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1. Abstract 

The project aimed to progress sustainable and cost-effective management of clubroot, through an 

enhanced understanding of the diversity of UK clubroot populations, and the prevalence of varietal 

resistance breaking strains. Secondly, the project aimed to assess the potential for targeted 

treatment by mapping the severity of clubroot in affected fields.  

 

The project results have highlighted the prevalence of clubroot in the UK, the diverse nature of the 

pathogen population and the patchy nature of the disease in affected fields. Twenty-five fields were 

assessed using a standardised European Clubroot Differential Host set and 20 different pathotypes 

were identified, in almost equal proportion. Strains of clubroot that can overcome the ‘Mendel’ 

resistance to clubroot, which is present in resistant varieties like Crome, Mentor and Cracker, were 

found to be present throughout the UK. Soils from seventy-five fields were tested in total, using the 

oilseed rape varieties Mendel (resistant) and Tolken (susceptible) in bioassays. Of these, almost half 

(49%) had disease severities of more than 10% in the resistant variety, as a % of what was noted in 

the susceptible variety, and 15% of sites gave results of over 30% disease severity.   

 

Mapping clubroot severity in commercial crops, at 50m grid squares, and testing the soil and 

examining plants at three timings in the season, illustrated the patchy nature of the disease. 

However, yield maps of these sites highlight that the pathogen is just one cause of low-yielding 

patches in fields. The disease mapping demonstrated the potential for the targeted management 

tools, such as liming or any new but relatively costly methods that might later be developed. It would 

also allow for hygiene precautions to be taken around infected patches and for patches to be 

differentially treated when drilling susceptible crops – for example leaving bare or seeding with grass. 

Disease mapping also has potential to help with decision-making; a field with a low level of infection 

distributed evenly in the field would be managed differently to a field with a single hot spot. However, 

such fields might give a similar test result under current testing systems, which could assign a single 

risk level for the whole field. Fields in this project were mapped using qPCR, bioassays and by 

visually assessing disease levels developing in the field. It was evident that soil tests, particularly 

molecular tests, do not correlate well with in-field disease development, so this is an area where 

further refinement is needed. 

 

The practical advice arising from this project is that, because of the prevalence of clubroot in the UK 

and the widespread occurrence of resistance breaking strains, growers should keep accurate crop 

records of clubroot occurrence, location and intensity and note where varietal resistance has been 

deployed in fields to aid long-term planning and help prevent spread.  

 

The use of resistant varieties should not be used as the sole management tool because of the high 

frequency of Mendel-breaking strains in the UK. The use of non-susceptible crops in rotational 
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courses is the most sustainable long-term solution, and should be used in partnership with other 

options such as resistant varieties or liming. Where resistant varieties are used, crops should be 

monitored carefully to assess the levels of clubroot that develop so that, if levels of infection start to 

increase, farm strategy can be changed. Inoculum increase through volunteers and weeds is a 

recognised risk, so managing volunteers and susceptible weeds within and between oilseed rape 

crops, especially on farms with a record of clubroot and or on tight rotations, is critical. Purchasing 

certified seed ensures that susceptible plant numbers are minimised in a resistant variety seed batch, 

so resistant varieties should not be home-saved for seed.   

 

Growers should be mindful of other susceptible crop choices when planning rotations – spring rape 

is susceptible and cover crop mixes often contain susceptible species.  Ideally, long-term planning 

should be based on the long-term profitability of a field and not on a single season’s predicted margin. 

Field mapping should be considered in order to inform management choices; around isolated 

patches, basic hygiene measures to reduce spread can be taken and there is potential to target 

available tools at infected areas. These might include liming, the use of resistant varieties or the use 

of fallow / grass in a patch of known infection. Since clubroot persists for up to 20 years, knowledge 

of patches would remain useful for several seasons after a mapping exercise.  
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2. Introduction 

Clubroot is the most intractable and damaging problem affecting oilseed rape in the UK, causing 

significant, or even complete, crop losses when present (Dixon, 2009). The disease can persist in 

soils for up to 20 years, so cannot be managed practically through extending normal arable rotations 

(Wallenhammer, 1996).  A recent AHDB project (No. 3373) (Burnett et al., 2013) sampled soils on 

UK arable farms where clubroot was suspected to be constraining yield and found that over 50% of 

oilseed rape land in the UK was contaminated with clubroot. Clubroot-free land is therefore a 

diminishing resource. The disease is favoured by warm autumns and winters and so in addition to 

close rotations, climate warming may be a factor in increased clubroot incidence and severity 

(Gossen et al., 2014) 

 

More than 100 pathotypes of P. brassicae have been recorded based on the response to a series of 

different brassica host species called the European Clubroot Differential lines (ECD) (Buczacki et 

al., 1975). Pathotype variation differs not only at a global scale but also at a field scale reflecting the 

heterogenetic nature of P. brassicae populations.  

 

Clubroot management remains a challenge for growers and any current tools offer only partial 

control. Available soil treatments (lime, Calcium cyanamide and soluble boron) were studied over 

several sites and seasons (McGrann, 2015) and gave highly variable reductions in clubroot. The 

most effective treatment (high dose lime at 8 t/ha) gave a mean reduction of 25% in clubroot severity.   

 

Varietal resistance remains the most effective method of clubroot control, although resistance to 

clubroot is currently based on a single resistance gene (termed ‘Mendel’) and this resistance source 

is not effective against all pathotypes of the disease (McGrann et al., 2015).  In areas where resistant 

crops have been deployed repeatedly ‘Mendel’ resistance has become eroded and those ‘resistance 

breaking strains’ of the pathogen that are virulent on ‘Mendel’ varieties have inevitably become more 

prevalent.  Fundamental research for new sources of resistance is ongoing and the work described 

here will align and add field relevance to that search. There are large knowledge gaps around the 

UK clubroot population, and no up-to-date information on common strains and their distribution.  

 

The project reported here aimed to establish the distribution and prevalence of pathotypes within the 

UK P. brassicae population in order to provide immediate information on areas where races that are 

pathogenic on ‘Mendel’ resistant varieties are present in the UK. This would better inform variety and 

rotational choices for growers and would also inform work on breeding for novel sources of 

resistance.  

 

Soil treatments with lime, calcium or boron gives partial control, but strategies used in vegetables, 

such as raising field pH to over 7.5, are not practical over whole fields in the context of arable 
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rotations as other crops within the rotation might be severely compromised. Targeted treatment of 

affected patches offers a potential approach and might be more cost effective than treating whole 

fields. The project set out to map fields to establish the impact and distribution of patches of the 

disease within crops. This is the approach being taken in Europe and Canada where the disease is 

also prevalent. The practical applications of this might be that, through the use of soil sampling and 

precision farming technologies, spot treatment liming (or application of alternative but potentially 

expensive biological controls) would be possible. Mapping fields and targeting application of control 

treatments to only affected areas of fields would be more practical and cost effective than treating 

whole fields. There would be immediate practical gains to the grower in targeting treatment or 

resistant varieties at the high-risk areas, and also at the simple level of taking basic hygiene 

measures to avoid spreading patches and leaving them fallow or grassed.  

 

This project aimed to advance our understanding of the variation of this pathogen in the UK and add 

field relevance to searches for novel resistance and to produce practical management messages for 

growers. We are grateful for the input of stakeholders who attended two workshops in the course of 

the project, funded by the P3 initiative at Sheffield University and helped shape protocols.  

 
Figure 1. Example clubroot symptoms in oilseed rape 

 

The key aims of the project are set out below:- 

1. Determine prevalence and distribution of resistance breaking P. brassicae strains in the UK  

2. Quantify the rate of selection for resistance breaking P. brassicae strains in clubroot field 

populations at previously studied sites 

3. Establish, through field mapping, the impact and spread of patches of clubroot contamination 

in soils 

4. Investigate the cost efficacy of treatment through field mapping 
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3. Materials and methods 

3.1. Clubroot populations studies   

This work package mapped the clubroot pathotypes present in the UK to determine the distribution 

and prevalence of resistance breaking pathotypes which can infect in the presence of the ‘Mendel’ 

gene. Current UK clubroot pathotypes were differentiated using the ECD set. At a 2014 international 

workshop it was agreed that sources containing the ‘Mendel’ resistance would be included in the 

standard pathotype screen for the first time. As well as characterisation of field populations, the work 

also aimed to prepare reference isolates of clubroot to deliver into breeding programmes.  Clubroot 

from each site was bulked in Chinese cabbage and then tested for the presence/absence of Mendel 

virulence. Single-club clubroot isolates were isolated from a subsample of 10 soils. 

 

3.1.1. Determining the prevalence and distribution of resistance breaking strains in the 
UK 

To structure the sample of sites, as far as possible, sites were selected on geographical-scale line 

transects (at least approximately), N-S and E-W. Through local consultants, seventy-five fields from 

across the UK were identified that were at high risk of clubroot.  Soil was collected from each of 

these fields so that bioassays could be completed to determine the prevalence of resistance breaking 

strains through growing varieties of oilseed rape with and without Mendel resistance to determine 

the proportion of the potential clubroot population that was capable of overcoming the Mendel 

resistance.  Further methodology for completing bioassays is included in section 3.1.3. 

 

3.1.2. Indicate the diversity of strains in the UK clubroot population 

From the seventy-five fields sampled above (section 3.1.1), soil from a random sub-sample of 25 

fields was selected for testing using differentials of the European Clubroot Differential Set (ECD).  

The seed material was kindly supplied by Prof. Geoff Dixon, from the University of Warwick.  The 

ECD set was initially described by Buczacki et al., (1975), and consists of fifteen lines, split into three 

chromosome groups (Table 1).  Each host tested within a group is assigned a Denary number, so 

that the hosts from each group which prove within a bioassay test to be susceptible to a particular 

population can be summed together, with each combination providing a unique number code which 

describes the population tested. 
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Table 1. European Clubroot Differential Set (ECD) host species with their denary values. 

ECD genotype ECD score Differential Denary 
value 

    
20 chromosome group ECD 01 subsp. rapifera. Line aaBBCC 1 

Brassica rapa ECD 02 subsp. rapifera. Line AAbbCC 2 

 
ECD 03 subsp. rapifera. Line AABBcc 4 

 
ECD 04 subsp. rapifera. Line AABBCC 8 

 
ECD 05 var. pekinensis. Chinese cabbage cv. Granaat 16 

      
 

38 chromosome group ECD 06 var. napus. Dc101 Nevin 1 

Brassica napus ECD 07 var. napus. Dc119 Giant Rape 2 

 
ECD 08 var. napus. Dc128 selection from Dc 119 4 

 
ECD 09 var. napus. Dc129 New Zealand resistant rape 8 

 
ECD 10 var. napobrassica. Dc130 Wilhelmsburger 16 

      
 

18 chromosome group ECD 11 var. capitata. Badger Shipper 1 

Brassica oleracea ECD 12 var. capitata. Bindsachsener 2 

 
ECD 13 var. capitata. Jersey Queen 4 

 
ECD 14 var. capitata. Septa 8 

 
ECD 15 var. acephala subvar. Laciniata. Verheul (Kale) 16 

    

 

3.1.3. Bioassay methodology 

Bioassays were completed using soils sampled to determine which clubroot populations were able 

to overcome host resistance in optimal controlled environment conditions.  Field soil samples were 

processed so large stones and plant material were removed before being thoroughly mixed and used 

to fill plastic seed trays with drainage holes (20 x 14.5 x 5.5 cm). Positive and negative controls, 

consisting of soil sampled from a heavily infected site (positive control) and John Innes No. 2 potting 

compost (negative control), were set up with every batch of tests.  

 

To determine the prevalence of resistance breaking strains, twenty-five seedlings of Chinese 

cabbage cv. Granaat, the susceptible oilseed rape cultivar Tolken, and the clubroot resistant oilseed 

rape cultivar Mentor were sown in infected soils from each field sampled.  

 

To determine the diversity, trays were sown with the 15 host species of the ECD set as outlined in 

Table 1.  The seedlings were grown for 6 weeks under glasshouse conditions with soil temperature 

kept above 21OC and the soils kept moist to encourage infection. The plants were assessed and 
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scored for clubroot infection using a four category scale where 0 = uninfected, 1 = slight clubbing, 2 

= moderately clubbed and 3 = severely clubbed. A 0-100 severity index was then calculated by 

weighting the incidence of plants in the three positive categories by a factor of one, two or three 

respectively using the following formula: Index = ((1*slight) + (2* moderate)+ (3* severe)) * 

(100/3*number of plants assessed). 

 

 
Figure 2. Bioassay in progress, ADAS Boxworth, Cambridgeshire. 

 
3.1.4.  Understanding the stability of clubroot strains at previous tested sites 

Two sites that were used as field trial sites and so were pathotyped in a previous clubroot study 

(Defra project no HH3227TFV, Harling, 2007) were revisited and retested to establish changes in 

clubroot levels and any shifts in the pathotypes present. The first site tested was from the SRUC 

Craibstone Farm site where long-term clubroot beds have been sited for varietal resistance 

screening in the Woodland’s long-term experiment, established in the 1920s. The second planned 

site was at Barnsmuir Fife which has been in raspberry production since the Defra project ended. 

The testing methodology was as described in 3.1.2. 

 

3.1.5. Deliver reference isolates to breeding programmes 

Initial experiments to develop near-single spore isolates of clubroot were based on a single 

Plasmodiophora brassicae isolate from Cupar, Scotland (McGrann et al., 2015). A recently published 

method for this procedure based on isolation of single sporangiosori from infected root hairs 
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(Diederichsen et al., 2016) was tested due to reportedly higher success rates compared to previous 

published protocols. Winter oilseed rape (WOSR) cv. Fashion seeds were grown in John Innes No. 

3 compost inoculated with P. brassicae resting spores to give a final concentration of approximately 

104 spores g soil−1. Plants were harvested one or two weeks after sowing and roots examined for 

the presence of single sporangiosori. Sporangiosori were observed at both harvest dates with more 

root hairs visibly infected at two weeks (Figure 3). Sporangiosori appeared to be predominantly 

located in very fine roots hairs which meant that excising these structures from the plant under a 

binocular microscope at 400X magnification was not possible without damaging the root hair. A 

student bursary project funded by AHDB (Appendix 7.3) assisted with method development.  

 

 
Figure 3. Plasmodiophora brassicae sporangiosori in winter oilseed rape cv. Fashion root hair, two 

weeks after planting in clubroot infested soil. 

 

Due to the difficulty of carrying out single spore isolation an alternative method was agreed with 

AHDB to perform single club isolation instead. Resting spores were prepared from infected galls as 

previously described (McGrann et al., 2015), quantified using a haemocytometer and diluted to a 

concentration of 10 resting spores 5 mL-1. Ten three-day old winter oilseed rape seedlings cv. 

Fashion were placed in the tube with the diluted resting spore solution and incubated in the dark at 

room temperature before being planted in John Innes compost at a rate of one inoculated seedling 

per pot. After eight weeks growth in an ambient temperature glasshouse inoculated plants were 

washed free of soil and examined for signs of root galling indicative of clubroot infection. Galls were 

harvested and stored at -20 oC. 
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3.2. Establish, through field mapping, the impact and spread of patches of 
clubroot contamination in soils 

Clubroot is patchy in its distribution and the importance of this was studied through detailed sampling 

in a small number of infected fields. Fields were selected in contrasting geographic regions in 

Scotland and England. The sampling was coupled with quantification of inoculum through visual 

assessment, bioassays and a quantitative PCR method, following the published methods of the 

Wallenhammar group (Wallenhammar et al., 2012) so that the UK results could be interpreted in a 

global context as this methodology is used by international researchers (Strehlow et al., 2014). Field 

mapping of clubroot severity and incidence was linked with precision farming collaborators so that a 

natural output of this work package is that treatment can be targeted at high risk areas. Mapping 

involved taking 30 samples in grid pattern per field at three time points per season. The GPS position 

of each subsample was recorded and samples retained separately.  Sites were selected in 

consultation with industry partners on farms where yield mapping was undertaken. Mapping was 

linked to currently available systems for mapping pH across fields so that clubroot treatment through 

manipulation of lime application could be achieved. All samples were tested for pH. 

 

3.2.1. Commercial field mapping 

A total of 16 commercial fields were used in this study to map the distribution and severity of clubroot 

in a field over a growing season (Table 2). In each field the presence and severity of clubroot infection 

was estimated by visual assessment of 10 plants carried out at 30 points distributed on a grid pattern 

across the field. Each point was geo located for mapping purposes using a hand-held GPS device 

with a horizontal accuracy of approximately 3m.  At each point soil samples were collected for 

subsequent pH measurement and P. brassicae DNA quantification (Cf. 3.2.2). In addition, a visual 

destructive assessment was completed on 10 plants per point for club root severity (0-3 scale) which 

was converted to a 0-100 index, with repeat destructive club root assessments occurring at the same 

sample locations later in the season.  NDVI (normalized difference vegetation index) mapping data 

was sourced from Data Farming (maps.datafarming.com.au), with maps downloaded as geo tiff files 

where data was available near to the clubroot infield assessment timings, which varied depending 

on cloud cover and timing of satellite passes.  Field maps of clubroot severity index, treatment 

economics and NDVI were visualised within this project using QGIS version 2.18.10.   
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Table 2. Commercial sites mapped for clubroot.   

Site  Year Region Field name Description of epidemic 

1 2016 Warwickshire Warwick Highly infected site 

2 2016 Shropshire Bridgnorth Highly infected site 

3 2016 Angus Market Moderately infected field 

4 2016 Angus Podge Very low disease 

5 2016 Herefordshire Ivington Moderately infected field 

6 2016 Staffordshire Staffs Moderately infected field 

7 2017 Staffordshire Staffs Moderately infected field 

8 2017 Herefordshire Pencombe Highly infected site 

9 2017 Herefordshire Sutton Moderate-high disease 

10 2017 Herefordshire Little Dilwyn Moderately infected field 

11 2017 Arbroath Boysack Low-moderate infection  

12 2017 Earlston Whinney Hill Low disease  

13 2018 Staffordshire Congieve Low-moderate infection 

14 2018 Herefordshire Murder  Moderate-high infection 

151 2018 Angus Slade50 Very low disease 

16 2018 Angus Brae Face West Very low disease 
1 This field was unfortunately ploughed after the winter sampling due to poor establishment and high 

herbivory damage 

 

3.2.2. Molecular test methods 

In addition to visual assessment in the field, the presence of P. brassicae DNA in the soil was 

assessed at every sampling point in each field. Large stones and plant material were removed prior 

to manually mixing the soil. Sub-samples of 0.5 g were taken for DNA extractions. Sample 

preparation was carried out using the FastPrep-24 5G system (MP Biomedicals, Eschwege, 

Germany) followed by DNA extraction using the Fast DNA Spin Kit for soil (MP Biomedicals, 

Eschwege, Germany) following manufacturer’s instruction. Total DNA was quantified using the 

QuBit3 Fluorometer (Invitrogen, Carlsbad, CA, USA), and diluted to 10 ng uL-1. A standard curve 

was obtained by a 1/5 serial dilution of 10 ng of P. brassicae DNA. The qPCR reactions were carried 

out on an Aria Mx Real Time PCR system (Agilent technologies, Santa Clara, CA, USA) using the 

SybrGreen Jump StartTM Taq system (Sigma, Dorset, UK) following manufacturer’s instructions. 

Reactions were carried out as described in Wallenhammar et al. (2012) in triplicate. DNA extraction 

and quantification were carried out twice for each sampling point.  
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3.2.3. Economic analysis of the cost efficacy of treatment through field mapping 

Clubroot index values from the spring assessment (Feb - April) were used to calculate yield losses 

from clubroot and the cost efficacy of treatment following the yield loss estimates in Burnett et al., 

2013. Later assessments were not used as it was generally noted that infected plants had died by 

this late time and the levels of clubroot, as quantified by in-field plant assessments, therefore 

appeared to fall. Burnett et al., 2013 estimated yield loss as 0.03 t/ha per 1% clubroot severity. The 

benefit of treatment was also based on the results of the trial series reported in Burnett et al., 2013 

where the most effective soil amendment was lime (CaCO3).  Liming in this trial series provided a 

mean of 25% control across all sites, and this level of control and commensurate yield benefit was 

used in the economic analysis. 

 

In the economic analysis presented here liming was costed in at 4 t/ha using a cost of £20 per tonne 

of lime, including spreading costs. An informal survey of 23 UK agronomists was used to determine 

this costing and revealed a wide range of liming costs, ranging from less than £10 per tonne up to 

£35 per tonne. This was often dependent on the local availability of lime so, for example, those with 

ready access to lime available as a by-product of the sugar industry  (LimeX) tended to pay least, 

those with local mined sourced tended to be mid-range and a few sites such as the south west of 

Scotland were at the highest end of the price spectrum. Worth noting is the aggregates tax paid on 

mined lime. The price of oilseed rape was taken as £335.50 per tonne which was the November 

2018 price from the AHDB Market Data (AHDB, 2018). The price of oilseed rape has risen since the 

final harvest of trial sites in this project but was also considerably lower at points over the three-year 

duration of the project so the price at the finishing point of the project was deemed a logical and 

topical price to select. 

 

4. Results 

4.1. Clubroot populations studies   

4.1.1. Determining the prevalence and distribution of resistance breaking strains in the 
UK 

Over the three-year study, 75 fields were sampled across the UK to determine the prevalence of 

resistance breaking strains.  Sites were selected for sampling which were high risk of clubroot, 

however 12% of those sampled did not produce clubroot visible galls within this test.  Of the sites 

where clubroot was present in the soil, 21% of sites did not develop clubroot symptoms at all within 

the resistant variety.  Within 62% of the field sites tested, clubroot did develop in the Mendel resistant 

variety, however the proportion of the clubroot population of the Mendel resistance breaking strain 

was below 30% of the population at these sites, which is not considered significant.  In 17% of the 

sites, between 30% and 100% of the clubroot population was able to produce clubroot symptoms on 

the Mendel resistant variety.  Full details of the frequency of various intensities of resistance breaking 
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strains of clubroot are shown below (Figure 4). If certified seed is taken as being of 90% purity then 

the 10% infection level was deemed a reasonable tolerance if the seed used in bioassay testing was 

at the minimum purity standard and all ‘non-Mendel’ plants were susceptible.  

 
Figure 4. The percentage of fields sampled with differing proportions of Mendel insensitive clubroot 
populations.  The proportion of the population able to overcome the Mendel resistance is represented 
on the X axis, with the percentage of sites falling into each category is represented on the Y-axis.  
Total number of fields sampled = 75.  Individual site data is published in Appendix 7.1, Table 5. 
 
 

The distribution of samples taken for the bioassays and the average proportion of Mendel resistance 

breaking strains in sampled counties is shown in Figure 5.  Clubroot severity and levels of sensitivity 

to resistance genes is likely to vary from field to field however a degree of insensitivity was observed 

in all but two regions (each of which had very limited data with only one sample tested with clubroot 

infection).  Further data is shown in Appendix 7.1, Table 5. 
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Figure 5. Mendel resistance breaking clubroot populations in the UK.  The numbers indicate how 
many samples were taken in the county which were infected with clubroot, the colour shows the 
average proportion of resistance breaking strain across all the fields sampled within the county. 
Samples were not taken from grey coloured regions. 
 
4.1.2. Indicate the diversity of strains in the UK clubroot population 

A subsample of 25 fields from those tested in the + / - Mendel resistance bioassay work were 

selected at random in order to further investigate clubroot populations in the UK using hosts from 

the European Clubroot Differential lines (ECD).  Results from this are presented in Figure 6, which 

show a diverse clubroot population with 20 different pathotypes identified within this project.   

Further data is shown in Table 6 of Appendix 7.1. 
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Figure 6. Pathotypes in the UK as determined from growing host species from the European Clubroot 
Differential lines (ECD) in infected soil from 25 fields across the UK between 2015-2018. 
 
 
 

4.1.3. Understanding the stability of clubroot strains at previous tested sites 

Two sites that were pathotyped in a previous clubroot study (Defra project no HH3227TFV, 2007) 

were revisited and retested to establish changes in clubroot levels and any shifts in the pathotypes 

present including within field pathotype heterogeneity. The Fife site at Barnsmuir had been in 

raspberry production since 2007 and no clubroot was detected in a bioassay of the site and so the 

plan to pathotype this site was abandoned. The second site at SRUC Craibstone was pathotyped 

using the ECD tests detailed in section 3.1.2 and found to be the same as in 2007 testing - 16/31/7. 

This site has had a range of brassica hosts and non-susceptible crops as well as radishes and given 

the varied rotation it is perhaps surprising that the pathotype has remained apparently stable over 

this period.  
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4.1.4. Deliver reference isolates to breeding programmes 

Small galls were visible on a number of plants inoculated with resting spores and disease scores 

ranged from 1-3 using a five scale rating based on the severity of galling with 0 = no galling; 1 = 

small clubs present, most of fibrous root still healthy; 2 = galls visible around tap root and crown; 3 

= moderately severe galling with healthy roots still visible; 4 = severe galling with few healthy fibrous 

roots present; 5 = severe galls with root system now rotten (McGrann et al. 2015). The galled roots 

were washed and clubs were harvested and stored. The single club collection (Table 3) has now 

been made fully available to breeders and was delivered into the OREGIN project.  

http://sciencesearch.defra.gov.uk/Default.aspx?Menu=Menu&Module=More&Location=None&Com

pleted=0&ProjectID=9879  

 

Table 3. Detail of the single club collection delivered into the OREGIN project 

Year Source Location Crop Pathotype Number of 
clubs stored 

2017 SRUC Aberdeen Oilseed rape 17/31/31 16 

2018 SRUC Turiff Swedes  * 18 

2018 SRUC Turiff Oilseed rape  * 14 

2017 SRUC Boysack Oilseed rape  * 15 

2014 Barnsmuir Cupar Vegetable brassicas 16/2/30 8 

2014 Gaudley bank Cupar Vegetable brassicas 16/31/31 18 

2018 SRUC Aberdeen Oilseed rape  * 2 

2018 SRUC Craibstone Various  * 3 

*Not pathotyped 

 

4.2. Establish, through field mapping, the impact and spread of patches of 
clubroot contamination in soils 

4.2.1. Commercial field mapping  

The mapped clubroot severities (from in field plant assessments) from each of the intensely 

monitored fields are presented below (Figure 7 – Figure 21).  A range of disease severities were 

observed during the project, with some fields observed having very low levels of clubroot e.g. Brae 

Face West in 2018 (Figure 20), to the other extreme with very severe clubroot severities at Bridgnorth 

in 2016 (Figure 8).The disease development over time varied between fields and seasons.  No 

consistent pattern of infection was observed, with patch size shape and location varying on a field 

by field basis, with patches not necessarily being identified near a field entrance.  In addition, through 

the season the severity of clubroot did not consistently become more severe, with levels of infection 

in some fields staying relatively static or even declining towards the end of the season as infected 

http://sciencesearch.defra.gov.uk/Default.aspx?Menu=Menu&Module=More&Location=None&Completed=0&ProjectID=9879
http://sciencesearch.defra.gov.uk/Default.aspx?Menu=Menu&Module=More&Location=None&Completed=0&ProjectID=9879
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plants died out.  The patch size within a season did not increase by a detectable amount, and with 

the longevity of clubroot in soils this means that information on patches of infection is likely to remain 

useful over a number of seasons.  Where available in monitoring years 2017 and 2018 spring 

clubroot severities were overlaid on NDVI (Normalized Difference Vegetation Index, which quantifies 

the density of green on a patch of land) maps from similar time points, to show the correlation 

between clubroot infection and NDVI decline where clubroot was known to be the main cause of 

stunting or plant loss within a field (maps presented in Appendices; 7.2.2 NDVI maps).   

 
In field clubroot results 2016 

  
Clubroot severity index, February 

 

 
Clubroot severity index, June 

 
Figure 7. Intense field monitoring, Clubroot severity index over time, Field: Warwick, 2016. 
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  Clubroot severity index, February 
 

  
Clubroot severity index, April 
 

Clubroot severity index, July 

 
Figure 8. Intense field monitoring, Clubroot severity index over time, Field: Bridgnorth, 2016. 
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Clubroot severity index, February 

 
Clubroot severity index, June 

Figure 9. Intense field monitoring, Clubroot severity index over time, Field: Staffordshire, 2016. 
 
 

 

         
 

Clubroot severity index, December 

  
Clubroot severity index, February Clubroot severity index, June 

 
Figure 10. Intense field monitoring, Club root severity index over time, Field: Ivington, 2016. 
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Club root severity index, May 

 

 
Club root severity index, July 

 

Figure 11. Intense field monitoring, Clubroot severity index over time, Field: Market field, 2016. 

 



20 

 

 

Clubroot severity index, May 

 

 
Clubroot severity index, July  

 

Figure 12. Intense field monitoring, Club root severity index over time, Field: Podge field, 2016. 
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In field clubroot results 2017 

 

 

Club root severity index, Winter 
 

 
Clubroot severity index, Summer 
 

Figure 13. Intense field monitoring, Clubroot severity index over time, Field: Staffordshire, 2017. 
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Clubroot severity index, Winter 
 

 

 
Clubroot severity index, Summer 
 

Figure 14. Intense field monitoring, Clubroot severity index over time, Field: Little Dilwyn, 2017. 
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Clubroot severity index, Winter 
 

 

 
Clubroot severity index, Summer 
 

Figure 15. Intense field monitoring, Clubroot severity index over time, Field: Pollys Field, 2017. 
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Clubroot severity index, Winter 
 

 
Clubroot severity index, Summer 

 

Figure 16. Intense field monitoring, Club root severity index over time, Field: Penecombe Field, 2017. 
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Club root severity index, Spring 
 

 
Club root severity index, Summer 

 

Figure 17. Intense field monitoring, Club root severity index over time, Field: Boysack Field, 2017. 
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In field clubroot results 2018 

 

 
 

Clubroot severity index, Winter 

  
Clubroot severity index, Spring Club root severity index, Summer 

 
 
Figure 18. Intense field monitoring, Club root severity index over time, Field: Congrieve, 
Staffordshire, 2018. 
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Clubroot severity index, Winter 
 

  
Clubroot severity index, Spring 
 

Clubroot severity index, Summer 

 
Figure 19. Intense field monitoring, Club root severity index over time, Field: Murder, Herefordshire, 
2018. 
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Clubroot severity index, Winter 
 

 
Clubroot severity index, Spring 
 

 

 

Figure 20. Intense field monitoring, Clubroot severity index over time, Field: Brae Face West, 
Arbroath, 2018. 
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Clubroot severity index, Spring 
 
Figure 21. Intense field monitoring, Clubroot severity index over time, Field: Slade 50, Arbroath, 
2018. 
 

 

The effect of soil pH on disease severity was assessed for all the commercial fields. Soil pH was 

measured for every sampling point in each field and compared to the disease severity obtained by 

in situ visual assessment. Overall no correlation was found between clubroot severity and soil pH, 

yet in few fields such as Pencombe and to a lesser extend Staffordshire, clubroot severity decreased 

with increased pH (Figure 22. Distribution of clubroot severity depending on soil pH. Each dot 

corresponds to one of 30 sample points taken across the field. Data shows the distribution of clubroot 

severity in eight different commercial fields.). In the Boysack and Whinney Hill field, soil pH did not 

appear to have an influence on disease severity whereas for Little Dilwyn clubroot severity seems to 

increase slightly with increasing pH. The range of pH measured in the Murder and Congrieve fields 

was very narrow and no clear correlation was noted in these fields. It appears that increasing pH 

may not always result in lower clubroot incidence in certain fields, which is consistent with previous 

findings showing the inconsistent results from soil treatments. The variability of responses observed 

may be due to varying soil types in the different fields sampled, and the varying levels of clubroot 

infection pressure between fields and within fields.  
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Figure 22. Distribution of clubroot severity depending on soil pH. Each dot corresponds to one of 30 

sample points taken across the field. Data shows the distribution of clubroot severity in eight different 

commercial fields. 

 

4.2.2. Molecular test results 

The results given by the visual assessment carried out in situ were not in agreement with those given 

by the molecular-based detection of clubroot in the soil. No significant correlation or trend between 

the results given by the two techniques was found. In several occurrences, the visual assessment 

returned a negative result whereas the molecular tests were positive (Figure 23. Frequency of 

occurrence of positive and negative molecular test in each category of clubroot disease severity). 

The molecular-based technique is highly sensitive and could have detected very low quantities of 

DNA that would not necessarily result in disease development. By contrast, in several cases heavily 

infected roots were observed in the field, yet the presence of P. brassicae DNA was not detected by 

qPCR.  (Figure 23. Frequency of occurrence of positive and negative molecular test in each category 

of clubroot disease severity). The main limitation of the molecular-based technique resides in the 

low amount of soil used for DNA extraction as only 0.5 g of soil is needed in the method tested here. 

Considering the well-known sporadic nature of the disease, the presence of P. brassicae DNA in the 

soil is expected to be extremely localised, therefore despite hand-mixing the risk of collecting soil 

that does not contain P. brassicae DNA is relatively high. Increasing the amount of soil used for DNA 

extraction may help improve the reliability of this method; however it increases the risk of extracting 

potential PCR reaction inhibitors such as humic acid and these inhibitors may be why there are a 

high proportion of false negatives.  
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Figure 23. Frequency of occurrence of positive and negative molecular test in each category of 

clubroot disease severity. 

 

 

4.2.3. Bioassay results 

The results of the bioassay partially correlated with the in-field visual assessment. Despite exhibiting 

different levels of disease severity, the bioassay appears in most cases to detect the disease when 

the in-situ assessment had detected it (Figure 24). A fuller set of bioassay and in-field crop 

assessment charts is shown in Appendix 7.2.4. The link between bioassay results were a good 

predictor of crop disease levels in several fields – for example Market field (Figure 53; Appendix 

7.2.4) and Little Dilwyn (Figure 55; Appendix 7.2.4). However, some variability was also observed 

across the different fields as in several occurrences the bioassay did not show any sign of infection 

whereas the field observation exhibited a moderate disease level (Figure 25). 
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Figure 24. Disease severity index obtained from visual assessment in the field and from the 

bioassay. Samples were taken from the Congrieve field, Staffordshire in 2018. 

 

 

 
Figure 25. Disease severity index obtained from visual assessment in the field and from the 

bioassay. Samples were taken from the Slade50 field, Angus in 2018. 
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4.2.4. Economic analysis of the cost efficacy of treatment through field mapping 

Analysis showed that whole field approaches to treatment tended to give lower economic responses 

to treatment compared to the potential for targeted approaches, where only clubroot infested patches 

are treated (Table 4). The breakeven point for treatment using this analysis was 32% clubroot 

severity, which was the cut-off used to determine the cost of treating only patches with this 

approximate level of infection. Economic margin maps are shown in Appendix 7.2.1, Figures 26-41. 

 

Table 4. Margin over treatment costs for whole field lime application compared to treatment applied 

to areas mapped as having an economically damaging level of clubroot as assessed in Feb-Apr 

(cost of liming treatment £80 / ha (@ £20/t spread), treatment efficacy 25% and price of rape £335/t). 

Site no Field name Year Margin over treatment 

cost per hectare if 

whole field treated 

(£/ha) 

Margin over treatment cost 

per hectare if field mapping 

used to identify areas >32% 

clubroot (£/ha) 

1 Warwick 2016 47.01 51.03 

2 Bridgenorth 2016 142.06 142.36 

3 Market 2016 -7.65 29.7 

4 Podge 2016 -64.60 52.1 

5 Ivington 2016 -44.98 3.94 

6 Staffs 2016 -38.48 23.15 

7 Staffs 2017 -7.03 31.15 

8 Pencombe 2017 47.91 71.01 

9 Sutton 2017 -35.55 21.00 

10 Little Dilwyn 2017 -29.46 11.88 

11 Boysack 2017 -56.23 0 

12 Whinney Hill 2017 -56.23 0 

13 Congieve 2018 19.18 50.05 

14 Murder 2018 -2.84 20.36 

151 Slade50 2018 -67.56 0 

16 Brae Face West 2018 78.49 0 
1This field was ploughed in due to poor establishment – field mapping in February before the crop 

was ploughed in showed that there were no areas with clubroot severity over the threshold severity 

of 32% so on this criterion no areas would have been treated.  
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5. Discussion 

The results from this project have demonstrated the unexpected diversity of clubroot strains within 

the UK, which may reflect the long and varied history of susceptible brassica growing and the 

diversity of wild plant flora that are susceptible. This variability may represent an enhanced risk of 

rapid adaptation in infected fields. The frequency in occurrence of resistance-breaking strains of 

clubroot found in this project and the wide distribution over the UK was an important finding, with 

significant implications in terms of clubroot management. Previous work on clubroot in the UK 

(McGrann et al, 2015) identified varietal resistance as the most consistently effective method of 

management so it was inevitable it would be heavily used in infected fields. The wide-spread 

occurrence of Mendel-breaking clubroot strains illustrates the need for an enhanced range of control 

options and more sustainable methods of management to be developed.   

 

Knowledge of the UK clubroot population, and the common strains within it, is important intelligence 

to breeders in identifying and screening for effective, novel sources of genetic resistance. The 

diversity of strains identified in the UK presents something of a challenge to breeders in developing 

novel host-resistance mechanisms effective against all strains and so the development of other 

physiological traits in breeding programmes that might preserve yield in the presence of disease is 

likely to be of enhanced importance.   

 

The results from the project highlight the vulnerability of relying on a single resistance mechanism to 

manage clubroot and a focus of following research should be on the identification of novel resistance 

sources and their rapid incorporation into breeding programmes. Although single club isolates of 

clubroot obtained in this project have been made available to breeders through the OREGIN project 

(Defra funded), an expanded number of reference isolates and a greater understanding of the key 

strains to target will assist in tailoring breeding programmes to UK needs. The exploitation of 

complimentary yield maintaining traits should also be incorporated into breeding programmes.  

 

The project has also highlighted the need for control measures, of whatever sort, to be sustainable 

over the longer term. There are large gaps in knowledge around the persistence of clubroot in UK 

soils and the relative impact of rotational choices and management interventions on inoculum levels. 

This knowledge, combined with economic modelling, would allow for the development of decision 

aids to assist growers in planning the most profitable and sustainable crop and management choices 

over the longer term.  

 

Regular testing of fields for clubroot, and more detailed field mapping, will be an effective tool for 

growers in making informed rotational and management choices; however, current bioassay and 

qPCR methods are still somewhat compromised either for reasons of expense (both types of testing) 

or reliability as molecular test results do not always correlate well with the levels of clubroot that 
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develop in a field. Cheaper testing methods that made field mapping and multiple tests per field 

affordable would potentially overcome some of the limitations of testing single bulked samples per 

field, where for a patchy disease with relatively large sporeballs it is almost inevitable that the very 

small soil weights used in tests will either hit a ‘spike’ of inoculum or miss it altogether. Clearly, tests 

that are more accurate should also be a key aim for future research, as should be the development 

of extraction and testing methods which remain reliable over different soil types and which 

differentiate viable from non-viable inoculum.  

 

The patchy nature of clubroot within fields was identified in the mapping of commercial fields, 

undertaken in this project. These patches tended to be fairly stable and although spread through 

cultivations is likely over time, knowledge of the location and intensity of clubroot patches within 

fields is likely to be informative to growers in subsequent crops, given the long-term persistence of 

the problem (up to 20 years, Dixon, 2009) with a half-life (in Swedish soils) of 3.7 years 

(Wallenhammar, 1996). At a basic level, the identification of patches allows for hygiene measures to 

be taken around them when moving kit and the potential for targeted treatment options is an 

additional benefit. These measures could be as simple as avoiding drilling infested patches when a 

susceptible crop is planted so as to avoid multiplying the inoculum within the patch. This approach 

for fields with only few confirmed patches, sometimes around gateways, might preserve the efficacy 

of Mendel-resistant varieties for deployment as a tool further down the rotation and would counter 

the risk that early deployment in a lightly infected field erodes the efficacy of this tool in future 

deployments where it is more needed.  

 

Other targeted treatment options could include spot liming. Although a relatively cheap option (as 

shown by the economic analysis project) liming is only partially effective and liming whole fields to 

high pHs may not be suitable for other crops in the rotation.  Calcium cynanamide is another soil 

amendment, previously tested (Burnett et al, 2013) which offers some partial control. It gave 

difficulties in conforming to NVZ regulations when applied over whole fields because at effective 

rates nitrogen application levels to fields were exceeded, so again spot treatment to identified 

patches would overcome this restriction. Spot drilling of resistant varieties would be another feasible 

option if growers are technically equipped and might allow for higher yielding non-resistant varieties 

to be drilled in the surrounding field. Provided varieties selected have similar maturity dates, mixed 

seed lots at harvest do not present an issue to buyers who bulk different varieties for crushing; 

although this assertion should of course be explored at an individual level with merchants before 

enacting.  Other potential novel treatments, such as the use of elicitors, seed treatments or biological 

controls are likely to come at enhanced costs so again the ability to target them would be desirable. 
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Mapping fields is also a key tool in long term decision making for fields. As stated before, the 

development of decision support models that capture the patchy nature of the problem in the 

decision-making process is vital in assisting growers to make the optimal long-term decisions for a 

field, from both an economic and sustainability perspective. 

 

The key advisory messages for growers arising from this project are: - 

 

• Keep accurate crop records of clubroot occurrence, location and intensity. 

• Note where varietal resistance has been deployed in fields to aid long term planning and help 

prevent spread. 

• Where resistant varieties are used, monitor the crop carefully and assess the levels of 

clubroot present. If levels of infection start to increase, change strategy. 

• Increase the frequency and detail of testing at sites with higher frequencies of susceptible 

crops in a rotation. Mapping fields will identify hot spots and help management planning. 

• Buying certified seed ensures that susceptible plant numbers are minimised in a resistant 

variety seed batch. Do not home save resistant varieties. 

• Manage volunteers and susceptible weeds within and between oilseed rape crops. Allowing 

weed growth will allow clubroot populations to bulk up so manage weeds as early as possible 

in the season. 

• Be mindful of other susceptible crop choices when planning rotations – spring rape is 

susceptible and cover crop mixes often contain susceptible species. 

• Long term planning should be based on the long-term profitability and sustainability of a field 

and not on a single season’s predicted margin. 
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7. Appendices 

7.1. European differential set 

Table 5. Club root bioassay results for the Chinese cabbage, +/- Mendel resistance bioassay tests, 
individual field results.   

Sample 
year Region 

Chinese 
cabbage 

+ Mendel 
resistance 

- Mendel 
resistance 

Proportion of club root 
population insensitive to 
Mendel resistance (%)* Club root severity index (0-100) 

2016 Herefordshire 44.4 4.2 76.0 5.5 
2016 Herefordshire 5.6 0.0 10.7 0.0 
2016 Herefordshire 92.9 0.0 97.2 0.0 
2016 Herefordshire 28.6 2.7 21.2 12.6 
2016 Shropshire 57.1 10.7 98.7 10.8 
2016 Shropshire 71.1 5.3 78.7 6.8 
2016 Shropshire 26.1 12.0 100.0 12.0 
2016 Staffordshire 61.9 25.3 100.0 25.3 
2016 Wales 12.7 0.0 2.7 0.0 
2016 Wales 47.2 4.2 86.1 4.8 
2016 Wales 3.2 2.7 5.6 48.0 
2016 Wales 33.3 8.0 86.1 9.3 
2016 Wales 0.0 1.3 1.4 92.0 
2016 Warwickshire 48.5 4.3 95.8 4.5 
2016 Warwickshire 19.3 0.0 12.0 0.0 
2016 Warwickshire 80.0 8.3 82.7 10.1 
2016 Warwickshire 55.6 5.3 89.3 6.0 
2016 Worcestershire 3.3 0.0 0.0 * 
2016 Worcestershire 56.4 14.7 82.7 17.7 
2016 Worcestershire 0.0 2.8 0.0 * 
2017 Herefordshire 93.3 32.0 97.3 32.9 
2017 Herefordshire 97.3 49.3 100.0 49.3 
2017 Herefordshire 73.3 5.3 66.7 8.0 
2017 Herefordshire 90.7 21.3 85.3 25.0 
2017 Herefordshire 74.7 12.0 98.7 12.2 
2017 Herefordshire 100.0 8.0 92.0 8.7 
2017 Herefordshire 74.7 12.0 98.7 12.2 
2017 Shropshire 30.7 12.0 18.7 64.3 
2017 Shropshire 14.7 8.0 8.0 100.0 
2017 Shropshire 86.7 9.3 44.0 21.2 
2017 Shropshire 45.8 2.7 17.3 15.4 
2017 Shropshire 56.0 6.7 33.3 20.0 
2017 Shropshire 38.7 0.0 40.0 0.0 
2017 Staffordshire 98.7 13.3 96.0 13.9 
2017 Staffordshire 90.7 17.3 97.3 17.8 
2017 Staffordshire 90.7 29.3 89.3 32.8 
2017 Wales 79.2 25.6 63.3 40.5 
2017 Wales 96.0 1.3 84.0 1.6 
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2017 Wales 85.3 17.3 100.0 17.3 
2017 Wales 74.7 13.3 80.0 16.7 
2017 Wales 81.3 10.7 89.3 11.9 
2017 Wales 97.3 10.7 100.0 10.7 
2017 Warwickshire 0.0 5.3 6.7 80.0 
2017 Warwickshire 8.0 0.0 4.0 0.0 
2017 Warwickshire 26.7 4.0 24.0 16.7 
2017 Worcestershire 37.3 10.7 44.0 24.2 
2017 Worcestershire 80.0 16.0 88.0 18.2 
2017 Worcestershire 0.0 0.0 2.7 0.0 
2017 Worcestershire 40.0 2.7 36.0 7.4 
2017 Worcestershire 95.8 8.0 50.7 15.8 
2017 Worcestershire 0.0 0.0 0.0 * 
2018 Angus 69.2 22.7 46.4 48.9 
2018 Devon 60.8 0.0 42.7 0.0 
2018 Devon 53.3 5.3 46.7 11.4 
2018 Devon 30.7 2.7 29.3 9.1 
2018 Devon 73.3 9.5 71.7 13.3 

2018 
Dumfries & 
Galloway 0.0 * 0.0 * 

2018 Fife 36.0 0.0 37.3 0.0 
2018 Inverness 60.0 4.0 94.7 4.2 
2018 Lancashire 45.2 0.0 42.6 0.0 
2018 Lancashire 62.2 0.0 21.6 0.0 
2018 Lancashire 53.3 10.0 100.0 10.0 
2018 Lancashire 22.2 6.3 12.8 48.8 
2018 Lancashire 46.7 0.0 1.3 0.0 
2018 Lancashire 53.7 8.0 97.3 8.2 
2018 Lancashire 74.5 5.3 71.4 7.5 
2018 Lancashire 2.7 0.0 0.0 * 
2018 Roxburghshire 42.1 0.0 44.9 0.0 
2018 Warwickshire 8.7 2.7 0.0 * 
2018 Warwickshire 83.3 8.0 70.6 11.3 
2018 Yorkshire 52.1 4.0 31.4 12.8 
2018 Yorkshire 38.1 0.0 10.5 0.0 
2018 Yorkshire 0.0 0.0 0.0 * 
2018 Yorkshire 0.0 0.0 0.0 * 
2018 Yorkshire 17.3 4.2 0.0 * 

 

* 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑇𝑇𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇𝑀𝑀�  𝑥𝑥 100 
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Table 6. Results by individual field showing region and ECD population. 

Sample 
year Field ID Region European Clubroot Differential Set (ECD) population 
2016 1 Warwickshire 16/2/14 
2016 2 Herefordshire 16/26/0 
2016 3 Herefordshire 16/14/30 
2016 4 Staffordshire 16/22/15 
2016 5 Herefordshire 16/31/15 
2016 6 Shropshire 16/23/28 
2016 7 Warwickshire 16/14/13 
2016 8 Worcestershire 16/7/29 
2016 9 Scotland 17/31/12 
2017 10 Herefordshire 16/31/31 
2017 11 Herefordshire 16/19/12 
2017 12 Staffordshire 16/6/31 
2017 13 Scotland 16/31/29 
2017 14 Wales 16/15/28 
2017 15 Staffordshire 16/14/31 
2017 16 Herefordshire 16/6/29 
2017 17 Wales 16/31/31 
2017 18 Worcestershire No data 
2018 19 Yorkshire 16/5/8 
2018 20 Devon 16/31/15 
2018 21 Lancashire 16/1/14 
2018 22 Lancashire 16/1/14 
2018 23 Warwickshire 16/1/8 
2018 24 Yorkshire No data 
2018 25 Scotland 16/31/7 
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7.2. Field mapping 

7.2.1. Economic yield maps 

 

 
Figure 26. Margin over liming cost, Field: Warwick, 2016. 

 

 
Figure 27. Margin over liming cost, Field: Bridgnorth, 2016. 

 

 
Figure 28. Margin over liming cost, Field: Staffordshire, 2016. 
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Figure 29. Margin over liming cost, Field: Ivington, 2016. 

 

 
Figure 30. Margin over liming cost, Field: Market Field, 2016. 

 

 
Figure 31. Margin over liming cost, Field: Podge field, 2016. 
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Figure 32. Margin over liming cost, Field: Staffordshire, 2017. 

 

 
Figure 33. Margin over liming cost, Field: Little Dilwyn, 2017. 

 

 
Figure 34. Margin over liming cost, Field: Polly’s field, 2017. 
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Figure 35. Margin over liming cost, Field: Penecombe, 2017. 

 

 
Figure 36. Margin over liming cost, Field: Boysack, Forfar, 2017. 

 

 
Figure 37. Margin over liming cost, Field: Whinney Hill, Earlston, 2017. 
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Figure 38. Margin over liming cost, Field: Congrieve, 2018. 

 

 
Figure 39. Margin over liming cost, Field: Murder, 2018. 

 

 

Figure 40. Margin over liming cost, Field: Slade 50, Arbroath, 2018. 
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Figure 41. Margin over liming cost, Field: Brae Face West, Arbroath, 2018. 
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7.2.2. NDVI maps 

 

Figure 42. Intense field monitoring, Clubroot severity and NDVI overlay, April assessment.  
Field: Staffordshire, 2017. 

 

 
Figure 43. Intense field monitoring, Clubroot severity and NDVI overlay, March assessment.  
Field: Little Dilwyn, 2017. 

 

 
Figure 44. Intense field monitoring, Clubroot severity and NDVI overlay, February assessment. Field: 
Pollys Field, 2017. 
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Figure 45. Intense field monitoring, Clubroot severity and NDVI overlay, February assessment. Field: 
Penecombe Field, 2017. 

 
Figure 46. Intense field monitoring, Clubroot severity and NDVI overlay, April assessment.  
Field: Congrieve field, Staffordshire, 2018. 

 
Figure 47. Intense field monitoring, Clubroot severity and NDVI overlay, April assessment.  
Field: Murder field, Staffordshire, 2018. 
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7.2.3. Yield maps 

 
Figure 48.  Commercial yield map. Field: Staffordshire, 2016. 

 
Figure 49.  Commercial yield map. Field: Little Dilwyn, Herefordshire, 2017. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 50.  Commercial yield map. Field: Congrieve, Staffordshire, 2018. 
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7.2.4. Bioassay results 

Soil bioassay results have been compared to disease levels in the field crop in the spring at each 

sampling point in the field, expressed as % severity using the indices described in section 3.1.3 and 

3.2.1 respectively.    

 

 
Figure 51. Disease severity index obtained from visual assessment in the field and from the 

bioassay. Samples were taken from the Bridgenorth field, 2016. 

 

 
Figure 52. Disease severity index obtained from visual assessment in the field and from the 

bioassay. Samples were taken from the Ivington field, 2016. 
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Figure 53. Disease severity index obtained from visual assessment in the field and from the 

bioassay. Samples were taken from the Market field, 2016. 

 

 
Figure 54. Disease severity index obtained from visual assessment in the field and from the 

bioassay. Samples were taken from the Podge field, 2016. 
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Figure 55. Disease severity index obtained from visual assessment in the field and from the 

bioassay. Samples were taken from the Little Dilwyn field, 2017. 

 

 
Figure 56. Disease severity index obtained from visual assessment in the field and from the 

bioassay. Samples were taken from the Polly’s Sutton field, 2017. 
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Figure 57. Disease severity index obtained from visual assessment in the field and from the 

bioassay. Samples were taken from the Staffordshire field, 2017. 

 

 
Figure 58. Disease severity index obtained from visual assessment in the field and from the 

bioassay. Samples were taken from the Whinney Hill field, 2017. 
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Figure 59. Disease severity index obtained from visual assessment in the field and from the 

bioassay. Samples were taken from the Boysack field, 2017. 

 

 
Figure 60. Disease severity index obtained from visual assessment in the field and from the 

bioassay. Samples were taken from the Pencombe field in 2017. 
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1. Supervisor’s report 

 

Clubroot is a serious threat to oilseed rape and vegetable brassica cultivation across the UK.  The 

soil-borne nature of the disease, combined with limited sources of host plant resistance and evolving 

pathogen populations, means management of this disease is particular difficult.  The AHDB funded 

project “Developing sustainable management methods for clubroot (Plasmodiophora brassicae) 

through an understanding of the prevalence of pathotypes present in the UK and through field 

mapping to establish the impact and spread of the disease in oilseed rape” investigates different 

reasons why clubroot control is not always successful.  The project will use a soil mapping approach 

to quantify the distribution of the clubroot pathogen, P. brassicae, within infested fields.  Soil samples 

from selected fields will be pathotyped using the European clubroot differential brassica lines to 

characterise pathogen variation within fields and across sites within the UK.  A number of the sites 

for selected for pathotyping were previously pathotyped approximately ten years ago enabling an 

assessment of temporal changes to local pathogen populations.  Insights in to in-field variation in 

pathogen distribution and resting spore concentrations, combined with information on local and 

regional pathotype variation from this project, will be used to devise sustainable disease 

management strategies to control clubroot. Control strategies, such as application of soil 

amendments to raise pH and calcium levels and the use of resistant oilseed rape varieties, can be 

targeted to regions of fields that have particularly high incidence of the disease. Those areas that 

are disease free can be left untreated, resulting in reduced costs for disease control.  More selected 

use of the limited clubroot resistant varieties will protect their use in agriculture and lower the risk of 

pathogen adaptation resulting in resistance-breaking pathotypes. 

 

Control options for clubroot are limited, such that novel management strategies are coveted by the 

industry. The work in this bursary builds on research from SRUC, which indicated that defence 

elicitors have the potential to lower clubroot in susceptible oilseed rape plants, and aimed to evaluate 

the effects of three defence elicitors applied as a seed treatment to control clubroot.  Unfortunately, 

the clubroot disease infection assays did not work meaning that the time course analysis to assess 

how the different defence elicitors affect the build up of P. brassicae DNA in root tissue and how this 

equates to the development of clubroot galls over time.  The reasons for the failure in the pathology 

experiment are currently unclear but lack of infection is an inherent problem when working with plant 

pathogens and is particularly frustrating when working with soil-borne pathogens where disease 

symptoms take weeks to develop. 

 

Despite the problem surrounding the key experimental questions of the bursary, the project still 

yielded some important insights in to the potential effects of defence elicitors when applied as seed 

soak treatments on the early development of oilseed rape seedlings.  Both SiTKO-SA and Inssimo 

appear to slow the early stages of oilseed germination after three days but this effect was not 
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observed after five days. However, SiTKO-SA appears to also reduce seedling emergence 

compared to control plants which could be problematic for oilseed growers, especially those in the 

more Northerly regions of the UK, where clubroot infestations are severe but establishment of the 

oilseed crop can be more difficult to achieve.  Seedlings from SITKO-SA treated seeds also were 

shorter than controls, whereas those plants from Inssimo treated seeds were significantly taller.  

These are preliminary findings but they do indicate additional areas of study that will need to be 

taken in to account to facilitate the uptake of defence elicitors in clubroot control.  For defence 

elicitors to be accepted as alternative control strategies in sustainable clubroot management 

programmes, industry must be convinced not only of their ability to control the disease but also that 

there are not adverse effects of the compounds that could affect yield potential. 

 

 

2. Personal statement 

This project has provided me with the 

opportunity to carry out my first piece of 

independent research during which, I have 

learned numerous pathology and molecular 

biology skills, including disease assessment, 

dilutions, DNA extractions, and running 

polymerase chain reaction based assays. 

These skills will prove invaluable during my 

final year project at university and for postgraduate study. 

 

During the project I have also been able to work within a more applied discipline of plant biology than 

I have previously studied, with a clear link between my research and crops in the field. This has 

enhanced my insight into how scientific developments can be implemented into agricultural practises 

and I hope to carry out further research of this type in the future. 

 

Due to the data produced from my research, for the first time I have been able to compare scientific 

literature with my own observations and appreciate how my own results would integrate with existing 

knowledge. This has given me a more complete understanding of how research from different 

projects and institutions can be combined in order to drive agricultural innovations.  
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3. Abstract 

The hypertrophic growth of non-fibrous ‘clubroots’ caused by the protist Plasmodiophora brassicae, 

has a large impact on global yields of brassica crops. In the UK, 10-15% yield losses due to clubroot 

are common in the brassica crop oilseed rape (OSR). The disease is able to survive in soils for up 

to 20 years and is currently unable to be controlled by individual management strategies, as such, 

clubroot is widespread across the majority of the UK.   

 

At present, clubroot is most effectively managed using soil amendments, such as raising pH, and 

through the growth of resistant OSR varieties. Combining these strategies, with lengthened crop 

rotations can effectively reduce clubroot severity but still fail to provide total clubroot control.  

 

This study investigated the potential of defence elicitors to provide clubroot resistance in OSR. 

Additional control methods, such as defence elicitor treatments, could be incorporated into current 

integrated approaches. Development of additional methods of clubroot control can potentially reduce 

clubroot severity further as well as ease pressure on current management strategies, such as aiding 

the longevity of current resistant OSR cultivars.  

 

The ability of defence elicitors to induce plant immune responses and enhance disease resistance 

has been demonstrated for numerous diseases across multiple crops. In the current investigation, 

the elicitors Innsimo, SiTKO-SA and Laminarin were applied to OSR as seed treatments – a practical 

method of administering elicitors on a large scale, before seeds were exposed to soils containing P. 

brassicae. The effect of each elicitor on plant development and disease resistance was assessed 

over eight weeks, with notable reductions in the developmental rate of seeds treated with SiTKO-SA 

observed. Germination assays showed a 17% reduction in the percentage of germinated SiTKO-SA-

treated seeds after three days relative to untreated control seeds. Differences were also observed 

after two weeks of growth with 32.2% fewer SiTKO-SA seeds having developed into seedlings with 

an average height 13.2 mm less than that of the controls. Only minor levels of P. brassicae DNA 

were detected in roots of plants from each treatment (including controls) using quantitative 

polymerase chain reaction assays. Minimal levels of pathogen DNA prevented the reliable 

comparison of treatments in terms of clubroot resistance and further investigation is needed in order 

to assess their effectiveness.  
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4. Introduction 

Clubroot is a disease affecting all forms of brassica crop, caused by the protist Plasmodiophora 

brassicae. The pathogen causes characteristic swelling of roots, forming non-fibrous clubs or galls 

by altering root production of growth hormones such as auxin and cytokinin (Hwang et al., 2012). 

The loss of fibrosity, combined with the diversion of water and nutrients towards galls rather than 

shoots and leaves can lead to deficiencies throughout the plant, thus increasing the likelihood of 

wilting, stunted growth and, in severe cases, death (Hwang et al., 2012). 

 

In the common arable crop oilseed rape (OSR), clubroot is associated with the production of both 

fewer and lower yielding oilseeds (Hwang et al., 2012). This commonly leads to the loss of 10-15% 

of potential yields with much higher losses possible if the crop is severely infected (McGrann et al., 

2016). In surveys carried out between 2007 and 2010, 52% of tested UK sites growing OSR were 

positive for P. brassicae (McGrann et al., 2016), a figure that is only likely to rise given the increased 

use of OSR in crop rotations and the current lack of effective management strategies. 

 

Presently, the most commonly used methods of clubroot control include extended crop rotations, soil 

amendments and the use of resistant varieties of OSR. Whilst these strategies are able to reduce 

clubroot severity, they are not without problems.  

 

4.1. Crop Rotation 

Resting spores of P. brassicae can survive in soils for as long as 20 years (Hwang et al., 2012), far 

longer than the average crop rotation period. A 3.7 year half-life (Wallenhammar, 1996) makes 4-6 

year rotations a viable method of limiting the prominence of the disease but market pressure 

hampers the implementation of such rotations. The problem is increased by the presence of 

cruciferous weeds, on which P. brassicae can survive, extending its half-life (Dixon, 2009a).  

 

4.2. Soil Amendments 

Clubroot severity can be partially controlled through the addition of calcium to soils and raising pH 

to a level above 6.0-6.5; the optimum pH for clubroot spore germination (Hwang et al., 2012). 

However, the mechanism by which these amendments provide protection remains unknown and 

their success is highly variable (McGrann et al., 2016). 

 

4.3. Varietal Resistance 

European clubroot resistant cultivars of OSR have been developed, which show a reduced 

susceptibility to P. brassicae. In most cases, the disease resistance is dependent on a single genetic 

locus originating from the resistant variety ‘Mendel’. The limited origin of this genetic resistance 
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makes it vulnerable to pathogen evolution, leading to isolates able to overcome the resistance gene. 

This is particularly a problem in areas where disease pressure is high and brassicas are grown in 

short rotations (Peng et al., 2014). The multiple forms or pathotypes in which P. brassicae can exist 

further exposes the vulnerability of resistance with most cultivars being resistant to specific 

pathotypes but susceptible to others (Hwang et al., 2012). This provides a source of genetic 

variability, which has the potential to permit the adaptation of the pathogen to overcome resistance. 

An additional issue is that the highest yielding OSR varieties are generally clubroot susceptible 

(AHDB, 2016), reducing the incentive for farmers to grow a resistant variety unless there is a history 

of severe clubroot infestation in their fields.   

 

4.4. Fungicides 

The application of fungicides is not currently considered a practical method of managing clubroot 

due to their ineffectiveness at high disease pressure and highly variable results when applied to less 

severe infestations (Peng et al., 2014). With little understood about fungicide-P. brassicae interaction 

mechanisms, combined with current legislation that restricts the use of many chemicals on crops, 

the development of an effective fungicide treatment for clubroot remains highly unlikely (Peng et al., 

2014).  

 

A synergistic approach combining multiple strategies is largely seen as the most practical and 

reliable method of managing clubroot. Integrated strategies benefit from both a greater accumulative 

effect and the reduced pressure on resistant cultivars. 

  

4.5. Defence Elicitors 

An underutilised option for clubroot control is defence elicitors. By inducing a plant’s immune 

response, most commonly via the salicylic acid or jasmonate pathway, defence elicitors can reduce 

the impact of certain diseases (Walters et al., 2013).  Elicitors can rarely provide complete control of 

a pathogen but may be a viable method of reducing disease pressure in order to prolong the 

effectiveness of resistant OSR varieties via, so called resistance stewardship. Previous applications 

of elicitors as a root drench have yielded promising results in clubroot control (McGrann et al., 

unpublished data). However, a root drench is not a practical technique when applied to OSR crops 

in the field due to the huge quantity of chemical that would be required to drench soil across a 

broadacre field. Here we evaluate seed treatments of three different defence elicitors (Innsimo, 

SiTKO-SA and Laminarin), to assess their impact on plant development and their potential to provide 

eight weeks of disease protection across the most vulnerable stage of plant development (Walters 

et al., 2013).  
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5. Materials and methods 

5.1. Seed Treatments 

Seeds of the clubroot susceptible OSR variety Anastasia were soaked in separate solutions of three 

commercially available defence elicitors, at supplier recommended concentrations (Table 1). Control 

plants were soaked in water. Seeds were soaked for 24 hours at 4 °C. Prior to planting seeds were 

rinsed ten times in tap water, with a ten minute period of full submergence during the final wash. 

 

 

 

 

 

 

  

 

5.2. Seed Germination Assays 

Treated seeds were germinated in darkness on damp filter paper and the germination percentage of 

600 and 200 seeds per treatment was assessed after five and three days respectively. Data was 

analysed by modelling binomial proportions within a generalized linear model. Binomial proportions 

were calculated as the number of germinated seeds out of the total seeds in each experiment. The 

model assessed variation attributable to the different treatments examined and experimental 

replicates. 

 

5.3. Preparation of Spore Suspension 

Galls from clubroot infected OSR cultivar Fashion plants, harvested on 17/05/16 and stored at -20 

°C, were homogenised and the resulting suspension filtered through two layers of wet muslin, before 

the removal of starch granules by centrifugation at 100 x g for 5 minutes. The concentration of spores 

was measured using a haemocytometer and diluted to 2x105 spores ml-1.  

 

5.4. Planting/Harvesting 

Four sets of 14 pots (9 x 9 x 8 cm) were filled with John Innes No. 3 compost and 50 ml of the 2x105 

spores ml-1 resting spore suspension poured onto the compost surface to provide a final 

concentration of 1x106 spores per pot. A further ten pots were filled with compost but not inoculated 

with resting spores, to act as an uninoculated control. Seeds from each of the four treatments were 

planted across 14 pots, with four seeds sown and covered with vermiculite per pot. Four water-

treated seeds were also planted in each of the 10 uninoculated pots.   

Elicitor Concentration of soak solution 

Innsimo 0.05 g L-1 

Sitko-SA 10 ml L-1 

Laminarin 5 ml L-1 

Water (control) n/a 

Table 1 – Defence elicitor concentrations used for seed treatments  
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After three weeks of growth in a glasshouse, plants were thinned down to two plants per pot and 

sampled at two week intervals for eight weeks. Each harvested plant was scored from zero to five 

for clubroot symptoms and the number of leaves and plant height was counted and measured 

respectively. Clubroot severity was scored on a 0-5 scale based on the level of galling present; 0 = 

no galling; 1 = small clubs present but most of fibrous root still healthy; 2 = galls visible around tap 

root and crown; 3 = moderately severe galling with healthy roots still visible; 4 = severe galling with 

few healthy fibrous roots present; 5 = severe galls with root system now rotten. 

 

5.5. Extraction and Quantification of DNA 

Roots were washed, removed from shoots, snap frozen in liquid nitrogen and ground to a fine powder 

with a mortar and pestle. DNA was extracted from the root tissue using a DNeasy Plant Mini Kit 

(QIAGEN). The amount of total DNA extracted was quantified using a Nanodrop-1000 

spectrophotometer and diluted to a concentration of 10 ng µl-1. Concentrations of P. brassicae DNA 

was measured via quantitative polymerase chair reaction (qPCR), carried out using a Stratagene 

MX3000P. A total volume of 20 µl was used containing 500 nM concentrations of both forward and 

reverse primers (Table 2), in addition to 10 µl SYBR® Green JumpStart™ Taq ReadyMix™ (Sigma 

Aldrich), 3 µl H2O and 5 µl of DNA solution. Samples were initially heated to 95 °C for two minutes 

and then cycled 40 times at 95 °C for 10s, 62 °C for 20s and 72 °C for 25s. P. brassicae DNA was 

quantified via comparison to a standard curve of five-fold dilutions ranging from 50 ng to 5.12 fg 

produced using DNA obtained from clubroot spores (Fashion, harvested 17/05/16) using an Illustra 

Nucleon Phytopure DNA extraction kit (GE healthcare). 

 

 

 

 

 

The quality of extracted DNA was assessed through end point PCR using OSR specific primers. A 

total volume of 25 µl, made up of 12.5 µl Hotstar Master Mix (QIAGEN), 200 nM EF1α forward and 

reverse primers, 6.5 µl H2O and 5 µl of DNA solution, was heated to 95 °C for 15 minutes and then 

cycled 40 times at 94 °C for 1 min, 55 °C for 1 min, 72 °C for 1 min. Gel electrophoresis of PCR 

products was then carried out on a 1.5% agarose gel and DNA visualised using GelRed Nucleic Acid 

Gel Stain (Biotium). 

 

5.6. Two week emergence Assay 

A further 56 seeds from each treatment were planted across 14 pots (as described in 5.4). The 

percentage of emerged seedlings and their heights was measured after two weeks of growth in pots 

in a glasshouse. Only plants with fully formed cotyledons and a minimum height of 20 mm were 

Table 2 – Primers used for qPCR 
Primer Sequence 

PbITS3 (Forward) 5’-CGCTGCATCCCATATCCAA-3’ 

PbITS4 (Reverse) 5’-TCGGCTAGGATGGTTCGAAA-3’ 
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classified as emerged. Differences in average height between treatments were compared using a 

student’s t-test. 

 

6. Results 

6.1. Seed Germination  

6.1.1. Five day  

After incubation at room temperature for five days, no significant difference (P=0.73) was observed 

between the germination of elicitor-treated and water-treated control seeds (Figures 1A and 2). 

 

6.1.2. Three day 

Germination percentage after three days was highest in control seeds. Significant differences relative 

to the control seeds were identified from both the Innsimo (P<0.05) and SiTKO-SA (P<0.01) 

treatments (Figures 1B and 3).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – Germination percentage (±SE) of seeds soaked in defence elicitors and in water (control) 
after five days (A) and after three days (B)  

Figure 2 – Representative five day germination plates. 1=Control, 2=Innsimo, 3=SiTKO-SA, 
4=Laminarin 
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6.2. Seedling Development 

6.2.1. Two-week emergence 

The proportion of SiTKO-SA treated seeds that had developed into seedlings after two weeks of 

growth was considerably lower than that of seeds soaked in water, Innsimo or Laminarin. The 

average height of those SiTKO-SA seedlings that had emerged was also significantly lower than 

seedlings previously exposed to both the Innsimo and Laminarin seed soaks (P<0.05). A significant 

difference in average height was also detected between control and Innsimo seedlings (P<0.05).     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2.2. Number of leaves 

The number of leaves produced during the first eight weeks of growth showed limited variation 

between plants growing from treated seeds and untreated control seeds. Inoculation with P. 

brassicae spores also had little impact on the number of leaves, as a similar pattern of growth was 

observed for both inoculated and uninoculated plants. At the two week harvest, each set of seedlings 

Figure 3 – Representative three day germination plates. 1=Control, 2=Innsimo, 3=SiTKO-SA, 
4=Laminarin 
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Figure 4 – (A) Percentage of treated seeds producing seedlings of greater than 20 mm in height after two 
weeks since planting. (B) Average height of emerged seedlings from each treatment.  
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had, on average, produced of between 3.5 and 4 leaves. From four weeks onwards, the number of 

leaves plateaued, with an average of approximately 6 leaves per plant from each treatment (Figure 

5).  

 

A deviation from this trend was observed for uninoculated plants after four weeks of growth. This 

variation was generated because the sampled uninoculated plants were unable to be thinned to two 

plants per pot at the three week stage, due to an insufficient number of plants for the week four 

harvest. The presence of two anomalously small plants also led to the SiTKO-SA treatment 

producing a reduced leaf count at the six week stage. As such, both differences were considered 

unlikely to be biologically significant. 

 

6.2.3. Plant height 

Like, leaf number, all treatments produced a similar rate of seedling growth. Plants grew to 

approximately 75 mm tall after two weeks and to 220 mm tall after four weeks. Growth then slowed, 

with plants only increasing by approximately 40 mm in height over the next four weeks. Only minor 

variation between treatments was observed, potentially attributable to the problems described in 

section 6.2.1 (Figure 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 – Average number of leaves on plants harvested over an eight week period (±SE). Dark blue 
circles=control, Red squares=Innsimo, Green triangle=STKO-SA, Purple diamond=Laminarin, Light 
blue cross=Uninoculated 
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6.3. Clubroot control 

The ability of the defence elicitors to manage clubroot was unable to be effectively analysed due to 

minimal disease incidence. No galls were formed on the roots of inoculated samples and all observed 

patterns of growth appeared not to be limited by the presence of disease. P. brassicae DNA was 

detected in some samples via qPCR but only at trace levels. The percentage of all harvested roots 

containing a measurable level of P. brassicae DNA trace was highest after two weeks, decreased to 

a minimum at week 6 and then increased slightly after eight weeks (Table 3).     

 

 

 

 

 

 

 

 

 

 

The quality of extracted DNA was analysed using end point PCR with the OSR specific forward and 

reverse EF1α primers. Of the nine random samples selected, each produced an EF1α DNA band 

(Figure 5). 

 

0

50

100

150

200

250

300

Week 0 Week 2 Week 4 Week 6 Week 8

Av
er

ag
e 

He
ig

ht
 (m

m
)

Figure 6 – Average height of plants harvested over an eight week period (±SE). Dark blue 
circles=control, Red squares=Innsimo, Green triangle=STKO-SA, Purple diamond=Laminarin, Light 
blue cross=Uninoculated 

 

 Harvest Percentage of samples with P. brassicae DNA 

detected 

Week 2 62.5 

Week 4 20.5 

Week 6 6.3 

Week 8 8.7 

 

Table 3 – Percentage of samples testing positive for P. brassicae DNA per harvest 
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7. Discussion 

7.1. Germination and development  

Previous investigations have shown the effectiveness of salicylic acid at controlling disease but have 

also noted a corresponding reduction in the growth of roots and shoots (Lovelock et al., 2013). To 

be a valid clubroot management strategy, defence elicitors must have minimal effects on the 

germination and development of OSR so as to avoid a significant yield penalty. 

 

Germination assays within the current study show that, when applied as a seed treatment, defence 

elicitors permit successful seed germination, with a high germination percentage observed for all 

treatments (Figure 1A). Whilst germination percentage remained high for each treatment after five 

days, variation was noted in the rate of emergence and subsequent development of the treated 

seeds. The three day germination assay (Figure 1B) and two week emergence and height data 

(Figure 4) used to investigate this each showed a reduced level of growth from seeds pre-treated 

with SiTKO-SA.  No major effect of the SiTKO-SA treatment was noted from the leaf counts and 

height measurements of harvested plants across the eight weeks (Figures 5 and 6) but pots with 

larger plants were specifically selected at week two, as plants were required to be a minimum size 

in order to be harvested. From week four onwards, it was likely that growth was restricted by nutrient 

availability due to the limited pot size, therefore leading to the growth plateau observed, regardless 

of treatment. Further tests are required to evaluate the relevance of these findings with respect to 

the use of Inssimo as a plant protection product in OSR. 

 

 

Figure 7 – OSR EF1α DNA bands from end point PCR of nine 
random samples.  
1=Week 2 Control, 2=Week 2 SiTKO-SA, 3=Week 2Laminarin, 
4=Week 4 Control, 5=Week 4 Innsimo, 6=Week 4 SiTKO-SA, 
7=Week 6 Innsimo, 8=Week 6 SiTKO-SA, 9=Week 6 Laminarin, 
10=Blank. 

1 2 3 4 5 6 7 8 9 10 
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The three day germination assay (Figure1B) and two week plant height measurements (Figure 4B) 

also highlighted significant differences between the control seeds and Innsimo treated seeds.  

However, the differences between the two treatments were observed in opposite directions, with 

control seeds germinating earlier but Innsimo seedlings growing taller after two weeks. It is 

unreasonable to draw significant conclusions about the impact of Innsimo on plant development from 

this limited and contradictory data. The opposing variations highlight limitations with the investigation, 

such as the relatively small sample sizes, and an appreciable level of background variation must be 

considered when interpreting the presented results.   

 

SiTKO-SA treated seeds demonstrated a slower rate of development compared to the control seeds. 

Unlike differences between control and Innsimo treatments, the effect of SiTKO-SA was consistent 

and always in the same direction. Differences were also more strongly statistically significant. It can 

therefore be more reliably concluded that a SiTKO-SA seed soak treatment leads to a slower rate of 

early development in OSR. This result may be specific to the unique conditions that plants and seeds 

were exposed to in this experiment. However, obtaining similar results in subsequent trials may 

indicate that slowed plant development is a possible negative consequence of SiTKO-SA as a 

disease management strategy in OSR that could hinder yield potentials.  

 

SiTKO-SA and Innsimo are based on the same active ingredient: salicylic acid (SA), with SiTKO-SA 

containing a 4% concentration and Innsimo containing a 50% concentration of acibenzolar-S-methyl 

(ASM), a synthetic analogue of SA. The obtained results may indicate that SA has a greater inhibitory 

effect on plant development than its synthetic equivalent. This in turn could correlate with a stronger 

immune response to SA, although a much more in depth investigation would be required to validate 

these initial observations and hypotheses. Alternatively, another component of SiTKO-SA may have 

caused the reduced developmental rate, however, this is unlikely, as the only other active ingredient 

of SiTKO-SA, silica, has never been previously recognised as having any inhibitory effect on growth. 

 

No negative effects on the germination and development of Laminarin treated seeds were observed. 

This minimal effect of Laminarin makes it ideal for use as a defence elicitor, provided that it is also 

able to effectively induce disease resistance to clubroot. Unfortunately, due to failed disease uptake, 

the current investigation was unable to analyse this aspect of the tested elicitors.  

 

 

7.2. Clubroot Control 

The effectiveness of defence elicitors at inducing resistance towards multiple diseases is well 

documented (Walters et al., 2013). Their efficacy, however is not replicated, in every disease of all 

crop species, ASM for example has effectively aided resistance to numerous pathogens but no effect 

has been observed against others (Graham and Leite, 2004; Huth and Balke, 2002; Zhang et al., 
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2001). The intention of this investigation was to assess the ability of three elicitors to protect OSR 

from the clubroot pathogen P. brassicae when applied as a seed treatment. Unfortunately, due to 

poor uptake of the disease into the OSR test plants, assessment of this nature was unable to be 

performed. No visible clubroot symptoms were formed and the concentrations of P. brassicae DNA 

detected using qPCR were too small to make meaningful comparisons between the treatments. 

Because the failure of the investigation resulted from problems with pathogen inoculation, not the 

ineffectiveness of elicitors, the potential remains that elicitor seed soaks will be able to induce 

clubroot resistance, but further studies will be required to provide evidence for this.   

 

A higher proportion of root samples with detectable levels of P. brassicae DNA were present in earlier 

harvests (Table 3). It is likely that this was due to root growth, and hence an increase in OSR DNA, 

occurring more quickly than P. brassicae DNA accumulation leading to the dilution of pathogen DNA. 

Pathogen DNA build up may have been slowed by adverse glasshouse conditions for disease 

development. The presence of P. brassicae DNA at low levels in sampled roots suggested that the 

primary infection of the pathogen had taken place. Following the primary infection and formation of 

plasmodia within root hairs, secondary zoospores are produced which are able to penetrate the root 

epidermis and infect the cortex (Hwang et al., 2012). This secondary infection requires damp soil in 

order for the zoospores to be able to travel through water (Dixon, 2009b). It is possible that hot 

weather conditions may have temporarily led to the excessive drying of soil, preventing zoospore 

movement and therefore the secondary infection. The development of only a primary infection would 

also correlate with the dilution of P.brassicae DNA observed from week two to eight, with roots 

continuing to grow, whilst the secondary infection failed to take place. 

 

An alternative, although unlikely, possibility for the minimal disease uptake may be a previously 

unrecognised clubroot resistant property of Anastasia to the isolate used. In a subsequent trial, in 

the same glasshouse, severe galling developed on Anastasia plants just four weeks after inoculation 

with a different field isolate. In future investigations into clubroot disease resistance, improved results 

are likely to be obtained by inoculating plants using a more aggressive field isolate in order to ensure 

the development of the disease.  
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