the cluster classification for Field-CC. Associated centroid values for 

each zone are show in in Fig. 4.2.3.4. Zone 1 is shown in blue, Zone 2 in brown. 

 

 

Figure 4.2.3.4. The class centroids across seasons for the cluster classes defined for Field-CC 

field. The centroids are shown in terms of (a) yield (t ha-1) and (b) standardised yield. Zone 1 is 

shown in blue, Zone 2 in brown. 
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Table 4.2.3: Summary statistics of measurements of P, K, Mg and pH at Field-CC for the total 

population and according to zone. 

 Mean Minimum Maximum Standard 

deviation 

Potassium     

Total population 120.1 92.1 160.4 18.26 

Zone 1 121.0 94.3 160.4 17.84 

Zone 2 118.3 92.1 156.2 19.92 

Phosphorus 
 

Total population 21.8 15.8 35.6 4.8 

Zone 1 22.0 15.8 35.6 4.80 

Zone 2 21.4 16.2 34.0 5.05 

Magnesium 
 

Total population 38.4 20.8 67.3 9.89 

Zone 1 39.1 23.0 67.3 10.09 

Zone 2 36.9 20.8 50.5 9.84 

pH 
 

Total population 7.5 6.4 8.2 0.56 

Zone 1 7.6 6.5 8.2 0.53 

Zone 2 7.4 6.4 8.2 0.63 

 

For this field we also had a map of soil classes (Fig 4.2.3.5) and elevation data (Fig 4.2.3.6).  

The north-east section of the field is medium texture with the rest of the field allocated to heavy 

texture. The field is particularly stony in the north-east and also across a strip through the centre (soil 

class 9). The part of the field with lighter texture is associated with the poorer yielding area. The 

elevation map shows that Zone 2 generally relates to the local maxima in elevation. This suggests 

that perhaps the smaller yield result from reduced water availability, exposure or less available 

nitrogen resulting from the interaction of soil and water.  
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Soils classes: 

 1 is light texture 

2–8 are medium texture  

9–22 are heavy texture 

Stoniness: 

2, 4, 9 and 20 High 

Other Moderate 

 

 

Figure 4.2.3.5: A map, produced by SOYL, 

of soil indicating soil texture and stoniness 

for Field-CC.  

 

 

 

 

Figure 4.2.3.6: Elevation map for Field-CC (m above sea level). 
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4.2.4 Field-CP 

 

 

Figure 4.2.4.1 Cleaned yield maps of winter wheat from Field-CP. 
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Figure 4.2.4.2. A map showing the areas of Field-CP that yielded better than average (red) in 2009, 

2011 and 2012, worse than average (blue) or changed between better or worse than average 

between seasons (yellow).  

 

Figure 4.2.4.3 shows the class of maximum membership at sites across the field. These correspond 

to the class centroids shown in 4.2.4.4.  The centroid values show that Zone 3 generally yields the 

best and Zone 1 the worst. This is indicated to some extent on Fig. 4.2.4.2.  Table 4.2.4 shows 

summary statistics for P, K, Mg and pH in each zone. The results of the REML analysis showed that 

the cluster classification did not explain the spatial pattern in P (F2,25.0=0.02, p=0.980), however it did 

explain some of the variation in the other variables, particularly pH (K – F2,25.0=4.58, p=0.02, Mg – 

F2,25.0=4.57, p=0.02, and pH – Wald statistic, χ2=9.21, 2 df, P = 0.010 ).  
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Figure 4.2.4.3. A map showing the cluster classification for Field-CP. Associated centroid values for 

each zone are show in in Fig. 4.2.4.4. Zone 1 is shown in blue, Zone 2 in green and Zone 3 in brown. 

 

 

Figure 4.2.4.4. The class centroids across seasons for the cluster classes defined for Field-CP. The 

centroids are shown in terms of (a) standardised yield and (b) yield (t ha-1). Zone 1 is shown in blue, 

Zone 2 in green and Zone 3 in brown. 
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Table 4.2.4 Summary statistics of measurements of P, Mg, pH and K at Field-CP field 

according to zone. 

 Mean Minimum Maximum Standard 

deviation 

Potassium     

Total population 145.1 109.5 206.7 25.49 

Zone 1 145.3 126.0 172.8 24.44 

Zone 2 146.3 109.5 206.7 28.85 

Zone 3 144.2 109.5 206.7 25.49 

Phosphorus     

Total population 22.4 14.2 43.2 6.399 

Zone 1 31.67 21.4 43.2 10.96 

Zone 2 21.93 16.4 30.0 4.737 

Zone 3 20.79 14.2 32.4 5.147 

Magnesium 
 

Total population 53.98 35.25 75.2 10.37 

Zone 1 43.43 35.55 48.3 6.89 

Zone 2 59.78 43.05 75.2 7.644 

Zone 3 51.68 35.25 66.1 10.55 

pH 
 

Total population 7.174 5.61 8.25 0.714 

Zone 1 7.03 6.87 7.16 0.147 

Zone 2 6.634 5.61 7.89 0.556 

Zone 3 7.629 6.29 8.28 0.585 
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4.2.5 Field-ER 

 

Figure 4.2.5.1 Cleaned yield maps of winter wheat from Field-ER. 
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Figure 4.2.5.2. A map showing the parts of Field-ER that yielded better (red), worse (blue) or 

fluctuated (yellow) compared to the average yield for seasons in 2009, 2011 and 2012.  

 

Figure 4.2.5.3 shows the class of maximum membership at sites across the field. These correspond 

to the class centroids shown in figure 4.2.5.4.  The centroid values show that Zone 2 generally yields 

the least. Table 4.2.5 shows summary statistics for P, K, Mg and pH in each zone. The results of the 

REML analysis showed that the cluster classification did not explain the spatial pattern in P 

(F2,21.0=1.41, p=0.265), however it did explain some of the variation in the other variables, particularly 

Mg (K – F2,21.0=0.1,  p=0.901, Mg – F2,21.0=2.75, p=0.087, and pH – F2,21.0=0.92, p=0.413). 
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Figure 4.2.5.3. A map showing the cluster classification for Field-ER. Associated centroid values for 

each zone are shown in in Fig. 4.2.5.4. Zone 1 is shown in blue, Zone 2 in green and Zone 3 in 

brown. 

 

Figure 4.2.5.4. The class centroids for the cluster classes defined for Field-ER across seasons. The 

centroids are shown in terms of (a) yield (t ha−1) and (b) standardised yield. Zone 1 is shown in blue, 

Zone 2 in green and Zone 3 in brown. 
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Table 4.2.5. Summary statistics of measurements of P, K, Mg and pH at Field-ER according 

to zone. 

 Mean Minimum Maximum Standard 

deviation 

Potassium     

Total population 145.5 112.5 208.3 22.33 

Zone 1 142.8 117.6 185.4 19.69 

Zone 2 146.3 113.2 179.3 24.12 

Zone 3 147.6 112.5 208.3 25.66 

Phosphorus     

Total population 21.7 14.0 28.0 4.1444 

Zone 1 20.0 15.4 24.8 3.243 

Zone 2 21.88 17.0 26.8 4.518 

Zone 3 23.14 14.0 28.0 4.501 

Magnesium 
 

Total population 48.02 38.2 66.5 7.489 

Zone 1 47.92 40.0 62.15 7.826 

Zone 2 48.02 38.20 66.5 9.121 

Zone 3 45.1 38.2 51.45 4.707 

pH 
 

Total population 7.880 6.54 8.3 0.457 

Zone 1 7.837 6.54 8.24 0.537 

Zone 2 7.686 6.98 8.22 0.605 

Zone 3 8.015 7.44 8.3 0.266 
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4.2.6 Field-EL 

 

 

Figure 4.2.6.1 Cleaned yield maps of winter wheat from Field-EL. 
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Fig. 4.2.6.2 A map showing the areas of Field-EL 

field that yielded better than average (red) in 2003, 

2010 and 2011, worse than average (blue) or 

changed between better or worse than average 

between seasons (yellow).  

 

 

Figure 4.2.6.3 shows the class of maximum 

membership at sites across the field. These 

correspond to the class centroids shown in 4.2.6.4.  The centroid values show Zone 3 tends to be 

the worst in most years. This accords with Fig. 4.2.6.2.  The summary statistics for P, K, Mg and pH 

are shown in Table 4.2.6 both for the total population and according to zone. The REML analysis 

showed that the cluster classification did not explain the variation in K, P or Mg (F3,14.9=1.31, p=0.309;  

Wald statistic, χ2=0.65, 3 df, p = 0.585 and F3,25=0.62, p=0.610 respectively) , but there is significant 

evidence that the zones explain the variation in pH (F3,18.6=3.48, p=0.037). The mean values for pH 

for each zone were similar to one another, however, and so unlikely that the variation in pH directly 

caused of the yield variation. It is more likely that some other factor influenced the yield variation and 

also affected the soil pH.  A map of elevation shows that the lowest part of the field is the part 

associated with poorer yields (Zone 3).  In its worst year (2002) the autumn rainfall was much greater 

than the other years (90 mm average per month compared with <65 mm) and so yield variation 

between zones might, in part, be related to this.  
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Figure 4.2.6.3. A map showing the cluster classification for Field-EL. Associated centroid values for 

each zone are show in in Fig. 4.2.6.4. Zone 1 is shown in dark blue, Zone 2 in light blue Zone 3 in 

yellow and Zone 4 in brown. 

 

 

Figure 4.2.6.4. The class centroids across seasons for the cluster classes defined for Field-EL. The 

centroids are shown in terms of (a) yield (t ha-1) and (b) standardised yield.  

Zone 1 is shown in dark blue, Zone 2 in light blue Zone 3 in yellow and Zone 4 in brown. 
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Table 4.2.6 Summary statistics of measurements of P, K, Mg and pH at Field-EL for the total 

population and according to zone. 

 Mean Minimum Maximum Standard 

deviation 

Potassium     

Total population 157.1 110.5 217.1 28.43 

Zone 1 154.2 110.5 205.4 25.31 

Zone 2 167.6 136.9 217.1 35.42 

Zone 3 136.8 114.5 160.3 17.13 

Zone 4 180.4 139.3 208.3 29.21 

Phosphorus  

Total population 22.38 13.4 32.8 4.585 

Zone 1 22.91 13.4 32.6 5.011 

Zone 2 24.76 21.8 32.8 4.681 

Zone 3 20.28 16.0 26.2 4.095 

Zone 4 20.05 19.0 22.0 1.418 

Magnesium  

Total population 53.79 24.75 72.65 12.39 

Zone 1 54.63 24.75 71.6 14.45 

Zone 2 58.05 50.95 69.35 6.943 

Zone 3 47.57 40.6 62.6 8.629 

Zone 4 53.11 40.75 72.65 13.97 

pH  

Total population 8.177 7.89 8.39 0.148 

Zone 1 8.183 8.04 8.39 0.125 

Zone 2 8.026 7.98 8.13 0.0615 

Zone 3 8.226 7.89 8.36 0.192 

Zone 4 8.28 8.09 8.39 0.143 
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4.2.7 Field-HM 

 

 

Figure 4.2.7.1 Cleaned yield maps of winter wheat from Field-HM field. 
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Figure 4.2.7.2. A map showing the areas of Field-HM that yielded better than average (red) in 2002, 

2003 and 2006, worse than average (blue) or changed between better or worse than average 

between seasons (yellow).  

 

Figure 4.2.7.3 shows the class of maximum membership at sites across the field. These correspond 

to the class centroids shown in 4.2.7.4.  The centroid values show that Zone 4 tends to yield the 

least and Zone 2 the most. This can be seen to some extent in Fig. 4.2.7.2. No other information 

was available for this field.    
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Figure 4.2.7.3 A map showing the cluster classification for Field-HM. Associated centroid values for 

each zone are show in in Fig. 4.2.7.4. Zone 1 is shown in dark blue, Zone 2 in light blue Zone 3 in 

yellow and Zone 4 in brown. 

 

 

Figure 4.2.7.4. The class centroids across seasons for the cluster classes defined for Field-HM. The 

centroids are shown in terms of (a) yield (t ha-1) and (b) standardised yield. Zone 1 is shown in dark 

blue, Zone 2 in light blue Zone 3 in yellow and Zone 4 in brown. 
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4.2.8 Field-HS 

 

 

 

Figure 4.2.8.1. Cleaned yield maps of winter wheat from Field-HS. Note that the maps are of yield 

monitor data and in some seasons only part of the field was harvested (compare 2011 with 

2002,2005,2008 and 2009) 
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Figure 4.2.8.2. A map showing the areas of Field-HS that yielded better than average (red), worse 

than average (blue) or changed between better or worse than average between seasons (yellow).  

 

 

Figure 4.2.8.3 shows the class of maximum membership at sites across the field. These correspond 

to the class centroids shown in 4.2.8.4.  The centroid values show that Zone 2 yields consistently 

better than Zone 1. There is a broad similarity between the cluster classification and Fig. 4.2.8.2.  

The summary statistics for P, K, Mg and pH are shown in Table 4.2.8 both for the total population 

and according to zone. Our REML analysis showed there was no evidence to relate the cluster 

classification with these soil properties (K – χ2=0.02, 1 df, p = 0.881, P – F1,34=2.57, p=0.118, Mg – 

Wald statistic, χ2=0.04, 1 df, P = 0.838, pH –  Wald statistic, χ2=0.48, 1 df, P = 0.489).  Maps of soil 

type and elevation did not correspond to the cluster zones and so gave no further insight into the 

underlying cause for the differences between zones.  
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Figure 4.2.8.3 A map showing the cluster classification for Field-HS. Associated centroid values for 

each zone are show in in Fig. 4.2.8.4. Zone 1 is shown in blue and Zone 2 in brown. 

 

 

 

Figure 4.2.8.4. The class centroids across seasons for the cluster classes defined for Field-HS. The 

centroids are shown in terms of (a) yield (t ha-1) and (b) standardised yield. Zone 1 is shown in blue 

and Zone 2 in brown. 
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Table 4.2.8 Summary statistics of measurements of P, K, Mg and pH at Field-HS for the total 

population and according to zone. 

 Mean Minimum Maximum Standard 

deviation 

Potassium     

Total population 156.1 86.15 353.6 55.71 

Zone 1 153.9 93.3 242.4 39.64 

Zone 2 157.3 86.15 353.6 63.85 

Phosphorus 
 

Total population 26.0 11.6 80 12.08 

Zone 1 21.8 14.4 26.6 3.682 

Zone 2 28.37 11.6 80 14.43 

Magnesium 
 

Total population 46.95 23.1 83.6 13.45 

Zone 1 46.03 23.10 83.60 17.48 

Zone 2 47.46 30.9 78.45 10.98 

pH 
 

Total population 7.503 5.88 8.26 0.702 

Zone 1 7.518 5.88 8.26 0.788 

Zone 2 7.495 5.97 8.19 0.667 
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4.2.9 Field-LM 

 

 

Figure 4.2.9.1 Cleaned yield maps of winter wheat from Field-LM. 
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Figure 4.2.9.2. A map showing the areas of Field-LM that yielded better than average (red) in 2001, 

2004 and 2005, worse than average (blue) or changed between better or worse than average 

between seasons (yellow).  

 

Figure 4.2.9.3 shows the class of maximum membership at sites across the field. These correspond 

to the class centroids shown in 4.2.9.4.  The centroid values show that Zone 2 yields consistently 

better than Zone 1. There is a similarity between the cluster classification and Fig. 4.2.8.2.  The 

summary statistics for P and K are shown in Table 4.2.9, both for the total population and according 

to zone. Our REML analysis showed there was no evidence to relate the cluster classification with 

these soil properties (K – F1,24=1.80, p=0.192, P – F1,22.7=1.87, p=0.185).  We had no further 

information on this field.  
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Figure 4.2.9.3 A map showing the cluster classification for Field-LM. Associated centroid values for 

each zone are show in in Fig. 4.2.9.4. Zone 1 is shown in blue, zone 2 in brown. 

 

 

Figure 4.2.9.4 The class centroids across seasons for the cluster classes defined for Field-LM. The 

centroids are shown in terms of (a) yield (t ha-1) and (b) standardised yield. Zone 1 is shown in 

blue, zone 2 in brown.  
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Table 4.2.9 Summary statistics of measurements of P and K, at Field-LM for the total 

population and according to zone. 

 Mean Minimum Maximum Standard 

deviation 

Potassium     

Total population 141.3 92.85 179.8 24.49 

Zone 1 151.7 121.5 176.9 18.02 

Zone 2 137.4 92.85 179.8 25.82 

Phosphorus 
 

Total population 28.04 18.8 52.2 6.795 

Zone 1 27.2 18.8 37.2 5.654 

Zone 2 28.35 20.6 52.2 7.287 
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4.2.10 Field-PA 

 

 

Figure 4.2.10.1 Cleaned yield maps of winter wheat from Field-PA. 
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Figure 4.2.10.2. A map showing the areas of Field-PA that yielded better than average (red) in  2004, 

2005 and 2007, worse than average (blue) or changed between better or worse than average 

between seasons (yellow).  

 

Figure 4.2.10.3 shows the class of maximum membership at sites across the field. These correspond 

to the class centroids shown in 4.2.10.4.  The centroid values show that Zone 1 yields consistently 

better than the other two Zones. Zone 3, which generally relates to the field margins, yields least 

well except in 2004 when Zone 2 is has a very low yield.  There is a broad similarity between the 

cluster classification and the map produced from the simpler approach (Fig. 4.2.10.2.).   We had no 

further information on this field, but the cause of the lower yields that are associoated with the centre 

of the field in 2004 in Zone 2 are likely to be obvious to the farmer.  
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Figure 4.2.10.3 A map showing the cluster classification for Field-PA. Associated centroid values for 

each zone are show in in Fig. 4.2.10.4. Zone 1 is shown in blue, Zone 2 in green and Zone 3 in 

brown. 

 

 

Figure 4.2.10.4. The class centroids across seasons for the cluster classes defined for Field-PA. The 

centroids are shown in terms of (a) yield (t ha-1) and (b) standardised yield. Zone 1 is shown in blue, 

Zone 2 in green and Zone 3 in brown. 
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4.2.11 Field-TK 

 

 

Figure 4.2.11.1 Cleaned yield maps of winter wheat from Field-TK. 
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Figure 4.2.11.2. A map showing the areas of Field-TK that yielded better than average (red) in 2002, 

2005 and 2007, worse than average (blue) or changed between better or worse than average 

between seasons (yellow).  

 

Figure 4.2.11.3 shows the class of maximum membership at sites across the field. These correspond 

to the class centroids shown in 4.2.11.4.  This is a simple case where the field margins (Zone 2) 

yield consistently less well than the field centre.  

 

Figure 4.2.11.3. A map showing the cluster classification for Field-TK. Associated centroid values 

for each zone are show in in Fig. 4.2.11.4. Zone 1 is shown in blue, zone 2 in brown. 
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Figure 4.2.11.4. The class centroids across seasons for the cluster classes defined for Field-LM. 

The centroids are shown in terms of (a) yield (t ha-1) and (b) standardised yield. Zone 1 is shown in 

blue, zone 2 in brown.  

 

 

4.3. Compare measuring soil nutrients by different sampling methods 

 

4.3.1. Comparison of P estimated by the sampling schemes  

For each realisation, we computed the difference in profit margin given by the zone-based ሺᇞ୸୭୬ୣሻ 

and grid based ሺᇞ୥୰୧ୢሻ schemes compared with that of the field-based ሺᇞ୤୧ୣ୪ୢሻ scheme. Thus, the 

differences are ሺᇞ୥୰୧ୢെᇞ୤୧ୣ୪ୢሻ and ሺᇞ୸୭୬ୣെᇞ୤୧ୣ୪ୢሻ for the grid-based and zone-based values, 

respectively. Table 4.3.1 reports the means and standard errors for these differences, which are also 

shown in Figure 4.3.1. In all cases, the grid-based estimates gave larger profits than did the zone-

based estimates. This was largely because the cluster classes were not significant factors in 

explaining the variation in the nutrients (see Section 4.2 and Appendix 8.3). The smallest differences 

between the zone-based estimate and the grid-based one were for the fields with the largest 

differences in mean concentrations of P between zones (Field-GP and Field-RH). Field-BD had the 

smallest  mean  of ᇞ୸୭୬ୣെᇞ୤୧ୣ୪ୢ, and  this  is likely to  result  from both  the  small difference in mean  

values  of P  between  the  zones, ߚݏሺ1ሻ, ߚݏሺ2ሻ and ߚݏሺ3ሻ,  and the short-range  variation  (effective 

range 63.0 m) which is smaller than  the distance  across feasible management zones. The largest 

mean profits were for Field-LM and Field-MC which have a long spatial structure with values of P in 

a treatable range (i.e. values on the incline of the dose response curve shown in Figure 3.3.2). 
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The distributions of ᇞ୸୭୬ୣെᇞ୤୧ୣ୪ୢ are more symmetrically distributed than for ᇞ୥୰୧ୢെᇞ୤୧ୣ୪ୢ for all fields 

except for Field-RH, (as illustrated in Figure 4.3.1). The distributions of ᇞ୥୰୧ୢെᇞ୤୧ୣ୪ୢ are positively 

skewed. For Field-RH and Field-GP a large number of realisations had values of ̂ݖ୤୧ୣ୪ୢ and ̂ݖ୸୭୬ୣ that 

were not limiting (99% and 66% respectively). This resulted in recommendations of no fertilizer 

application, and so ᇞ୸୭୬ୣെᇞ୤୧ୣ୪ୢ is simply the difference in sampling costs. These correspond to the 

large peaks in the distributions of ᇞ୥୰୧ୢെᇞ୤୧ୣ୪ୢ. We also computed the difference in excess fertilizer 

applied when estimates were based on the zone-based (̂ݖ୸୭୬ୣ) and grid based (̂ݖ୥୰୧ୢ) sampling 

schemes compared with the field-based (̂ݖ୤୧ୣ୪ୢ) scheme. We define excess fertilizer as the amount 

applied over and above that which would have been applied if we had perfect knowledge of the true 

variation in P across the field. Table 4.3.1 reports the means and standard error for these differences 

୸୭୬ୣݖ̂) െ ୥୰୧ୢݖ̂) ୤୧ୣ୪ୢ) andݖ̂ െ   (୤୧ୣ୪ୢݖ̂

 

There was no consistent pattern to the mean responses. In some fields (Field-ER, Field-GP and 

Field-RH) the field-based sampling resulted in less of an excess than the zone-based sampling with 

positive differences and in some fields (Field-BD, Field-GP and Field-RH) the field-based sampling 

resulted in less of an excess than the grid-based sampling (Table 4.3.1). Similarly there was no 

consistent pattern between grid- and zone-based sampling.  

 

4.3.2. Assessing the extent to which yield maps can be used to predict the most appropriate 

sampling scheme 

The parameters for the models fitted by multiple linear regressions are listed in Table 4.3.2 along 

with percentage of explained variance. For Field-GP, Field-MC and Field-RH the regression model 

was fitted to the subset of realisations where ̂ݖ୤୧ୣ୪ୢ or ̂ݖ୸୭୬ୣ were limiting. The models fitted to ᇞ୸୭୬ୣെ

ᇞ୤୧ୣ୪ୢ explained very little of the variation in the data. The variation in ᇞ୥୰୧ୢെᇞ୤୧ୣ୪ୢ was better 

explained, although the value for Field-BD were still small. The realisations for this site were 

generated from the model with a small effective range and the nugget to sill ratios of the realisations 

were in general larger than other sites (at least 37% larger, data not shown) indicating a relatively 

large component of unstructured variance. 
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Table 4.3.1. Simulated field averages of soil P concentrations with the average difference in net 
profit for zone- and grid-based sampling compared with the field-based across all simulations.   
 

 

Table 4.3.2.  The percentage variance accounted for and model parameters for the multiple linear 

regression models (Equation 17) fitted to the Δ୸୭୬ୣ െ	Δ୤୧ୣ୪ୢand  Δ୥୰୧ୢ െ	Δ୤୧ୣ୪ୢ data  

Field name Model Parameters Percentage 
variance 
accounted for 

 b0 b1 b2 b3  
Zone sampling 

Field-BD -7.61 -0.1907 -7.82 0.1552 0.1 
Field-ER -2.072 -0.0082 4.275 -0.00428 2.1 

Field-GP* -7.2 0.018 12.53 -0.0075 16.0 
Field-LM -4.03 0.0008 3.882 0.00084 6.7 

Field-MC -17.4 0.253 11.61 -0.0378 3.8 

Field-RH* 189.64 -1.55 -25.98 0.25 10.2 
Grid Sampling 

Field-BD 6.01 -0.013 -10.03 0.2322 0.5 

Field-ER 5.762 0.00653 6.629 0.01229 18.7 

Field-GP -8.065 -0.00326 5.3 0.02439 50.2 
Field-LM -9.03 0.1492 10.046 -0.00218 33.9 

Field-MC 4.6542 -0.0205 -1.0646 0.0049 45.0 
Field-RH -7.117 0.09547 1.3406 0.01446 21.9 

*Model only fitted to realisations where estimated P was limiting 
 

 

 

 

 

Fields The range of 
simulated  field 
averages of P   
(mg kg−1) 

Mean net profit (£  ha−1) Mean excess nutrient (kg  ha−1) 

Zone − Field Grid − Field Zone – Field Grid − Field 

profit SE profit SE Excess 
nutrient 

SE Excess 
nutrient 

SE 

Field-BD 19-21 -13 0.81 12.1 0.75 -2.49 0.17 1.07 0.17 

Field-ER 17-25 0.93 0.23 14.8 0.21 0.14 0.11 -1.9 0.10 

Field-GP  48-131 2.6 0.36 10.3 0.46 0.14 0.02 0.64 0.02 

Field-LM 22-30 12.9 1.2 57.7 1.4 -2.7 0.22 -0.35 0.22 

Field-MC 7-34 16.7 1.05 46.9 1.11 -2.06 0.16 -0.10 0.16 

Field-RH 81-90 -0.18 0.05 2.4 0.08 0.07 0.01 0.98 0.01 
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Figure 4.3.1. Histograms of Δ୸୭୬ୣ െ	Δ୤୧ୣ୪ୢ and  Δ୥୰୧ୢ െ	Δ୤୧ୣ୪ୢ 
 

 



87 

Zone-based Sampling Grid-based Sampling  
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Figure 4.3.2. Maps showing the probability that zone-based and grid-based sampling are more 

profitable than field-based sampling. 

 

Figure 4.3.2 shows the probability that ᇞ୸୭୬ୣ and ᇞ୥୰୧ୢ are larger than ᇞ୤୧ୣ୪ୢ. In all cases the 

probability increases with both ܿଵ and the effective range (3ܽ). This is also true of ᇞ୸୭୬ୣെᇞ୤୧ୣ୪ୢ for 

Field-GP and Field-RH, but these sites are dominated by simulations where ̂ݖ୤୧ୣ୪ୢ and ̂ݖ୸୭୬ୣ were not 

limiting, and so the effects are negligible. The multiple linear regressions showed that the effective 

range and ܿଵ explained very little of the variation in the excess fertilizer data, ̂ݖzone − ̂ݖfield and ̂ݖgrid − 

 .field (Table 4.3.3)ݖ̂
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Table  4.3.3.  The percentage variance accounted for and  model parameters for the multiple linear 

regression models (Equation 17) fitted to the  zො୸୭୬ୣ െ	zො୤୧ୣ୪ୢand  zො୥୰୧ୢ െ	zො୤୧ୣ୪ୢ data. 

 

Field name Model Parameters Percentage 
variance 
accounted for 

 b0 b1 b2 b3  

Zone sampling 

Field-BD -1.660 -0.0116 -1.079 0.01682 0.0 

Field-ER 2.117 -0.00997 -0.843 0.00362 0.3 
Field-GP* 0.54 0.00007 0.711 -0.00191 1.5 

Field-LM 0.884 -0.00276 -0.761 0.000096 6.9 

Field-MC* 6.21 -0.0044 -3.373 0.00874 13.0 
Field-RH* 6.89 0.012 -0.261 0.01548 1.1 

Grid Sampling 

Field-BD 0.139 0.0121 -0.363 0.00785 0.0 

Field-ER 5.762 0.00653 6.629 0.01229 0.4 
Field-GP -0.0935 0.001977 0.3965 0.000888 12.6 

Field-LM 1.796 0.00439 0.441 -0.001309 6.0 
Field-MC 3.716 -0.00554 -1.104 0.001731 8.4 

Field-RH 3.1403 0.00735 0.1193 0.00828 3.0 

*Model only fitted to realisations where estimated P was limiting 
 
 
 

 

4.4. Usefulness of yield maps to manage soil variation at the scale of soil management 

zones 

4.4.1. Potential for variable rate (PVRM) based on Lark et al. (2003) 

For each one of the fields, we calculated the variance ratio (VR) and standard deviation (SD) for the 

winter wheat yield monitor files across different years and used the average to calculate the PVRM 

rank for each field (Table 4.4.1) using the decision tree (Figure 3.4.2). In this study, more than half 

of the fields have a PVRM rank of 3 with average VR values of greater than 2.0. The remaining fields 

have a PVRM rank of 2 or 1 depending on the average VR, average SD and average NCE according 

to the decision tree in Figure 3.4.2. Detailed results of the PVRM analysis for each of the fields for 

different years are given in the Appendix 8.4.   
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Table 4.4.1. PVRM parameters for different fields 

Field Average 

effective range 

Average 

NCE 

Average SD Average 

VR 

PVRM 

rank 

Field-BD 310.0 0.15 0.7 2.3 3 

Field-CC 174.3 0.17 1.2 2.2 3 

Field-CP 204.3 0.33 0.9 2.4 3 

Field-ER 65.2 0.38 0.8 1.9 1 

Field-EL 322.1 0.22 1.2 2.5 3 

Field-HM 402.2 0.24 0.5 1.5 1 

Field-HS 312.4 0.17 1.5 2.6 3 

Field-LM 191.7 0.17 0.6 1.7 1 

Field-MC 154.0 0.12 0.7 1.5 3 

Field-PA 252.5 0.26 0.52 2.0 3 

Field-RH 395.8 0.13 0.6 1.5 1 

 

 

4.4.2. Opportunity index (࢏܇) 

The Opportunity index (i.e. the presence of spatial variation which can be managed) was calculated 

for each field across different years using the magnitude (M௩) and the spatial structure (S௩ሻ	of yield 

variation and are given in Appendix 8.5. Field-HS gave the highest average coefficient of variation 

(ܽC௩)  (13.4) followed by Field-BD (11.4), Field-EL (11.3), Field-CC (10.8) and the remaining fields 

(Table 4.4.2). The median ܽC௩ (ܽC௩ହ଴) over all the fields was 10. The average ࢏܇ for different fields 

calculated using the ࢏܇ for different years ranges from 6.8 to 18.5 with a mean of 13.0 (Table 4.4.2). 

The fields are arranged in the order of their decreasing ࢏܇ in Figure 4.4.1. The highest ࢏܇ is for Field-

HS and the lowest is for Field-ER.  
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Table 4.4.2. Opportunity index for different fields 

Field Average 

mean yield 

 (തݕ)

Average 

Coefficient of 

variation 

(ܽC௩) 

Average 

magnitude of 

variation (M௩) 

Average 

Spatial 

structure of 

the yield 

variation (S௩) 

Average 

opportunity 

index (Y௜) 

Field-BD 7.6 11.4 1.1 258.3 17.0 

Field-CC 11.1 10.8 1.1 145.3 12.4 

Field-CP 10.6 8.8 0.9 170.2 11.6 

Field-ER 10.3 8.7 0.9 54.3 6.8 

Field-EL 10.1 11.3 1.1 268.3 16.8 

Field-HM 8.2 8.4 0.8 335.3 16.7 

Field-HS 11.2 13.4 1.3 260.5 18.5 

Field-LM 8.9 7.4 0.7 159.8 10.7 

Field-MC 10.4 8.2 0.8 75.8 7.6 

Field-PA 8.2 8.2 0.8 149.1 10.7 

Field-RH 7.8 8.7 0.9 330.0 17.0 

Mean 9.5 9.6 1.0 197.9 13.1 
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Figure 4.4.1. Opportunity index (࢏܇) and PVRM ranks for each field in the descending order of ࢏܇. 

 

Comparing the results from the method by Lark et al. (2003) with the opportunity index, we see that 

they do not accord exactly. To explore this further we considered the ratio of dispersion variances 

(VR) for each site (Figure 4.4.2). Here we see some broad agreement between the two methods 

with the smaller ratings for two methods given to Field-LM, Field-PA, Field-MC and Field-ER. The 

two obvious exceptions are Field-RH and Field-HM, which have a small VR and a large opportunity 

index. Closer inspection shows that the value for the opportunity index is inflated by the large range 

that affect the S௩values for these sites. 
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Figure 4.4.2. The average ratio of dispersion variance (ࡾࢂ) for each field in the descending order of 

 .࢏܇

 

4.4.1. Variable Rate Management Score 

Our analysis showed that out of the five metrics (Table 4.4.1) we proposed, the best for explaining 

the variation in profit from variable rate management was 

  

௦ܯ ൌ ܿଵlog	ሺݎሻ 

We note that the results in Table 4.4.1. are from simulations based on the scaled variation in the 

fields and so do not represent the true variation as quantified in Figure 4.4.3. The results from this 

metric are shown in Figure. 4.4.3. This score had a similar trend to the opportunity index with Field-

LM, Field-PA, Field-MC and Field-ER scoring lower values. Under this system the scores of Field-

RH and Field-HM gave a lower ranking than they achieved with the opportunity index.  
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Table 4.4.1. The percentage variance in profit from variable rate management accounted for by each 

of the metrics for the potential for variable rate management.  

Fields which 

simulations 

were based 

on 

 ሻݎோܸඥܵ஻ ܿଵlogሺ ݎ√ଵ ோܸܵ஻ ܿଵܿݎ

Field-BD 0.2 0.4 0.1 0.3 0.1 

Field-LM 31.5 33.4 34.7 29.9 35.6 

Field-MC 42.5 21.3 44.5 10.9 44.2 

Field-ER 19.2 15.6 21.8 15.6 22.3 

Field-GP 45.5 38.1 46.2 19.1 46.3 

 

 

 

 

 

Figure 4.4.3. Variable rate management ranking (࢙ࡹ) for each field in the descending order of ࢏܇. 

 

5. Discussion 

 

5.1 Comparison of yield cleaning software 

A good yield cleaning program should have a balance of removing the outliers and artefacts without 

losing the information on the variation in the field. From the results of the above case studies Yield 
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Editor, Auto−N and ROTH-YE tend to remove fewer points than the Sun et al. (2013), which has a 

local standard deviation filter to remove local outliers. This removes fine scale variation that other 

methods preserve including some artefacts that are obvious on visual inspection such as the line of 

low yielding values in Figure. 4.1.2. 

 

The projections in Yield Editor (Sudduth and Drummond, 2007) and the program by Sun et al. (2013) 

that are used to transform longitude and latitude to Easting and Northing are unsuitable for the UK 

as maps of the yield become distorted.  For Yield Editor there is the additional issue that our raw 

monitor data (which is typical of that which UK farmers would collect) was not in the correct format. 

Yield was not recorded in terms of flow rate and the units were recorded as metric values than 

imperial. Additionally in our files there was no information on pass number and so we had to estimate 

this from other data. All of these factors led us to conclude that neither Yield Editor nor the program 

by Sun et al. (2013) were suitable for use by UK farmers. 

  

Both the yield-monitor cleaning program developed for the Auto−N project and the program 

developed in this project (Roth-YE) are suitable for UK conditions and give reliable results. The 

Auto−N program was developed in Excel for scientists to analyse data, and was not developed for 

wider use. Therefore, although it is a sound approach it is not user friendly and the parameter values 

are fixed. Roth-YE is based on similar algorithms to the Auto−N code and so unsurprisingly gave 

similar results. The main advantages of Roth-YE are that it contains a novel flow delay filter and it 

allows the user to inspect the data and change default filter settings using it’s easy to use interface. 

Our results suggest that Roth-YE could be improved further by including a local standard deviation 

filter such as the one described in Sun et al. (2013).  

 

Commercially available software developed for inspecting yield monitor data often smooths the yield 

monitor data producing an attractive map of variation. Whilst this has its place and can be useful to 

farmers, often important variation is lost through the process. A free-ware program similar Roth YE 

(updated to include a local standard deviation filter) would therefore be of value to farmers as it only 

removes suspect data points and so retains a lot more of the actual variation in the yield that is 

important for further analysis such as classification of management zones or assessing field variation 

and so the potential for variable rate management. 

  

5.2 Delineating management zones to understand the causes of yield variation 

When yield mapping first started it was expected that parts of the field would consistently yield well, 

while others would yield less well. This was shown often not to be the case (Blackmore et al., 2003). 

Therefore a method such as smoothed fuzzy k-means cluster analysis is ideally suited to delimiting 

management zones from yield monitor data. It produces zones which are generally spatially coherent 

and internally homogeneous. The great advantage of this method over those that identify zones that 
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always yield better or worse than average is that it is able to detect zones within which the points 

vary similarly from season to season. This allows us to detect areas that, for example, might be 

prone to drought and so do well in wet years but not in dry years.   

 

In the examples we considered, very few of the zones were related to differences in the measured 

soil nutrients, which was not surprising because our data came from well managed fields. In some 

cases, there was evidence that the zones were driven by water availability but we were unable to do 

further exploration to confirm this.  

 

In practice, classifying the field into zones that vary distinctly from one another is useful for farmers, 

as it helps them to identify differences in response across the field and quantifies the magnitude of 

these. Where zones are distinct (quantified by the normalized classification entropy) and yield 

differences between zones substantial, the farmer should seek an understanding of the causes so 

that he or she can adjust management practices accordingly. These causes may be obvious to the 

farmer or require further investigation, for example by soil sampling.   

  

 

5.3 Compare measuring soil nutrients by different sampling methods 

We have investigated, through simulation, the cost-effectiveness of three management scales and 

sampling strategies commonly used to guide fertilizer recommendations. We aimed to see if the 

variation captured in yield monitor data could be used to determine which sampling strategy would 

be best in any given situation.  We have shown that the advantages of using grid- and zone-based 

sampling strategies over field-based ones vary from field to field. In our simulations, on average, the 

grid-based sampling performed better than the zone-based sampling. This was largely because the 

underlying zones were largely not driven by variation in P, which is likely to be the case for many 

fields in the UK. In practice, many farmers would be able to explain the observed differences between 

proposed management zones and so be able to predict whether the zones were determined by 

differences in nutrient availability.  This would provide valuable information on whether zone-based 

sampling was sensible.  

 

 The probability of grid-based sampling being more profitable increases with both increases in the 

effective range and sill variance, ܿଵ of the nutrient measurements. Larger values of ܿଵ imply large 

variability of nutrients, and a farmer might wish to apply fertilizer differentially in accord. This is 

feasible in practice only if the effective range is also large, and for two reasons. One is the difficulty 

of varying the application at a fine scale; the other is the cost of sampling and soil analysis on grids 

fine enough to map the concentration of the nutrient in the soil. Our results are based on current 

(2016) prices of wheat and fertilizer and sampling costs, which are subject to variation.  Therefore 

the absolute values shown should not be applied in other contexts, although the principles hold. 



97 

 

5.4  Usefulness of yield maps to manage soil variation at the scale of soil management 

zones 

We compared three methodologies that use yield maps to indicate whether a given field is suitable 

for variable rate management. All of these methods aim to determine whether fields have large 

enough variation for variable rate management to be cost effective and whether the variation is at a 

scale large enough to be managed. To do this all three approaches use metrics of the variogram of 

the yield monitor data. The variogram gives an excellent summary of the yield variation but the 

question is how best to use it to inform on the potential for variable rate management.  

 

Lark et al. (2003) used two metrics of the variogram in their decision tree. The first was a variance 

ratio (ܸܴሻ that compares the dispersion variance in a 1ha block with the variance in a 0.01 ha block. 

If the variation in the yield is totally unstructured (i.e. the variogram is all nugget) then the ratio is one 

(its minimum value). The larger the ratio the stronger the spatial structure. This measure depends 

on the ratio of the sill to nugget and the range. The second is a standard deviation measure that 

quantifies the structured variation (which depends on the c1 parameter of the variogram). We note 

that Lark et al. (2003) decision tree was not designed to be used standalone but with expert 

knowledge and that some of the decision nodes are counterintuitive. We ranked each of our fields 

for its potential for variable rate management (PVRM) based on the approach of Lark et al. (2003). 

Out of the 11 fields studied, more than half of the fields had a rank of 3 and had a potential for 

variable rate management. 

 

The measures that Pringle et al. (2003) use are essentially a measure of the structured variation 

(M௩) and so similar to Lark et al.’s standard deviation and a measure of the range (S௩ሻ. All other 

factors in the Pringle et al.’s approach (e.g. the characteristics of the variable rate machinery) are 

likely to be consistent between a single farmer’s fields. We calculated an opportunity index (࢏܇) for 

variable rate management (Pringle et al., 2003; de Oliveira, 2009) for each field. The larger the value 

of ࢏܇	 the greater the scope for variable rate management. We observed that the dependence of one 

of the metrics (S௩ሻ on the range parameter tended to over-inflate the ranking of fields with large range 

although they had only small variation (e.g.: Field-HM, Field-RH). De Oliveira (2009) propose that a 

value above 6.0 shows the field is suitable for variable rate management. According to this criterion, 

all of the fields we have considered in this study can be considered for variable rate management as 

the ࢏܇ value ranges from about 7–19. However, it is not clear whether this critical value is country 

specific and so not suitable for the UK.  

 

It is very difficult to determine thresholds for the variogram metrics over which variable rate 

management would be cost effective. This is both because of changes in costs of management, and 

because (as we showed in section 4.3) there is no consistent relationship between the variogram 
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parameters and profitability between fields (see Figure 4.3.2) because each field’s variation will be 

driven by a combination of slightly different factors. Sun et al. (2013), who also use this methodology, 

suggest the farmer ranks his or her fields based on ࢏܇ and we believe that this is a more pragmatic 

approach.  

 

The metric that we propose, the variable rate management score (ܯ௦ ൌ ܿଵlogሺݎሻሻ,	combines the 

ܿଵ	parameter with the range of the variogram (ݎ). A small value of ܿଵ would indicate that the variation 

was too small for variable rate management to be worthwhile, whilst a small range would indicate 

that variable rate management was impractical. This metric accords reasonably well with the 

rankings given by the opportunity index, but does not overinflate the scores of fields that have 

variograms with a large range yet small variances. Of those metrics we considered, ܯ௦ seems to be 

the most reliable for ranking fields for the potential for variable rate management. We caution that a 

large score does not necessarily indicate that variable rate management is cost effective, only that 

the farmer would be wise to try and understand the causes of the observed variation to see if it could 

be managed more efficiently.   

 

 

6. Conclusions  

Field data on crop yields and soil properties from a number of farms in the UK were collated in this 

study to investigate the potential of yield maps for informing farm management decisions. Yield 

monitor data contain useful information on the variability of the field, but, often contain noise 

associated with artefacts and random errors. Yield cleaning software can eliminate these erroneous 

data. ROTH-YE developed in this project, specifically to clean the yield data from UK farms, 

is equivalent to or better than any of the other yield cleaning software we considered, 

although could be improved further by the addition of a filter to remove local outliers.  

Cleaned yield data were used to create management zones whose yields varied distinctly 

from one another. In only a few of the fields we studied were the zones related to differences in the 

measured soil nutrients. This may have been because much of our data came from well-managed 

fields. In some instances, there was evidence that differences in water availability substantially 

influenced the differences between zones. In practice identifying these zones is useful for the 

farmer as it highlights and quantifies differences in yield that should be explored further. By 

understanding the causes of the differences, the farmer will be able to manage his or her 

fields more effectively. 

Our investigation of different sampling approaches showed that the economic benefit of grid- 

and zone-based sampling over field-based varies from field to field. On average, grid-based 

sampling performed better than zone-based sampling. We found that the variation captured in 

yield monitor data can help to inform on which sampling scheme is most appropriate. By 
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forming variograms from yield maps we can use the quantification of the spatially structured 

variation to indicate when each sampling scheme is likely to be most cost effective.  

The spatial variation captured by the variogram of the yield monitor data can help to 

determine whether spatially variable management is cost effective. We considered a decision tree 

to assess the ‘Potential for variable rate management’ by Lark et al. (2003) and the Opportunity 

index by de Olveira (2009). We found parts of the Lark et al.(2003) were counterintuitive due to the 

way the tree was derived and that the Opportunity index was over sensitive to the range of the 

variogram of the yield monitor data. We proposed a new metric for variable rate management that 

we believe can be used by a farmer to rank his fields in order of the potential for variable rate 

management. It is very difficult to determine thresholds for these metrics over which variable rate 

management would be cost effective. Therefore, we believe it is best if the farmer ranks his or 

her fields according to a measure such as the management score we proposed to determine 

which fields are most likely to respond profitable to variable rate management. We caution 

that a large score does not necessarily indicate that variable rate management is cost 

effective, only that the farmer would be wise to try and understand the causes of the observed 

variation to see if it could be managed more efficiently. 
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6.1. Guidance for farmers 

The principles described here could be integrated to help farmers to the most from their yield data. 

Yield map

Clean yield map

Delineate management 
zones

Form variogram

Are differences substantial?

Explore reasons for differences in variation
• Water – supporting data may inform
• Weeds
• Change in soil nutrient variation 

Does variogram indicate 
variable rate management 
is appropriate? 

Informs on cost effective 
sampling strategy 

Yes

Yes

Figure 6. Guidance for farmers on the use of yield maps for variable rate management in the field 

(The symbols in the boxes indicate the use of computers to process the algorithms). 

 

Following the logical steps laid out in Figure 6 farmers should  

(i) Clean their yield monitor data to remove artefacts and outliers, without smoothing out 

important variation. A program such as Roth-YE is ideally suited to this. The clean yield 

map will give the farmer an indication of the range of yields in the field and are needed 

for steps (ii) and (iii) below. 

(ii) Inspect the yield maps before further use. Only use monitor data that forms coherent 

maps (e.g. winter wheat, oats and barley) avoid poorer data typically associated with 

maps of oil seeds or peas and beans or maps with large gaps in them. 

(iii) Use the cleaned maps in a spatially smoothed cluster analysis to delineate management 

zones. This will allow farmers to identify parts of the field that vary differently from one 

another across seasons. When differences in yields between zones are reasonably large, 

the farmer should seek to understand these differences using a combination of his or her 

expert knowledge, other sensor data, historic weather data and perhaps soil sampling. 
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(iv)  Form variograms using recent (up to last five) years yield monitor data to get a picture 

closer to the current situation in the field. Variograms of the yield monitor summarise 

important features of the yield variation in the field, and this can be assumed to be a proxy 

for soil conditions. Therefore, metrics based on the variogram can be used to decide (i) 

when variable-rate application of fertilizer might be cost effective and (ii) what sampling 

strategy is best to apply to determine the nutrient status of the field.    

 

6.2. Future research and knowledge transfer  

6.2.1. Integrating farmer’s knowledge with hard data to inform management zones. 

In the methods above, we describe how to delineate management zones based on yield monitor 

data. Once these zones are defined other data can be used to determine what is driving the 

differences. Farmers will also often have a sound theory for the reasons for the observed variation 

in yields. Using mathematical techniques this ‘soft data’ could be incorporated with the measured 

data (the hard data) to improve the delineation of management zones and the understanding of what 

drives them.     

 

6.2.2.  Validation of soil management zones by the yield determining factors at field 

In this study, fields were divided in to two−to−four management zones based on the spatial variance 

of the yield determing factors. In only a few of the fields were zones related to the differences in 

measured soil nutrients. A number of other factors (e.g. texture effect on water holding capacity, pH 

and other nutrients like nitrogen, potassium, calcium, magnesium), may be driving the variation in 

the field. We need to validate these soil management zones by the evaluation of yield determining 

factors in the field to explain the variation in the yield between the soil management zones.  

 

6.2.3. Investigate new methods of sampling 

In evaluating the different sampling approaches, we have considered only three methods: field, zone, 

and grid-based. There could be other approaches of sampling. For example if a yield map shows 

that one area of the field is more variable than another, would it be prudent to sample more 

intensively in the more variable zone?  

 

6.2.4. Developing an integrated model that farmers can use 

The methods described here rely on several computer programs working as stand-alone versions. 

Currently these are working prototypes, which need further development to be robust enough to give 

to farmers to use themselves. Although some of the components (e.g. yield cleaning program) have 

user interfaces. Ideally, the methods described here should be integrated into a single program, 

which can do all the different tasks starting from yield cleaning, creating management zones and 
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assessing these fields for variable rate management. This could be made accessible to farmers 

through any web based platforms (e.g. AHDB website).  
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8. Appendices 

8.1. Description of variogram 

A variogram is a function of the expected mean squared difference between random variables at 

places separated in a space of one, two or three dimensions: 

 

ሺhሻߛ     ൌ 1
2
	E ቂܼሺݔሻ െ ܼሺݔ ൅ ݄ሻ2ቃ 

where ܼሺxሻ and ܼሺx ൅ hሻ are variable ܼ at positions x and x ൅ h separated by the vector ݄ for all ݄. 

It characterizes the similarity, or dissimilarity, between places in terms of separation in both distance 

and direction. If ܼ is spatially correlated then ߛሺ݄ሻ increases (the places become increasingly 

dissimilar) as the separating distance increases. 

 

Experimental variograms are often calculated by the method of moments: 

 

     γොሺ݄ሻ ൌ ଵ

ଶ௠ሺ୦ሻ
෌ ሼݖ∗ሺxሻ െ ሺx∗ݖ ൅ hሻሽଶ

௠ሺ୦ሻ

௝ୀଵ
  

where ݖ∗ሺxሻ and ݖ∗ሺx ൅ hሻ are the simulated values at positions  x and  x ൅ h separated  by the lag 

݄, which in the isotropic  case is the scalar distance ݄, and ݉ሺhሻ is the number of comparisons  at  

that  lag.  By changing ݄ we obtained the ordered set to which we can fit variogram models. Several 

authorised variogram models are described by Webster and Oliver (2001). Examples include  

 

The spherical model: 

 

ሺ݄ሻߛ ൌ c଴ 	൅ cଵ 	ቊ1.5 ൬
݄
r
൰ െ 0.5 ൬

݄
r
൰
ଷ

ቋ 					if		݄ ൑  ݎ

 

ሺ݄ሻߛ ൌ c଴ 	൅ cଵ				otherwise 

 

where c଴ and cଵ  are the nugget and spatially correlated parameters of the variance, ݎ is the range 

parameter. 

 

The exponential model:  

 

ሺ݄ሻߛ              ൌ c଴ 	൅ cଵ 	ቄ1 െ exp ቀെ
௛

ୟ
ቁቅ 

 

here c଴ and cଵ  are the nugget and spatially correlated parameters of the variance, a is the distance 

parameter and ݄ = |h| is the separation in distance (or lag). The function approaches its maximum, 
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ܿ଴ ൅ ܿଵ, asymptotically, and the distance 3ܽ is often taken to be the effective range of the 

spatial  correlation.  

 

 

Figure 8.1. An exponential variogram with sill, nugget and effective range shown. 

 

 

 

 

 

  

Sill (c1+ c1) 

Nugget (c0) Range
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8.2. Mathematical symbols and abbreviations used.  

Symbol Meaning 

x ≡ {x1, x2}                  Spatial  coordinates  in two dimensions 

y Yield of crop 

ỹ Standardized yield 

yr Realized yield 

y0 Target  yield 

z Quantity of phosphorus,  P 

z∗                                 Realization  of z

zfert      Quantity of fertilizer P 

zsoil Initial quantity of P in the soil 

ztotal zfert  + zsoil 

k The number of classes in the k-means classification 

Variogram  parameters 

c0 Nugget variance 

c1 Variance of spatially  correlated  structure 

a Distance  parameter 

Costs 

Gwheat Price of grain, assumed to be £150 t −1 

Gfert Price of P fertilizer, assumed to be £0.31 kg −1 

Gsample Cost of soil analysis, assumed to be £5 sample −1 
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8.3.  Summary statistics for P in each field according to zone and the probability that the 

observed variation in P was explained by the classifications. 

 
 Mean Median Minimum Maximum Standard 

deviation 

F prob.  

Field-BD       

Total population 19.3 18.6 12.8 31.2 4.0 0.897 

Zone 1 19.93 20.6 16.0 22.8 2.419  

Zone 2 19.2 16.8 12.8 31.2 5.530  

Zone 3 18.93 19.2 16.6 21.8 1.934  

Field-ER       

Total population 21.7 22.3 14 28 4.144 0.265 

Zone 1 20.0 19 15.4 24.8 3.243  

Zone 2 23.1 24.5 14 28 4.501  

Zone 3 21.9 21.8 17 26.8 4.518  

Field-GP       

Total population 95.0 90.2 37.2 165.2 36.7 0.399 

Zone 1 90.9 92.1 37.2 163.6 35.4  

Zone 2 106.2 103.4 49.8 165.2 39.8  

Zone 3 69.7 69.7 54.2 85.2 21.9  

Field-LM       

Total population 28.0 26.8 18.8 52.2 6.8 0.567 

Zone 1 27.2 26.6 18.8 37.2 5.7  

Zone 2 28.4 27.0 20.6 52.2 7.3  

Field-MC       

Total population 16.9 15.4 11.6 34.8 6.1 0.449 

Zone 1 16.1 13.6 11.6 34.8 6.7  

Zone 2 18.1 17.4 13 29.8 4.9  

Field-RH       

Total population 83.2 72.6 20.8 163.4 40.4 0.144 

Zone 1 81.84 72.6 20.8 145.0 39.71  

Zone 2 59.48 51.0 40.8 97.0 22.63  

Zone 3 109.6 118.8 44.2 163.4 46.01  
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8.4.  Parameters of different variograms models for various fields. 

Field Year Model Range Sill Nugget VR** SD†† 

a1 a2 C1 C2 

Field-BD 2000 Exponential* 274.4 - 0.91 - 0.36 0.63 1.82 

 2003 Double Spherical 190.5 386.9 2.20 0.95 0.28 1.23 4.00 

 2006 Spherical 268.6 - 0.18 - 0.32 0.24 1.15 

Field-CC 2004 Double Spherical 39.3 198.6 0.81 1.31 0.65 1.14 2.20 

 2005 Double Spherical 42.4 234.8 1.16 1.01 0.94 1.19 1.97 

 2008 Double Spherical 36.2 113.3 1.11 0.43 0.66 1.15 2.10 

 2009 Double Spherical 44.6 165.9 0.73 0.25 0.30 0.89 2.42 

 2011 Exponential* 158.9 - 3.11 - 1.13 1.38 2.10 

Field-CP 2000 Double Spherical 17.6 415.3 0.50 0.52 0.44 0.77 1.54 

 2003 Double Spherical 18.6 146.1 0.72 0.29 0.32 0.93 1.85 

 2006 Double Spherical 33.5 235.4 0.37 0.16 0.40 0.64 1.63 

 2008 Exponential* 93.6 - 1.19 - 0.67 0.96 1.84 

 2009 Double Spherical 42.1 313.8 0.79 1.92 0.46 1.12 2.54 

 2011 Double Spherical 22.4 103.9 0.92 0.26 - 1.04 3.10 

 2012 Double Spherical 23.2 122.2 0.59 0.71 0.00 1.00 3.99 

Field-ER 2004 Exponential* 65.5  0.44  0.83 0.61 1.30 

 2006 Exponential* 52.3  0.36  0.34 0.57 1.52 

 2008 Double Spherical 11.4 90.4 0.93 0.21  1.04 1.79 

 2009 Exponential* 57.6  1.36  0.38 1.09 2.22 

 2012 Exponential* 60.0  0.97  0.12 0.92 2.79 

Field-EL 2001 Double Spherical 25.2 286.7 0.52 1.63 0.74 0.99 1.79 

 2002 Double Spherical 16.1 656.0 0.69 3.93  1.10 3.10 

 2003 Double Spherical 37.3 188.3 0.19 0.16 0.36 0.50 1.48 

 2010 Double Spherical 21.8 156.5 3.03 1.60 0.09 1.94 3.00 

 2011 Double Spherical 28.4 323.2 1.53 1.55 0.16 1.37 3.19 

Field-HM 2000 Double Spherical 49.2 473.3 0.19 0.81 0.30 0.56 1.76 

 2003 Double Spherical 128.1 499.6 0.50 0.85 0.49 0.67 1.71 

 2006 Exponential* 233.7  0.07  0.27 0.19 1.11 

Field-HS 2002 Double Spherical 64.8 347.9 1.52 2.52 1.17 1.38 2.13 

 2005 Double Spherical 48.6 269.7 1.28 1.13 0.48 1.23 2.70 

 2008 Double Spherical 22.3 187.6 2.71 0.99  1.75 3.03 
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*Effective range = lag distance * 2.966; 

†Effective range 95% of the half of the maximum length of the field 

**VR: Variance ratio; ††SD: Standard deviation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2009 Double Spherical 64.7 443.0 1.31 0.90 0.53 1.13 2.50 

 2011 Double Spherical 56.5 313.8 3.22 2.33 1.50 1.86 2.42 

Field-LM 2001 Double Spherical 128.4 323.7 0.59 0.33 0.64 0.66 1.55 

 2004 Exponential 143.1 - 0.91 - 0.31 0.77 2.18 

 2005 Spherical 181.2 - 0.28 - 0.21 0.35 1.48 

 2007 Spherical 118.6 - 0.30 - 0.23 0.43 1.65 

Field-MC 2002 Exponential* 96.2 - 0.82 - 0.60 0.79 1.68 

 2005 Power† 138.0 - 0.02 - 0.44 0.47 1.32 

 2008 Double Spherical 39.4 227.9 0.37 0.54 0.65 0.74 1.59 

Field-PA 2004 Spherical 229.1 - 2.49 - 0.27 0.88 2.92 

 2005 Double Spherical 57.5 278.7 0.11 0.39 0.17 0.46 1.92 

 2007 Spherical 249.6 - 0.20  0.33 0.24 1.15 

Field-RH 2000 Double Spherical 10.1 411.5 0.67 1.11 0.0 0.94 1.86 

 2006 Power† 380.0  0.32  0.39 0.18 1.07 
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8.5.  Opportunity index (࢏܇) and its components for different years for different fields. 

Field Year X_mean aCv Mv Sv Yi 

Field-BD 2000 8.2 9.3 0.9 228.3 14.6

 2003 6.3 19.2 1.9 322.5 24.9

 2006 8.3 5.8 0.6 224.2 11.4

Field-CC 2004 10.3 11.8 1.2 165.8 14.0

 2005 10.0 12.5 1.3 195.8 15.7

 2008 14.2 7.6 0.8 94.17 8.5

 2009 10.0 8.1 0.8 138.3 10.6

 2011 11.1 13.7 1.4 132.5 13.5

Field-CP 2000 12.6 6.6 0.7 345.8 15.1

 2003 12.3 6.8 0.7 121. 7 9.1

 2006 10.5 6.8 0.7 195.8 11.5

 2008 12.5 7.9 0.8 78.3 7.9

 2009 9.6 12.5 1.3 261. 7 18.1

 2011 10.4 7.8 0.8 86. 7 8.2

 2012 6.1 13.1 1.3 101. 7 11.5

Field-ER 2004 11.7 8.8 0.9 55.0 7.0

 2006 10.3 6.0 0.6 43.3 5.1

 2008 13.0 6.4 0.6 75.0 6.9

 2009 9.8 10.0 1.0 48.3 6.9

 2012 6.5 12.2 1.2 50.0 7.8

Field-EL 2001 11.4 9.7 1.0 239.2 15.2

 2002 9.0 12.8 1.3 546. 7 26.4

 2003 7.6 8.1 0.8 156. 7 11.3

 2010 11.7 14.2 1.4 130.0 13.6

 2011 10.8 11.6 1.2 269.2 17.6

Field-HM 2000 9.2 7.7 0.8 394.2 17.5

 2003 7.1 12.4 1.2 416. 7 22.7

 2006 8.3 5.1 0.5 195.0 10.0

Field-HS 2002 11.7 15.1 1.5 290.0 20.9

 2005 9.9 12.3 1.2 225.0 16.6

 2008 13.1 11.1 1.1 156. 7 13.2

 2009 9.9 11.9 1.2 369.2 20.9

 2011 11.6 16.8 1.7 261. 7 20.9

Field-LM 2001 9.9 9.0 0.9 270.0 15.6

 2004 9.4 8.2 0.8 119.2 9.9
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 2005 7.9 6.2 0.6 150.8 9.6

 2007 8.3 6.2 0.6 99.2 7.8

Field-MC 2002 10.2 9.6 1.0 80.0 8.7

 2005 9.7 7.2 0.7 115.0 9.1

 2008 11.4 7.8 0.8 32.5 5.0

Field-PA 2004 9.0 11.5 1.1 190.8 14.8

 2005 8.4 6.5 0.6 48.3 5.6

 2007 7.4 6.6 0.7 208.3 11.7

Field-RH 2000 8.9 9.9 1.0 343.3 18.5

 2006 6.7 7.5 0.8 316.7 15.5

 

 


