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DISCLAIMER 

 

While the Agriculture and Horticulture Development Board seeks to ensure that the information 

contained within this document is accurate at the time of printing, no warranty is given in respect 

thereof and, to the maximum extent permitted by law the Agriculture and Horticulture 

Development Board accepts no liability for loss, damage or injury howsoever caused (including 

that caused by negligence) or suffered directly or indirectly in relation to information and opinions 

contained in or omitted from this document.  

 

© Agriculture and Horticulture Development Board 2019. No part of this publication may be 

reproduced in any material form (including by photocopy or storage in any medium by electronic 

mean) or any copy or adaptation stored, published or distributed (by physical, electronic or other 

means) without prior permission in writing of the Agriculture and Horticulture Development Board, 

other than by reproduction in an unmodified form for the sole purpose of use as an information 

resource when the Agriculture and Horticulture Development Board or AHDB Horticulture is 

clearly acknowledged as the source, or in accordance with the provisions of the Copyright, 

Designs and Patents Act 1988. All rights reserved. 

 

All other trademarks, logos and brand names contained in this publication are the trademarks of 

their respective holders. No rights are granted without the prior written permission of the relevant 

owners.  

 

The results and conclusions in this report are based on an investigation conducted over a one-

year period. The conditions under which the experiments were carried out and the results have 

been reported in detail and with accuracy. However, because of the biological nature of the work 

it must be borne in mind that different circumstances and conditions could produce different 

results. Therefore, care must be taken with interpretation of the results, especially if they are used 

as the basis for commercial product recommendations. 
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GROWER SUMMARY 

Headline 

To provide automated agronomy support for agronomists at scale using machine/ deep learning 

techniques for yield prediction, from high dimensional spatio-temporal data.  

This approach will reduce costs whilst maximizing specialist human time in areas that require the 

most attention. 

Background 

This work on the augmented agronomist has been undertaken to help focus human time to the 

most vital areas, and act as an arm for agronomists to help locate problem areas in the crop 

earlier than possible and improve yield prediction. This system is also being created to improve 

trust, and security around the usually enigmatised deep learning models, and ensure data owners 

privacy. 

Summary 

Over the course of this project we intend to complete the following key objectives:  

● Provide agronomists and growers with yield predictions. This is the primary 

advantage provided by the augmented agronomist system which will provide alerts to the 

operator of deviations from forecasts, and highlight areas where predicted yield potential 

is not on target. This information will enable the operator to focus efforts in areas which 

require most attention in order to maximise yield potential. 

● Create an autonomous data collection system. Hand collecting data at scale would be 

infeasible due to both time and cost investments being too high while also providing 

inconsistent results. We will develop a repeatable and autonomous data collection 

platform so that we can collect spacio-temporal data for yield consistently and at scale. 

● Create a data aggregation and utilization pipeline. This pipeline will be designed to be 

able to collect and aggregate distributed (i.e. from multiple growing sites) and autonomous 

data. 

●  Deploy an agronomy assistive neural network to predict plant yield ahead of 

harvest. This includes neural network assessment of its own certainty in its predictions, 

allowing certainty metrics to be used to determine areas of interest. 
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Financial Benefits 

At this point in time it is unclear how significant the financial benefits will be as it is still early in 

research. However, if we compare this work to similar deep learning studies we would expect 

around an error of less than 15% (RMSE%) in yield prediction (Konstantinos et al 2018; 

Maimaitijiang et al 2020). Adding to this the uncertainty metrics to flag the uncertain cases to 

reduce the model’s error over time, and we aim to eventually achieve <5% error. 

Action Points 

• There are no action points at this early stage of the project. 
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SCIENCE SECTION 

Introduction 

Machine/ Deep learning is becoming a bigger and more important part of our daily lives through 

the rise of an ever-increasing quantity of available data. The use of machine learning in 

combination with user data is becoming increasingly widespread and impactful in everyday 

society performing tasks ranging from, natural language processing (Do et al. 2019), image 

recognition, diagnosis (Biswas et al. 2019), detection, classification (Fawaz et al. 2019), medical 

diagnosis (Anderson et al. 2019), self-driving cars (Huval et al. 2015), facial recognition (G¨uera 

and Delp 2018) among many other examples. However one area with which deep learning has 

remained relatively underutilised is in agriculture, where the data is scarce. The existing research 

has relied on classical techniques, and remote sensing datasets and to date has not taken 

advantage of the recent advances such as generative adversarial networks (GANs; Alvarez 2009; 

Chlingaryan, Sukkarieh, and Whelan 2018; Prasad et al. 2006). The primary reason why 

agriculture has not innovated in this area for so long is likely to be the lack of consistent data, but 

also the lack of willingness and trust of the growers/ agriculturalists to release data which could 

compromise their competitive advantage. Thus if there is little to no data there can be little 

advancement with deep learning techniques, meaning we will likely have to collect our own data 

to find any meaningful relations between the features and targets with which to predict yield 

accurately and far enough ahead to facilitate timely and effective actions. We have access to a 

plethora of data collection possibilities including; through the RASBERRY project, a collaboration 

between University of Lincoln (UoL), Saga Robotics, and Berry Gardens (BG), funding 

autonomous strawberry data collection; and through members of the consortium which fund the 

Collaborative Training Partnership Fruit Crop Research (CTP-FCR) studentship programme. The 

involvement of Saga Robotics (SR) allows us to work on a common generic expandable robotic 

platform called Thorvald. Thorvald is an autonomous robot ready for use in many terrains and an 

ideal candidate platform to use for our own data collection and usage system thanks to its 

autonomy, funding, and available resources. The seasonality of strawberry crops mean that fruit 

is only available for harvest between late June to early October in our experimental system. We 

intend to use and publish a labelled dataset of strawberries to make a large open dataset for yield 

prediction. Becoming the only multi-modal plant yield dataset openly available, consisting of both 

environmental and image features over time. 



 

 Agriculture and Horticulture Development Board 2020. All rights reserved  4 

 

Materials and methods 

 

Figure 2: Thorvald robot adjacent to strawberry tabletop plantation at the University of Lincoln 

Riseholme campus. This Thorvald is equipped with 3 realsense cameras; RGB, depth, one 

Raspberry Pi Zero, one raspberry pi camera v2, one BME680; temperature, humidity, and air-

quality sensor 

Initially we had to create a system to be able to attain our data before we could do anything with 

it. This should also serve as the basis of the augmented agronomist. In collaboration with the 

Lincoln Centre for Autonomous Systems (LCAS), and Saga Robotics who produce the Thorvald 

an autonomous data collection platform was developed.   

The creation of the data collection pipeline is a collaborative process in which this project 

developed/ and integrated autonomous data capture, secure communication/ encryption, 

databases and deep learning. In developing the data collection pipeline this study worked closely 

with a specialist (Raymond Kirk, 3rd year CTP-FCR PhD student) in autonomous robotic control 

using the robot operating system (ROS), Thorvalds, and deep learning. Thus, the work reported 

herein is a result of this collaborative effort due to the cross disciplinary skill sets required. The 

work has been completed in two work packages: 

● Data Collection; robotic control, pathing, orchestration, and data capture.  

● Data Management; data aggregation/ pipelines, Deployment (dockerisation), MongoDB 

distributed replica sets and networking. 



 

 Agriculture and Horticulture Development Board 2020. All rights reserved  5 

 

Data Collection 

Owing to the volume of work here, and to keep things concise this section will outline first the 

objective and then our findings and methods. There will primarily be a focus only in areas where 

this PhD is principally concerned: 

● Data collection planning; Explore the production system (strawberries grown on tabletop), 

and determine what intricacies the system may have before data collection. An interesting 

aspect was the effect that insects have on the outcome/ yield such as the burrowing of 

wasps in the strawberries. Although it is recognised that wasp damage is not a major 

commercial issue in strawberry production it provides a visual example to develop and 

demonstrate the capabilities of the augmented agronomist. There initially appeared little 

way to be able to predict or account for sudden surges in yield loss due to wasp damage, 

but we found that wasps would only burrow into slightly or completely overripe 

strawberries (Figure 3). This is a direct consequence of poor picking, as any unpicked 

strawberries over ripen and attract wasps, which is something we could potentially see in 

the dataset and could reasonably predict. 

● Automatically traverse the strawberry tabletop. This is primarily thanks to the work of Kirk, 

that the robot traverses the strawberry tabletop safely and consistently. 

● Automatically and repeatedly collect data at set intervals down the row. As above. 

● Collect data suitable for as many of our associated project needs as possible. For this 

project the key requirements were environmental factors such as temperature, humidity, 

etc. 

● Create sensors appropriate for data collection. Now that we know what data we require 

we could decide upon what sensors and other constituents the system required to gather 

these. In the case of this project a need for a sensor to collect temperature, and humidity 

resulted in use of a BME680 (INSERT SUPPLIER INFO) which is a small, cheap, i2c gpio 

board that integrates well into small ARM boards such as the Raspberry Pi. In the absence 

of accessible GPIO pins on the Thorvald system a compartmentalized system for data 

collection was developed. The many iterations of this can be seen in figure 4 with each 

iteration becoming more efficient with regards to space, and power. 

● Store the data locally on the robot platform due to difficulties transmitting large amounts 

of data wirelessly from inside the polytunnels at any given point in time. In previous 

projects data has been stored as files on the filesystem making them difficult to access, 

maintain, make consistent between multiple machines, and are unindexable/ 

unsearchable, resulting in a lot of wasted time. This project used MongoDB, which 

provides a common database to store all the data captures. This now meant that data 

could become live when connectivity was possible/ stable. 
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As a result of quite some monumental effort to create a system suitable for both the requirements 

of the funding body, and the near-real time data provisioning of this PhD, we created an 

automated Thorvald data collection platform, gathering many different varieties of spatio-temporal 

data, while maintaining their consistency, availability, and fault tolerance securely. The data 

collected key features such as humidity, temperature, light intensity, RGB images of the 

strawberry plants and fruit from multiple angles, as well as depth, and positional information, to 

list a few. We have employed 3 different data collection methods, including an intensive stationary 

sensor array to capture images and sensor data every 30 minutes of a few select plants to model 

them more precisely. We have also collected continuous capture of images, and sensor data to 

create sensor-array-video. Lastly the main data collection uses 20 cm step sampling of the 

strawberry tabletop to model the complex intra-crop environmental changes, which the vast 

majority of other datasets are not granular enough to do. We can pinpoint exactly at which position 

the robot was during any given data point, what its orientation was, and all the associated sensor 

array readings. 

 

Figure 3: Wasp burrowing behavior, eating unpicked overripe strawberries, which is not 

immediately apparent as it could easily be mistaken for a ripe strawberry. 
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Figure 4: Plethora of cameras, and sensors created over the course of data acquisition stage. 

The majority of which had specially designed, and 3D printed protective polyethylene 

terephthalate glycol (PETG) casings which doubled as mounts to be able to attach to the 

Thorvald robots. PETG is also highly UV and weather resistant. 

Data Management 

Data management requires the development of a consistent, reliable, and available method to 

gather data from the pipeline developed above that is potentially distributed between not only 

different Thorvald robots, but also multiple data collection sites. This work package is summarised 

as below: 

● Aggregate the data. One of the primary reasons for using MongoDB during data collection 

was an awareness of the distributed, sharding/ replica set functionality ingrained in 

MongoDB along with its ease of use and security when properly configured. MongoDB 

was found to be capable of automated data distribution such that each robots database 

would synchronise its contents with a larger more powerful network of MongoDB shards 

that was distributed using our Nemesyst framework (Onoufriou 2019a). 

● Back up the data/ add redundancy. Simultaneously to aggregating the data from each of 

the robotic platforms these shards, and replica sets provided guaranteed redundancy 

should any individual or even multiple datasets fail, with an automatic voting system to 

adjust which remaining replica set becomes the leader/ master. Using a logged database 
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such as MongoDB on a simultaneously journaled file-system such as BTRFS or EXT4 

meant that almost any data can be recovered that has been removed, deleted, corrupted 

or otherwise. 

● Make the data accessible to others. Since many other projects are interdependent on this 

data we implemented a key based user authentication mechanism, along with in place 

encryption, transport layer security, server authentication, replica set cross authentication 

and encryption. 

 

Figure 5: MongoDB, and monitoring. This allows us to continuously be aware of the state of the 

replica sets, their load, who is the master/ primary, network traffic, etc. This is an invaluable 

resource to the management of such a system and will provide us with many useful tools to 

analyze the effects of our research on this distributed implementation. 

 

Results and Discussion 

Thus far through the PhD we have collected, and aggregated in our new pipelines: 

● 35033 rows of weather data, or every 15 minutes for the year following 2019-01-01 

● 23 records for number of punnets produced over the season 

● 2200 intensive records of strawberry growth in the span of a week, including RGB, depth, 

infrared, location data and environmental data adjacent to the plant. 

● 1503 (in progress annotation of each ripe and unripe strawberry) images every 20cm down 

each row, with the same features as above. 

● 188 top down images of strawberries, with the same features as above. 
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● 188 bottom up images of strawberries with the same features as above. 

● 5200 units? of camera footage going down each row. 

We have begun cleaning and analysis of the data to prepare it for further deep learning efforts. 

However at this time we have no further results to disclose as our first year necessarily entailed 

a large data collection effort to be automated for subsequent years and data collections. 

Lastly we have also begun testing of our privacy preserving methods, and found them to be 

negligibly different in error compared to non-private models and data, although we are not 

prepared to disclose this in great detail publicly yet since it is the future of the PhD and critical to 

its success. 

Conclusions 

In summary we have created a completely new, distributed, and near-real time autonomous data 

collection platform so that we can evaluate yield prediction at arbitrary scale. We have iterated on 

our existing database enabled deep learning framework (Nemesyst) with the generalised 

functionality missing that was required for this application, and published a paper on its application 

to a similar problem. We have already begun our first tests into integrating pipelines for 

TensorFlow v2 to accelerate tensors on the GPU while preserving privacy. 

Knowledge and Technology Transfer 

Our work primarily in data aggregation pipelines are primarily Nemesyst, our open source 

distributed deep learning framework, for which we have detailed documentation 

(https://nemesyst.readthedocs.io/), and openly licenced MIT source code 

(https://github.com/DreamingRaven/nemesyst)  which seeks to allow the technology to be more 

widely adopted. 
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