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2. REPORTING OF WORK PACKAGE 2 

The main objective of work package 2 (WP 2) was to investigate the use of spatial information 

(e.g. maps of cereal and potato yields or of soil properties) to define higher and lower yield 

zones within fields, which may then be used to improve crop management practices. In addition, 

this work package investigates novel scanning technologies to better understand the dynamics 

of soil organic matter. For simplicity, the key findings of WP2 will be discussed in this report. 

Similarly, background literature, conclusions, appendices will also be reported here. However, 

practical recommendations from the whole project will be synthesised and reported in the 

summary report for the entire project. 

 

2.1. Areas of work 

This work package comprised six areas of work: 

1. Zoning of yield potential (Rothamsted Research) 

2. Using Electro-Magnetic Induction (EMI) scans to better understand soil variability 

(Lancaster University) 

3. Harvesters and plough draft (Rothamsted Research and NIAB) 

4. Fourier Transform InfraRed (FTIR) scanning of soil to quantify organic matter content 

(James Hutton Institute) 

5. Use of flatbed scanner to understand rooting in soils (James Hutton Institute) 

6. Plant root elongation assays using platform soils (James Hutton Institute) 

7. Trafficking in arable fields (NIAB)
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3. ZONING OF YIELD POTENTIAL 

3.1. Introduction 

Yield monitor data are now collected as standard on many farms. In addition to this, processed 

satellite data, which are available at increasingly fine resolution, can be used to see how crop 

response varies within a field throughout the growing season. These sources of data offer a 

means to understand and predict the variation in crop response within fields. The aim of this 

work was to investigate how farmers could make best use of the information captured by yield 

monitor data and satellite data, and to apply this knowledge within the context of precision 

management in potato crops.  

It is a well-recognised aim of many on-farm management strategies to divide fields into zones, 

to ensure efficient and effective management where each zone may be treated differently. 

Defining such zones has been a topic of research for at least 40 years (see e.g. Webster and 

Burrough,1972). The process of defining zones depends upon both the variables used to inform 

the zones, but also the approach used to ensure the zones are spatially coherent. It is of limited 

practical use to farm management if resulting zones are small and disjointed (Milne et al, 2012). 

Data used to inform zones most commonly include yield data or soil characteristics which can 

be measured either directly or more recently via remote sensing (Boydell & McBratney (2002); 

Guastaferro et al. (2010); Hedley et al. (2004); Song et al. (2009)) 

Yield monitor data has been accessible in cereal systems for the last 20 years or more and with 

the relatively short rotation cycle, data can be collected relatively easily on the same crop in the 

same field over multiple seasons. Such information enables the use of current zoning 

methodologies to define coherent areas in a field. By collecting temporal patterns in yield, zones 

may not simply be areas of high or low yield but may also include zones at risk to particular 

events. For example, areas can be identified that perform well in most years but show 

particularly bad yield in certain years which could, for instance, be due to a susceptibility to 

drought.  

With the ever-increasing availability of data, there is also an increase in data sparsity. Data 

sparsity can impact a dataset in different ways, be it through variable sparsity, spatial sparsity 

or colocation sparsity. Variable sparsity refers to a lack of information in the set of measured 

variables. Yield data often exhibit a high level of variation across time and space. Thus, to be 

able to definitively identify distinct clusters, several years’ worth of data needs to be collected in 

order to define zones within which yield varies similarly from year-to-year. However, if the yield 

data are variable sparse and contain too little information, i.e. that the signal is too weak 

compared to the variability, clusters will be difficult to identify and distinguish regardless of how 

many years' data are available.  

Spatial sparsity occurs when data are not collected uniformly across a field, this is the case for 

many infield measurements. Such spatial sparsity generates holes in the coverage of data over 

a field and can either result in a large loss of resolution in the resulting field zones or in some 

cases, a failure in the convergence of the smoothing algorithms (See Section 3.2.3.3). 

Measuring multiple variables across the field will rarely result in the same field locations being 

measured at each time point, which will result in, what is termed colocation data sparsity. 

Current zoning methods require each location to have a complete set of observations. Thus, 

colocation sparsity can result in a large loss of data, since any location for which only a subset 

of measurements was observed are omitted from the analysis, compounding the issue of spatial 

sparsity. Previous applications went some way to address this problem by aligning data to a 
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common grid, however, complete coverage of all variables is rare without a prohibitive level of 

aggregation. 

As part of the project, data sparsity was addressed by adapting current methods for forming 

spatially coherent zones (Hassall et al, 2019). 

This project focussed on the ability of yield monitor data to inform potato management on-farm, 

through the identification of distinct yield zones and the benchmarking of yield performance 

across farms and seasons. There are many tools available to farmers for such benchmarking 

purposes (e.g. Farmbench, and others at https://ahdb.org.uk/tools) and these are routinely used 

by growers. However, these tools are generally focussed on coarse spatial resolution and are 

difficult to align to precision management techniques. This work looked at combining both the 

yield zoning approach with yield benchmarking to provide more personalised information.  

A key aspect of this project was the availability of potato yield data across multiple seasons. In 

contrast to cereal systems, temporal datasets are unavailable for potatoes given the long 

rotation cycle. Hence, other remote sensed data was also evaluated for its ability to inform 

potato management and to predict yield zones. In addition, the expert knowledge of growers 

was sought to inform future directions of methodological advancements in yield zoning 

methodologies. 

Thus, in this project the following questions were addressed:  

• Do potato yield monitor data demonstrate expected patterns of variability in yield? 

• Can improvements be made to computational methods in order to mitigate the issues 

of data sparsity? 

• Can yield monitor data be used to inform zones for potato management? 

• Can these data be useful for benchmarking performance?  

• Can we predict useful management zones from other remote and proximal sensed 

data? 

• Can we incorporate growers’ expert knowledge into the definition of management 

zones? 

 

3.2. Materials and Methods 

Potato yield monitor data were extracted directly from potato harvesters and supplied by the 

project team (see Table 1). These data were then processed through the ROTH-YE yield 

cleaning software (Muhammed et al., 2015) to remove outlying data points, typically achieved 

by specifying a minimum and maximum yield threshold. In addition, the potato yield data often 

exhibited flow delays where consecutive passes were misaligned. To adjust for this, edits to the 

software were made to first identify the start and end of each pass and to impose a shift delay, 

typically of around 15-20 seconds.  

Table 1 below, details the number of fields for which there was data and the number that were 

deemed to have sufficient data quality after the ROTH-YE cleaning steps to be used in 

downstream analysis. 

 

https://ahdb.org.uk/tools
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Table 1. A summary of the number of fields for which potato yield monitor data were available and 

were carried through to the different downstream analyses. 

 

Year 
Number of 

Fields 

Number of fields with 

sufficient data quality 

Number of fields 

zoned 

Number of fields with 

sufficient NDVI data 

2017 32 20 17 17 

2018 40 33 32 25 

 

In particular, some fields were immediately filtered due to too few data points recorded in a field 

or due to large areas of missing monitor data. Not all fields deemed to be of sufficient data 

quality after the cleaning step were successful in the zoning usually due to strong striations 

(potentially due to varietal differences in planting) in the yield maps. 

Not all fields deemed to be of sufficient data quality after the cleaning step were successful in 

the zoning usually due to strong striations in the yield maps. Typically, about 10% of fields were 

filtered out at this step. In addition, cereal yield monitor data was made available for a small 

number of fields. These cereal data were also processed through ROTH-YE. In particular, four 

fields of winter wheat (1 field with 1 year and 3 fields with 2 years) of yield monitor data were 

processed. 

 

3.2.1. Field Alignment 

Field boundaries were obtained through Digimap Ordnance Survey. Using ArcGIS software, 

satellite data were extracted for each field by masking these field boundaries and converting 

the raster images to point feature sets. Given some misalignment between the yield monitor 

GPS and the OS field boundaries, shape files were produced for the yield set and shifted to 

maximise the intersection between the OS field boundary and the yield monitor shape file.  

 

3.2.2. Variogram of linear features 

To determine whether potato yield monitor data were likely to be sensitive enough to pick up 

spatial patterning in yield, the data was first analysed to see if known features of variation could 

be detected, such as those associated with tramlines. For this, geostatistics was employed 

which specifically characterised the yield variation by fitting variograms. The variogram is a 

function that relates variance to separation in space, 𝒉, in distance and direction. The quantity 

𝒉 is known as the lag, which is a vector describing both distance and direction. For any particular 

𝒉, the variogram is given by 

γ(𝒉) =
1

2
 E [(Z(𝐱) − Z(𝐱 + 𝒉))

2
] 

where Z(𝐱) and Z(𝐱 + 𝒉) are the values of the random variable Z at places 𝐱 and 𝐱 + 𝒉. The 

values of γ(𝐡)  were estimated by the method of moments (Webster and Oliver, 2007), 

γ̂(𝐡) =
1

2𝑚
∑[z(ξ + 𝐡) − z(ξ)]2

𝑚

𝑖=1

 

where z(ξ) and z(ξ + 𝐡) are the observed values at positions ξ and ξ + 𝒉 separated by 𝒉, and 

of which there are 𝑚 paired comparisons at that lag. Typically, as observations of the processes 
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become further apart they become less correlated, until there is no relationship between 

observations. This is characterized by the variogram. To see if the likely spatial patterning 

associated with compaction around tramlines could be detected, the variogram was calculated 

with lag distances constrained to 90 degrees to the direction of harvest and looked to see if any 

periodicity was detectable. This direction was found by, 

θ = tan−1
Δ𝑥

Δ𝑦
+ 90 

Where Δ𝑥, Δ𝑦 are the change in Eastings and Northings, respectively, of the sequentially 

measured harvest data. The variogram of the field was calculated in the direction of 𝜃 with a 

tolerance of 10 degrees.  

 

3.2.3. Zoning 

Following Hassall et al. (2019), the formation of spatially coherent zones consists of three steps: 

data pre-processing, clustering and smoothing. 

 

3.2.3.1. Data pre-processing 

Each yield (or NDVI) variable is first standardised to have unit variance. Since measurements 

from different variables will rarely co-locate within a field, data are aligned to a regular grid. 

Where multiple measurements of the same variable align to the same grid location, these are 

then averaged. 

The grid size should be chosen carefully. Previous implementations recommended a grid size 

of 10m, which produces a reasonable resolution for practical field management. However, the 

choice of grid size does not only affect the zone resolution but also the zone coherence. 

 

3.2.3.2. Clustering 

Non-hierarchical methods of clustering have been found to outperform the hierarchical methods 

on field-based measurements due, perhaps in part, to the lack of a hierarchical structure in soil 

(Milne et a, 2012). Furthermore, fuzzy clustering methods enable a good assessment of cluster 

entropy and allows one to identify points that lie between clusters, as well as those that are 

easily classified.  

 

Let ziv be the standardised observation for variable v = 1, … , p at location i = 1, … , n. The aim 

of the classification algorithms is to group the n objects into k classes. Each class q = 1, … , k is 

characterised by a centroid vector zq̅ = {z1q̅̅ ̅̅ , … , zpq̅̅ ̅̅ }. A fuzzy c-means classification is obtained 

by minimizing, 

 

∑ ∑ uiq
ω δiq

2

n

i=1

k

q=1
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where uiq is the membership probability of location i to class q such that ∑ uiq
k
q=1 = 1, ω >  1 is 

the fuzzification parameter with values close to 1 resulting in a less fuzzy classification (ω = 1, 

returns the non-hierarchical k-means algorithm). As recommended in Milne et al. (2012), ω =

1.25. The variable δiq is the vector norm used to measure how well location i resembles class 

q. Here, the Euclidean norm is used. 

Observations are clustered using the optimal completion strategy of Hathaway and Bezdek 

(2001) which allows for partial missingness in the vectors 𝑧. Choosing the appropriate number 

of clusters remains a subjective decision. Here, the normalized classification entropy is used 

𝜉(𝑘), Dunn (1977), to identify the most appropriate number of clusters $k$, 

𝜉(𝑘) =
−1

log 𝑘
∑ ∑

1

𝑛

𝑛

𝑖=1

𝑢𝑖𝑞 log 𝑢𝑖𝑞

𝑘

𝑞=1

 

Where 𝑢𝑖𝑞 is the membership probability of location i to cluster q.  

Following Roubens et al. (1982), point k is identified, that falls below the overall trend, such as 

a local minimum, or the point at which the entropy changes gradient. Note, in the following, 

graphs of 1 –  𝜉 are presented, as this scale typically enabled an easier identification of the 

change points in 𝜉. 

 

3.2.3.3. Spatial smoothing 

In this work, recommendation that smoothing should occur after the classification or clustering 

step is maintained. Two reasons to do so are, firstly, classifying after spatial smoothing or kriging 

does not guarantee the spatial coherence of the resulting clusters. Specifically, with a view to 

on-farm management strategies, the aim was to force spatial coherence since the identification 

of many disjointed zones would be of little practical use in field. Secondly, to smooth the data 

first, would be to interpolate across the field with the potential effect of artificially increasing the 

number of completely observed locations. By smoothing in the final step of the zoning process, 

the need to propagate imputed data is avoided (and its associated uncertainty) through the 

cluster algorithms. 

 

Following Lark (1998), spatial coherence is imposed over the clusters by recalculating the class 

memberships at each location as a weighted average of the neighbourhood of class 

memberships. Since membership probabilities form a composition (constrained to sum to 1), 

this weighted average is calculated after a symmetric log-transformation of the membership 

probabilities Aitchison (1982), 

uiq
∗̃ = ∑ w(i, j)ujq̃

j∈R

 

where uiq̃is the transformed membership probability for location i, class q, R defines the radius 

of a circular neighbourhood of location i and w is a weight defined by the dependence between 

locations i and j. 

 

The weights w(i, j) are formed so that points close to location i are given higher weight than 

locations further away and are derived from the variogram function Webster and Oliver (2007), 

γ(h) = c0 + cf(h) 
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where γ, termed the semi-variance, is a function of the expected mean squared difference 

between random variables at locations separated by a distance h. The variogram therefore 

characterises the spatial dependence between points and is incorporated into the weighted 

smoothing through the following (Lark, 1998), 

w(i, j) =
1 − f(hij)

∑ 1l∈R − f(hil)
 

where hij is the distance between points i and j. 

An example variogram is shown in Figure 1(C) and illustrates i) the nugget variance, c0, which 

is the spatially independent contribution to the variance, ii) a period of increasing γ, 

characterising the property that points separated by a small distance h, are more similar than 

points separated by a large distance h and iii) a sill, c0 + c1, indicating points separated by large 

distances are spatially independent. 

The inclusion of the variogram function in the definition of the weights provides a rational 

measure of spatial dependence between points. Specifically, the variogram is calculated from 

the transformed class membership probabilities. Although there will be k possible variograms, 

one for each class membership, in practice it is found that, except for the nugget, very little 

difference can be seen in the variograms of the different class memberships. Thus, the empirical 

variogram is obtained from the transformed membership probabilities of the most commonly 

occurring class, to which the model variogram is fitted. Since there will be a class membership 

for every location, including those with incomplete measurements (when implementing the 

revised cluster algorithm), all locations are included in the calculation of the spatial dependence 

and moreover the variogram will explicitly capture the spatial dependence of the classification. 

Not only is the choice of weights important, but also the choice of R, the radius of smoothing. If 

R is too small, clusters remain fragmented, whereas for large R, clusters are oversmoothed. 

Hassall et al (2019), defined a coherence index, 𝐼𝑐
∗, which when maximised, defines a radius 

that balances out the need to reduce spatial fragmentation and to ensure the resulting smoothed 

clusters are consistent with the original variables, 

𝐼𝑐
∗ =

𝜂𝑎
∗

∑ ψq
2k

q=1

 

 

Here 𝜂𝑎 is the proportion of pairs of points within a distance a*, that belong to the same class 

and 𝜓𝑞 is the proportion of units that belong to class q. a* is defined by the 25th percentile of 

the square root of the Voronoi cell area, where the Voronoi grid is defined by the Delaunay 

triangulation of the locations within the field. Defining a neighbourhood based on the observed 

Voronoi grid ensures a reasonable coverage and a consistent coherence index. Such a 

coherence index maximises the probability that two individuals separated by a distance a* are 

in the same class, normalized by the probability that two randomly selected individuals from the 

dataset belong to the same class. 
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Figure 1. A) Locations of the set of complete observations for a single field on a grid size of 5m. 

B) Locations are coloured according to the transformed membership probabilities for the most 

commonly occurring class resulting from a fuzzy c-means clustering with 4 clusters and C) shows 

the associated variogram. D) An illustration of the neighbourhood under spatial sparsity. E) The 

Voronoi grid of observed spatial locations. F) Histogram of the “length” of Voronoi cell size, 

calculated as the square root of the Voronoi cell area. G) The numerator of the coherence index 

calculated based on a grid neighbourhood (red) and a Voronoi neighbourhood (black). H) The 

coherence index calculated based on a grid neighbourhood (red) and a Voronoi neighbourhood 

(black). 
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3.2.4. Benchmarking 

A prototype yield benchmarking tool was developed with the primary aim of engaging growers 

in the interpretation of management zones. The tool was developed as an R shiny application 

and allows users to see how individual fields compare in terms of average yield to the whole set 

of 49 fields from 2017 and 2018. The average yield was calculated based on the 10-m gridded 

yield monitor data. 

For an individual field, the yield zones as determined from that single years’ worth of potato 

harvest data were identified. These were shown along with boxplots of the measured yield 

(aggregated to 10 m x 10 m squares) per zone. 

A final option showed how these within field zones compared across different fields within the 

region. To calculate the zones across different fields, the fuzzy clustering algorithm was run on 

the gridded 10m yield data of all fields simultaneously. Thus, the clusters identified cut across 

all fields. The spatial smoothing was done on each field independently, whereby the variogram 

of the fuzzy membership was identified per field and smoothed as per the methods detailed 

above. Thus, the smoothing index may have been optimised at different distances for each field. 

 

3.2.5. Satellite data 

Satellite data from Sentinel-2 were extracted and processed via Pixalytics Ltd. Sentinel-2 carries 

a wide swath (290 km) high-resolution multispectral imager with 13 spectral bands, and a 

dynamic range of 12-bits. Spatial resolution is dependent on wavelength, with Visible (VIS) and 

NIR at 10 m, Vegetation Red Edge and Short-wave Infrared (SWIR) at 20 m, and Coastal 

Aerosol, Water Vapour and Cirrus bands at 60 m. 

A selective time series of data was chosen for the target area based off image availability and 

cloud cover. A summary of Sentinel-2 data found most appropriate for developing NDVI 

products is listed below (Table 2). For consistency, only Level-1C (Top-of-atmosphere 

reflectance in cartographic geometry) data were used. 

Table 2. Dates of extracted Sentinel-2 data for the region of interest. Dates were chosen within 

particular ranges (May - June and September - October) such that cloud cover was minimised 

Year Month Day 

2018 May 7th 

2017 June 21st 

2017 June 18th 

2017 September 24th 

2016 June 6th 

2016 September 14th 

 

3.2.5.1. Pre-Processing 

To convert Sentinel-2 values from Top-of-Atmosphere to At-Surface reflectance, the 

Atmospheric and Radiometric Correction of Satellite Imagery1 (ARCSI) tool was used. Level-

1C Sentinel-2 data has been atmospherically corrected using Dark Object Subtraction 

techniques, cancelling out haze caused by scattering from remotely sensed data. The empirical 

method searches each band for the darkest pixel value and subtracts this from every pixel in 

the band to remove the effects of additive scattering. 
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Due to the atmospheric correction technique, Sentinel-2’s three 60-m spatial resolution bands 

(Coastal Aerosol, Water Vapour, Cirrus) have been removed from the product. This will not 

impact the calculation of any future thematic indices using the Visible, NIR and SWIR bands. 

 

3.2.5.2. NDVI 

The Normalised Difference Vegetation Index (NDVI) algorithm was used to exploit the vitality of 

vegetation using Near Infrared (NIR) and Red visible light. Vegetation presents an abrupt rise 

in spectral signature reflection at 700 nm, whereas spectral signatures of non-vegetated land 

cover will remain linear. The more active the chlorophyll within the vegetation, the more 

pronounced this rise in spectral reflectance will be. This allows not only the determination of 

vegetated/non-vegetated areas, but also acts as a proxy for vegetation vitality. 

NDVI is a result of the following equation: 

𝑁𝐼𝑅 −  𝑅𝑒𝑑

𝑁𝐼𝑅 +  𝑅𝑒𝑑
 

This equation returns a value between -1 and +1, with numbers closer to +1 representing the 

increased presence of chlorophyll, and thus as a proxy, the increased strength of vegetation. 

NDVI products have also been used to derive other biophysical properties of vegetation such 

as Leaf Area Index, biomass, chlorophyll concentration, plant productivity and fractional 

vegetation cover. Using the atmospherically corrected data, NDVI has been calculated for each 

individual image using the above formula. 

 

3.2.6. Farmer participation 

To date, field zoning techniques have focussed on the data analytics. However, it is well-

recognised that farmers and growers have inherent knowledge about their fields and how to 

manage them. Thus, incorporating this knowledge into the zoning algorithms is a desirable 

outcome. This knowledge may be quantitative such as the size, shape and number of zones for 

which it is practical to divide a field into or it may be qualitative such as “area X never seems to 

do as well as area Y.” It was the aim of this project to run facilitated workshops to identify such 

information and to integrate this into the mathematical algorithms for forming zones. Due to the 

COVID-19 pandemic, it was not possible to hold elicitation workshops to integrate farmer 

knowledge with the above zoning methodologies, and further develop the decision support 

tools. Instead, an online workshop was run as part of the 31st Annual Conference of the 

Cambridge University Potato Growers Association (CUPGRA). Around 70 participants actively 

engaged in the workshop. The workshop consisted of an initial introductory presentation of the 

motivation and zoning outputs along with a short video demonstration of the benchmarking tool. 

Input from participants was sought using an interactive questionnaire. This was done using the 

Mentimeter software (https://www.mentimeter.com) and consisted of the following questions: 

1. I would consider variable field management of potatoes because… [Rate from strongly 

disagree to strongly agree] 

• It will increase my yield 

• It will increase my profit 

• It will reduce the impact on the environment 

• It will save me time 

• Because it will support negotiations for a new contract 

https://www.mentimeter.com/
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2. I would like to vary [please rank] 

• Nutrient application 

• Irrigation 

• Seed rate (including leaving some areas unsown) 

• Pesticide sprays 

• Harvest time 

3. Other information I need to help me manage zones differentially [please select] 

• Maps of within field soil variation (e.g. EMI) 

• Yield maps from other crops 

• My expert knowledge of the field in question 

• Topography 

4. Is it useful to benchmark zones of the field… [Rate from strongly disagree to strongly 

agree] 

• It is useful to compare zones across fields 

• It is useful to compare zones within a field 

5. What are the main hurdles to data sharing [Please rank] 

• Disclosing yield information 

• I don’t routinely collect yield data 

• Disclosing the location of the field 

• I don’t know how to share my yield monitor data 

• I don’t have time to download the data 

6. What should be included in a benchmarking tool? [free text] 

 

3.3. Results 

3.3.1. Summary of potato yields 

Figure 2A shows the distribution of yields over the surveyed fields through 2017 and 2018. 

Yields ranged from approximately 25 tonnes per hectare to more than 90 tonnes per hectare 

with lower yields generally seen in 2018, an exceptionally dry year. There was also a range in 

the size of fields considered as shown in below Figure 2B). Fields varied from approximately 6 

to 11 ha and a small number of larger fields exceeding 20 ha. 
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Figure 2. (A) Boxplots of the average yield per field. Field yields were estimated after aggregating 

the yield monitor data to 10 m grid squares. (B)  Boxplot of the areas of the 49 potato fields. 

  

 

Figure 3 shows that as the average productivity in a field increased, so did the variation. This 

relationship appears quite linear with the standard deviation approximately one third of the 

average yield. Thus, in-field variation of potato yield is substantial. 

Figure 3. Scatterplot showing the average yield per field and the associated variability (standard 

deviation) in yield across the field. 

 

 

3.3.2. Potato yield monitor data demonstrate expected patterns of variability 

Management of potato crops can be quite extensive with heavy use of machinery through the 

field. It is therefore expected that tramlines will have a significant impact on the yield of crops. 

Such an effect is indeed visible from yield monitor data (Figure 4), whereby the directional 

variogram picks up dips in the semi-variance at intervals consistent with the width of tramlines. 

This was evident in approximately 70% of observed fields. 
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Figure 4. (A) and (B) show the yield monitor data for two different fields of potato harvests. (C) 

and (D) show the associated empirical variogram calculated in the direction perpendicular to 

harvest. The dashed red lines show the tramline intervals in the field which look to correspond 

with observable dips in the semi-variance. 

 

 

  

 

3.3.3. Mitigating the issues due to data sparsity 

As detailed in Hassall et al. (2019), guidance has been issued on the formation of spatially 

coherent zones under data sparsity as summarised in Figure 5. The methodological 

advancements we’ve made, as detailed in Section 3.2.3, are demonstrated through an 

extensive empirical study of wheat yield monitor data collected from multiple fields at different 

temporal and spatial resolutions in Hassall et al (2019) and are included in Appendix at the end 

of this document. 
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Figure 5. A flow diagram describing the process by which spatially coherent zones are 

calculated. Boxes highlighted in grey indicate the implementation of our methodological 

advancements specifically addressing the issues of data sparsity. Boxes highlighted in black 

indicate additional options one can iterate through to refine the formation of zones under high 

levels of sparsity. 
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3.3.4. Identifying variable sparsity 

Results shown in Hassall et al (2019) and Appendix 8 indicated that cluster identification often 

improves with the inclusion of more variables. However, distinct zones and clusters can still be 

formed from just two years’ worth of data. Furthermore, the inclusion of more variables does not 

guarantee cluster formation.  

Thus, before proceeding with the formation of coherent spatial zones, the raw clustering output 

should be evaluated through an assessment of the cluster entropy (Step 4 in Figure 5). The 

minimum number of years required to result in a reasonable clustering, as identified from the 

entropy (Muhammed et al. 2015), depends on both on the field and the particular subset of 

years considered. Thus, although there exist recommendations in the literature, (see for 

example. Boydell et al. (2002) for assessment of cotton yields), a case-by-case evaluation of 

the clustering is recommended to determine whether resulting zones will be distinct enough to 

be of use. 

 

3.3.5. Spatial sparsity impacts coherence and smoothing 

It is common to have 5 years or more of cereal yield data for a single field. When these data are 

aligned to a 5-m grid, there are relatively few locations for which there are a complete set of 

observations. Despite so few locations with a complete set of observations, clusters can be well-

identified. However, due to the spatial sparsity, they cannot be made spatially coherent with the 

coherence index of Lark. Moreover, although the revised coherence index based on the Voronoi 

cell size is an improvement, it does not identify an optimal smoothing range (at Step 6 of Figure 

5). In this scenario, data are too sparse to form coherent zones. 

Spatial sparsity can be mitigated by retaining the partially observed locations. This can be done 

through the revised clustering algorithm outlined in Section 3.2.3.2 (Step 3 of Figure 5). When 

implementing the revised clustering algorithms to allow for partially observed locations, a much 

finer grid of spatially dense data can be used. The consequence of such is to provide a much 

improved (smooth and well-defined) coherence index. The use of partial data in the clustering 

algorithms did require more computational effort to ensure the algorithms converged. In rare 

cases where a high proportion of locations were partially observed, the algorithms sometimes 

failed to converge. In practice, one may need to consider a combination of variable-wise and 

unit-wise deletion of observations to reduce the colocation sparsity. 

An alternative solution is to increase the grid size. As the grid size increases, the spatial sparsity 

decreases, and the coherence index is better identified. However, for larger grid sizes, the 

coherence index is less smooth reflecting the higher level of discretization in the grid alignment.  

 

3.3.6. Mitigating data loss from colocation sparsity 

Figure 6 demonstrates one of the key advantages to the methodological extensions outlined in 

Section 3.2.3. Specifically, this is a field for which many data are available. In particular cereal 

yield measurements have been collected for seven fields. However, with an increase in the 

number of years measured, the co-location sparsity increases, resulting in fewer locations 

having a complete set of observations. The subsequent zones, obtained from the original 

approach of Lark, although identified, are at a relatively low spatial resolution (Figure 6K). 

Allowing for partial observations, increases the spatial resolution of the resulting zones but not 

at the cost of zone coherency (Figure 6N). 
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Figure 6. Figure 6 A)-G) Standardised wheat yield measurements over 7 years, aligned to a 10m 

grid. H) The spatial locations of both complete (black) and partial (grey) observations on a grid of 

10m. I) The normalized classification entropy of the fuzzy c-means. J) The associated coherence 

index based on the underlying grid of 10m (red) and Voronoi cell length (black) and K) the 

associated smoothed clusters. L) The normalized classification entropy of the OCS fuzzy c-

means. M) The associated coherence index based on the underlying grid of 10m (red) and Voronoi 

cell length (black) and N) the associated smoothed clusters. 

 
 

3.3.7. Zoning of potato yields 

Table 3, shows the number of zones found per field for the year of potato yields, typically, this 

was of the order of 3 to 4 zones per field. The corresponding yield of each zone (per field) is 

shown in Figure 7. There is considerable variation both between fields and between zones 

withing the same field. 
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Table 3. Frequency table showing the how many fields exhibited 3, 4, 5, or 6 distinct zones 

Number of Zones (within a field) Total number of fields 

3 18 

4 18 

5 10 

6 3 

 

Figure 7. Boxplots of the yield (tonnes per hectare) for every 10m2 grid cell within each zone per 

field. 
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As can be seen in Figure 8, the between-zone variation can be quite substantial, with the 

average yield in the blue zone of 66.3 tonnes per hectare and the average yield in the green 

zone of 76.6 tonnes per hectare. For the field shown in Figure 8, yield variation shows clear 

zonal demarcation. However, there were more homogeneous fields, for which the yield variation 

was more clearly associated with striations in the field, potentially due to headlands, differing 

varieties grown in different sections of the field etc. Some examples of these are shown in Figure 

9. 

Figure 8. Field map indicating the delineation of zones along with the corresponding boxplots of 

yields within each zone. 
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Figure 9. Example fields highlighting strong striations in the raw yield monitor data and the 

subsequent identified yield zones. 
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3.3.8. Benchmarking via zones provides additional information 

The data and analyses shown in sections (ref appropriately) were incorporated into an R-Shiny 

software application for benchmarking. Screenshots are shown in Figure 10. 

Figure 10. Screenshots of the yield zoning benchmarking tool 
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Not only were general statistics incorporated about the yield per field relative to all fields 

included in the sampling along with how that field was zone. But coherent measures were 

investigated for comparing zones across different fields. This was achieved by forming clusters 

of similar yield from across all fields simultaneously. Naturally, more zones were needed to 

represent this behaviour, 9 in total. The resulting clusters were then smoothed on a field-by-field 

basis. Thus, one can see if the zones identified in their field correspond to high or low yielding 

zones across the whole set of sampled fields.  

 

3.3.9. Zoning via proximal data 

Section 3.3.7 has focussed on the potato yield data. Although variational zones are apparent in 

in potato crops, the above analyses do not help to aid management practice in advance of 

harvest. To do so, would require an approach that predicts such zonal variation in potato crops 

that can be used by growers to manage different areas of a field in such a way as to optimise 

productivity both through costs and profit. The following subsections discuss approaches such 

as using proximal sensed remote satellite data and cereal yield information of other crops in the 

rotation. 

 

3.3.10. Zoning via satellite imagery 

Figure 11 shows the resulting zones based on NDVI measurements only. It is clear that for 

some fields variation in NDVI over the seasons has been detected. However, it is also clear that 

for some fields the NDVI does not show enough variation in order to pick out individual zones. 

In the majority of fields, a strong “edge effect” can be seen. This is due to the artefact in 

extracting satellite data based on field boundaries. The resolution of the imagery means the 

field boundary will be apparent in the NDVI. Figure 12 shows how the potato yield is associated 

with the NDVI defined zones. Some fields show a better correspondence than others but in 

general, the difference in yield between zones appears less than when zones are defined on 

actual yield measurement. This could be due to several reasons; the NDVI is picking up variation 

in different years that are not necessarily representative of the particular potato season, the 

resolution of the NDVI is not fine enough to pick up yield variation, the NDVI would be more 

accurate if taken at more time points spread through the growing season.  
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Figure 11. Resulting zones from clustering NDVI data for 42 fields that grew potatoes in 2017 and 

2018 
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Figure 12. Figure 12 Boxplots of the 10m2 average yield falling within each NDVI zone 

 

 

3.3.11. Zoning via cereal yield data 

Figure 13 shows the resulting zones of 5 fields that grew potatoes in either 2017 or 2018 based 

purely on the respective cereal data. Clear zonal variation can be detected in all 5 fields. 

Boxplots in Figure 14 show how these zones are related to associated potato yields. 
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Figure 13. Resulting zones from clustering cereal yield data for 4 fields. The top left fields are 

zoned from a single year’s worth of winter wheat yields, whilst the remaining 3 fields had two 

years of cereal data available. 
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Figure 14. Boxplots of the 10m2 average yield falling within each cereal zone. 

 

 

3.3.12. Incorporation of expert knowledge 

The CUPGRA workshop focussed on extracting a holistic overview of what the main 

requirements and obstacles there are to variable rate field management of potatoes. Around 90 

participants attended the workshop with approximately 65 engaging in the interactive survey. 

Participants varied in their expertise and included growers, agronomists, and industry 

representatives, among others. The survey itself, run through Mentimeter, showed 

visualisations of the questions as respondents inputted their answers. These are shown along 

with the full data below. 
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Q1: I would consider variable field management of potatoes because... 

 
Choices 

Weighted 
average 

 
1 

 
2 

 
3 

 
4 

 
5 

It will increase my yield 3.43 4 9 13 25 9 

It will increase my profit 3.75 4 3 16 18 19 

It will reduce the impact on the environment 3.68 2 3 19 27 11 

It will save me time 2.38 18 15 19 5 4 

Because it will support negotiations for a new contract 2.46 13 18 17 10 1 

 
 

Q2: I would like to vary (please rank)… 

Items 1 2 3 4 5 

Nutrient application 33 12 10 3 3 

Seed rate (including leaving some areas unsown) 15 11 16 10 6 

Irrigation 10 20 15 12 3 

Pesticide sprays 4 14 12 13 10 

Harvest time 1 2 6 16 27 
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Q3: Other information I need to help me manage zones differentially... 

Choices Votes 

My expert knowledge of the field in question 59 

Maps of within field soil variation (e.g. EMI) 56 

Topography 42 

Yield maps from other crops 40 

 

 

Q4: Is it useful to benchmark zones of the field? 

 
Choices 

Weighted 
average 

 
1 

 
2 

 
3 

 
4 

 
5 

It is useful to compare zones across fields 3.68 3 7 13 19 17 

It is useful to compare zones within a field 4.44 1 3 5 10 40 
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Responses from the questionnaire suggested that the main motivation for potato farmers to 

adopt variable rate management was to increase profit, closely followed by reducing impacts to 

the environment. The respondents believed that variable-rate management was most 

appropriate for fertilizer application, but irrigation and adjusting seed rate also ranked highly in 

the list of operations that should be managed differentially. With respect to the use of 

management zones formed from sensed data, most respondents suggested interpretation 

would be best enhanced through their own expert knowledge of the field and additional maps 

of soil variation. Comparing yield metrics through a Benchmarking tool was also seen as a 

helpful way to interpret and use management zones.  

A key requirement for the further development of the analytical tools described in this report is 

the access to yield data both of the potato crop but also other crops in the rotation. When asked 

in the online survey what the main hurdles are for data sharing, it is not only issues with data 

privacy, namely disclosing the yield information itself but also a constraint that such data is still 

not routinely collected within the potato growing industry. 

 

Responses from the questionnaire suggested that the main motivation for potato farmers to 

adopt variable rate management was to increase profit, closely followed by reducing impacts to 

the environment. The respondents believed that variable-rate management was most 

appropriate for fertilizer application, but irrigation and adjusting seed rate also ranked highly in 

the list of operations that should be managed differentially. With respect to the use of 

management zones formed from sensed data, most respondents suggested interpretation 

would be best enhanced through their own expert knowledge of the field and additional maps 

of soil variation. Comparing yield metrics through a Benchmarking tool was also seen as a 

helpful way to interpret and use management zones.  

A key requirement for the further development of the analytical tools described in this report is 

the access to yield data both of the potato crop but also other crops in the rotation. When asked 

in the online survey what the main hurdles are for data sharing, it is not only issues with data 

privacy, namely disclosing the yield information itself but also a constraint that such data is still 

not routinely collected within the potato growing industry. 
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Q5: What are the main hurdles to data sharing? (please rank) 

Items 1 2 3 4 5 

Disclosing the location of the field (Data privacy) 6 14 5 9 13 

Disclosing yield information (Data privacy) 20 14 4 9 3 

I don't have time to download the data 4 5 13 11 10 

I don't know how to share my yield monitor data 5 9 13 6 9 

I don't routinely collect yield data 20 9 8 5 5 

 

 

3.4. Discussion 

As detailed in the introduction, this project aimed to answer the following questions, 

• Do potato yield monitor data demonstrate expected patterns of variability in yield? 

• Can improvements be made to computational methods in order to mitigate the issues 

of data sparsity? 

• Can yield monitor data be used to inform zones for potato management? 

• Can yield monitor data be useful for benchmarking performance?  

• Can we predict useful zones from other remote and proximal sensed data? 

• Can we incorporate growers’ expert knowledge into the definition of management 

zones? 

 

3.4.1. Do potato yield monitor data demonstrate expected patterns of variability 

in yield? 

Potato yield monitor data show reasonably high levels of in-field variability with the standard 

deviation approximately one third of the average yield per field. Furthermore, expected patterns 

of variation were identified corresponding to management practice such as tramlines and 

changes in variety. This suggests that should potato yield monitor data become more widely 

gathered it has the potential to inform on management of subsequent potato crops. 

 

3.4.2. Can improvements be made to computational methods in order to 

mitigate the issues of data sparsity? 

The methodological advances described in Section 3.2.3 enable a more efficient use of data by 

discarding less information in the formation of spatially coherent zones. In particular, it has been 
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demonstrated that by extending the clustering methods to cope with partially observed 

locations, more data are available as input to the coherence index and resulting variogram 

smoothing. Furthermore, by obtaining a variogram of the transformed class memberships, a 

complete set of data is available to determine any spatial dependence. However, the 

membership at each location will not be equally reliable as some will be based on incomplete 

data. Although this uncertainty is not accounted for explicitly, to a great extent, it will be captured 

through the class membership probabilities. For example, a location with only a single 

observation is likely to have a flatter distribution of membership probabilities as it is less clearly 

associated with a particular cluster profile.  

As with almost all statistical analysis a certain level of manual assessment is prudent and 

remains a key component. As shown in Figure 5Error! Reference source not found., an 

assessment of cluster entropy is required to identify the presence, and associated number, of 

distinct clusters. Clusters may not be identifiable in the presence of high levels of colocation 

sparsity (equivalently, in scenarios with a high proportion of locations with an incomplete set of 

observations). This may be addressed i) by removing locations with a high proportion of 

missingness or ii) by aligning data to a coarser grid. If neither option enables the identification 

of clusters, more variables are needed to inform the clustering. It is a topic of ongoing work to 

include alternative data sources, including subjective information, into the methodology to better 

define zones for farm management. 

Once clusters have been identified, a second manual assessment can be made of the 

associated neighbourhood coherence index. This coherence index identifies the range over 

which to smooth the cluster zones. By implementing a Voronoi neighbourhood definition, this 

coherence index can be more reliably defined under spatial sparsity. However, a manual 

assessment of the index may still identify a “jagged” behaviour indicative of data that are too 

spatially sparse. To address this issue, aligning data to a coarser grid may be considered, to 

reduce spatial sparsity at a cost of lower data resolution.  

In summary, data sparsity will always be present in one form or another. As described in this 

report and in Hassall et al. (2019), the effects of different types of sparsity have been 

investigated: variable, spatial and colocation sparsity, as well as how these can be mitigated. 

Guidance has been provided both on the steps to forming spatially coherent zones and how the 

use of manual assessments can be used to identify data scenarios that are too sparse to reliably 

form coherent field zones. This extends previously developed methods in the literature (Lark et 

al. 1998; Milne et al. 2012) and is an approach already being implemented in a CENTA PhD 

project at Cranfield investigating site-season effects on crop productivity to support sustainable 

intensification. 

 

3.4.3. Can yield monitor data be used to inform zones for potato management? 

The potato yield monitor data available in this project clearly demonstrate the capacity to detect 

in-field variation. Furthermore, this variation can be partitioned into distinct zones of size suitable 

for management. Since there was only potato data for a single year in any one field, it was not 

possible to assess its power to predict across seasons, but our analysis suggests that this 

source of information holds promise, and indeed, stakeholders responded positively to idea of 

comparing zones within a field.  
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3.4.4. Can these yield monitor data be useful for benchmarking performance? 

The project had access to yield monitor data from a reasonable number of different fields and 

this allowed the comparison not only of the average yield per hectare across fields, but also how 

the zones compared across all fields within the study. This adds a new dimension to yield 

benchmarking tools and potentially aids interpretation for farmer-led decisions. Upon surveying 

stakeholders on the potential use of such information, the response was generally positive 

although not as useful as understanding zonation within a field. 

 

3.4.5. Can we predict useful zones from other remote and proximal sensed 

data? 

Remotely sensed data give the opportunity to overcome the limited cross-seasonal yield monitor 

data. As seen in Section 3.3.9, some fields show a good correspondence between the predicted 

zones based on remote data whilst others do not. This could be for many different reasons, but 

ultimately results will become more robust as more years’ worth of data are available and at 

higher resolution (Song et al. 2009) to identify the longer-term trends apparent within individual 

fields.  

 

3.4.6. Can we incorporate growers’ expert knowledge into the definition of 

management zones? 

It remains of interest to incorporate growers’ knowledge into the definition of management 

zones. Although this hasn’t been investigated in depth during this project, the stakeholder 

workshop generated useful findings. For instance, knowing which management practices a 

grower is willing to vary may influence the target size of the resulting zones. It is also clear that 

growers’ expert knowledge of their fields should be incorporated, and this could be done, for 

instance, by the inclusion of an additional data layer in the clustering algorithms where a grower 

identifies differential areas of the field. 

 

3.5. Conclusions 

There are three key findings from this project. The first of which is that the quantitative 

methodology developed within the project is sufficient to deal with the ever-increasing 

availability and arguably the associated inevitability of an increase in sparsity of said data.  

The second key finding is that potato yields exhibit somewhat coherent variation which can 

result in the formation of meaningful zones. It has been demonstrated how this can be useful 

for benchmarking and for informing management practice. However, such zones are hard to 

predict given the current levels of available data. Further work in this area using i) yield monitor 

data from the rest of the rotation ii) higher resolution (both temporally and spatially) of satellite 

imagery and iii) other sources of data such as soil maps is needed to improve the robustness 

of identified zones. To do this, a change in data management practice is needed to overcome 

issues associated with data sharing, for example GPS location, farm performance and with data 

ownership, for example collection of data from fields on rented land. These data privacy issues 

can become large barriers to the development of robust methods but also in the wider 

implementation of such methods through e.g. decision support tools.  

The third key finding is that expert knowledge remains a valuable resource to be incorporated, 

whether this is the downstream practical input on how management can be adapted based on 
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zonal information or whether it is a direct input into how the zones are derived based on 

extensive knowledge of particular field features. It remains a key interest of the authors to 

continue this line of research and with the relaxation of Covid restrictions, farmer engagement 

on such topics can be achieved. 

 

3.6. Acknowledgements 

We gratefully acknowledge Tony Bambridge and Tim Papworth for providing access to yield 

monitor data. 



 

39 

 

4. USING GEOPHYSICAL TECHNIQUES TO BETTER UNDERSTAND SOIL AND CROP 

VARIABILITY 

4.1. Introduction 

It has been demonstrated that electrical geophysical methods can be used for assessing spatial 

variation in soil textural properties and temporal variation in soil moisture. These methods 

include electrical resistivity tomography (ERT) and electromagnetic induction (EMI). ERT uses 

an array of electrodes in contact with the soil to produce a 2D or 3D image of the subsurface 

electrical resistivity (the inverse of electrical conductivity). EMI is a non-contact method that 

uses rapid electromagnetic sensors to measure the soil electrical conductivity. This method is 

now widely available commercially for ‘soil scanning’ of entire fields. ERT is more ideally suited 

for surveys of smaller plots because of the need for deployment of cables and electrodes 

coupled to the soil. Blanchy et al.(2020) provide more information on the two methods. 

 

4.2. Materials & Methods 

Scans of ERT and or EMI were measured in a series of experiments summarised in Table 4. 

For the ERT scans, an ERT array (Syscal Pro, Iris Instruments, France) comprising 24 

electrodes (0.25 m electrode spacing) was used to collect resistivity transects on all plots of 

block 3 by putting the electrodes in the furrows between the ridges. A typical ERT layout is 

shown in Figure 15 (images from 2019 experiments). After inverting each ERT survey, the 

difference in resistivity from early and late surveys (Δρ) is computed and divided by the resistivity 

of the early (ρ0) to obtain a relative difference between the two sampling dates. Electromagnetic 

Induction scans were done in 2019, 2020 and 2021. The instrument used was a CMD Mini 

Explorer (GF Instruments, Czech Republic). Scans were typically done in six EMI orientations 

(vertical and horizontal coplanar, VCP and HCP, respectively) and coil spacings of 0.32. 0.71 

and 1.18 m. An example of EMI scan in progress is shown in Figure 16. 

Please note that the work completed in autumn 2020 and spring 2021 were not performed on 

Rotations Research Partnership Project experiments but were conducted to fulfil obligations 

that had to be delayed due to COVID related travel restrictions. 
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Table 4. Details of electromagnetic induction scans  

Year Location, (experimental code) and 

scan type. 

Details of experiment 

2018 NIAB F37 (2018-31)  Factorial combination of compost application rate, 

compaction and irrigation. Full details in Report for 

WP1. ERT scans on 12 June 2018 and 3 August 

2018  

2019 NIAB F30 (2019-49) Factorial combination of compost application rate, 

compaction and irrigation. Full details in Report for 

WP1. ERT and EMI scans on 23 May and 24 July 

2019 

2020 NIAB F38/39T EMI scans on 15 October 2020 of two similar 

experiments in ’light’ and ‘heavy’ parts of the same 

field. 

2021 NIAB F37 EMI scans on 23 March 2021. Whole experimental 

area scanned at a “low” resolution and a specific 

experiment scanned at high resolution 

 

Figure 15.  A typical electrical resistivity tomography array as used in 2019 
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Figure 16. Illustration of EMI scanner in use on 23 March 2021 

 

 

4.3. Results and discussion 

4.3.1. Electrical Resistance Tomography Scans 2018 

Figure 17 shows the relative difference in inverted resistivity (Δρ/ρ0 expressed as percentage) 

sections with yellow area associated with an increase in resistivity (drying) and blue area 

associated with a decrease in resistivity (wetting). All sections show a larger positive change, 

probably associated with soil drying close to the surface, extending no deeper than 0.7 m. The 

compacted wet treatment shows the shallowest drying by the crop, while the non-compacted 

treatments exhibit deeper drying. Figure 17a and 17c also clearly show the depth of drying is 

limited, probably by the compaction, compared to non-compacted treatments (Figure 17b and 

17d). No treatments showed any major differences in resistivity deeper than approximately 1.5 

m depth 

Figure 17. Relative change in inverted resistivity ( / ) section between 12 June 2018 and 3 

August 2018 showing the different treatments: (a) compacted wet, (b) non-compacted wet, (c) 

compacted dry and (d) non-compacted dry. Note that the resistivity is the inverse of the 

conductivity. The semi-transparent white overlay shows the sensitivity of the survey. 
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4.3.2. Electrical Resistance Tomography and Electromagnetic Induction Scans 

2019 

Further (repeat) ERT surveys were conducted in 2019 allied to Lancaster PhD student Katharina 

Huntenburg’s AHDB funded research. Figure 18 illustrates greater depth of high electrical 

resistivity in the uncompacted plots.  

Figure 18. Resistivity images obtained July 2019 showing the effect of compaction on soil drying. 

 

 

Figure 19 shows observed changes in soil conductivity for irrigated and non-irrigated cases. 

However, the effects of compost addition and compaction are more subtle (Figure 20 and Figure 

21, respectively). 
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Figure 19. Effect of irrigation on soil electrical conductivity. The figure shows the change in 

electrical conductivity between 23 May 2019 and 24 July 2019 from the six EMI coil 

spacing/orientation. VCP is vertical coplanar, HPC is horizontal coplanar. The coil spacing used 

was 0.32m, 0.71m ad 1.18m.  The value in brackets is the approximate depth of investigation 

 

 

Figure 20 Effect of compost application on soil electrical conductivity. The figure shows the 

change in electrical conductivity between 23 May 2019 and 24 July 2019 from the six EMI coil 

spacing/orientation. VCP is vertical coplanar, HPC is horizontal coplanar. The coil spacing used 

was 0.32m, 0.71m ad 1.18m.  The value in brackets is the approximate depth of investigation 
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Figure 21. Effect of soil compaction on soil electrical conductivity. The figure shows the change 

in electrical conductivity between 23 May 2019 and 24 July 2019 from the six EMI coil 

spacing/orientation. VCP is vertical coplanar, HPC is horizontal coplanar. The coil spacing used 

was 0.32m, 0.71m ad 1.18m.  The value in brackets is the approximate depth of investigation. 

 

 

4.3.3. Electromagnetic Induction Scans of contrasting soil textures 2020 

An example of mapped EMI scan data is shown in Figure 22. In the Light area, there is a 

distinctive arc-shaped feature with higher conductivity (indicating an increased water content 

and heavier texture). This feature does not coincide with any known man-made structures (e.g. 

a field-drainage system) and may be the remnants of a silted up stream. In the Heavy area, 

there was a noticeable increase in conductivity from relatively low conductivity in the north-east 

corner of the experiment to higher conductivity in the West and South West (Figure 22). 
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Figure 22. Map of electromagnetic induction scans in the Heavy and Light areas on 15 October 

2020. Each area is 21 m wide and 55 m long.  

 
 

Simple linear regression showed that there was a statistically significant relationship between 

Julian date of 50 % plant emergence and soil conductivity. The regression explained over 50 % 

of the variation in emergence date (Figure 23). For all treatment combinations, the range in soil 

conductivities (28.1 to 53.4 mS/m) corresponded to an 8-day range in emergence date (Julian 

dates 137 to 145). This range in emergence date was seen in individual treatment combinations. 

For example, Russet Burbank (210 kg N/ha), grown in Block 1, had an electrical conductivity of 

28.6 mS/m and achieved 50 % emergence on Julian day 137. However, in Block 4, the 

conductivity was 50.1 mS/m, and the 50 % emergence date was a Julian date of 144. 

Electrical conductivity indirectly measures soil water content which, in turn, is a proxy for clay 

content. It is probable that the delayed emergence in the heavier parts of the experiment was 

due to a cloddy seedbed reducing water availability to the emerging potato plants. Weather data 

indicated that April and May were warmer and drier than average and this would have 

exacerbated the problem. 
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Figure 23. Relationship between Julian date of 50 % plant emergence and soil electrical 

conductance in the Heavy Experiment. Estima, □; Innovator, ■; Royal,  and Russet Burbank, ▲. 

The fitted regression line for all treatments is y = 127.5 (± 1.77)+0.330 (± 0.0433)x, R2 = 0.53; 

P < 0.001.  

 

 

The effect of including electrical conductivity (vertical coplanar to 90 cm) as a covariate in the 

analysis of variance of key crop performance variates are summarised in Table 5. In general, 

the effect of including electrical conductivity data was of little benefit in the Light experiment. 

However, the covariate was statistically significant in the Heavy experiment for the interpretation 

of emergence and yield data from the early sampling. The absence of significance in the Light 

experiment, may be a consequence of the Light area being more uniform or the variation in soil 

texture was below a threshold that affected crop performance. It is also possible, that the block 

structure in the Light area was effective at removing the “error” due to variation in soil texture 

but this was not the case in the Heavy area. In hindsight, the direction of blocking may have 

been better at right angles to the direction used. The absence of any significant effect in the 

second sampling of the Heavy experiment may reflect that performance of an established crop 

is less dictated by soil texture. 

Originally it was planned to take the EMI measurements at the start of the season shortly after 

the experiments were planted, but due to travel restrictions this was delayed for several months. 

The mid-October measurements were made in non-ideal conditions after the plots had been 

sampled and trafficked. Despite this, the initial analysis has demonstrated the potential 

usefulness of using high resolution EC scans to aid agronomic research. In particular, use of 

EC scans may help reduce residual error when experiments are analysed and scans done at 

the start of the season may help with designing effective blocking. 
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Table 5. Effect on statistical significance (P value) of treatments of including EC90 as a 

covariate (CV) and the statistical significance the covariate in the analysis of key variates in each 

treatment 

 Light Heavy 

 No CV With CV CV No CV With CV CV 

Julian date of emergence < 0.001 < 0.001 0.584 0.115 0.034 < 0.001 

Total tuber population at H1 < 0.001 < 0.001 0.154 < 0.001 < 0.001 0.259 

Total tuber yield at H1 < 0.001 < 0.001 0.451 0.004 < 0.001 < 0.001 

Tuber DM concentration at 

H1 

< 0.001 < 0.001 0.646 < 0.001 < 0.001 < 0.001 

Total N uptake at H1 < 0.001 < 0.001 0.266 < 0.001 < 0.001 < 0.001 

Total tuber population at H2 < 0.001 < 0.001 0.004 < 0.001 < 0.001 0.687 

Total tuber yield at H2 < 0.001 < 0.001 0.295 < 0.001 < 0.001 0.921 

Tuber DM concentration at 

H2 

< 0.001 < 0.001 0.208 < 0.001 < 0.001 0.232 

Total N uptake at H2 < 0.001 < 0.001 0.326 < 0.001  < 0.001 0.348 

 

4.3.4. Electromagnetic Induction Scans of contrasting soil textures 2021 

The scanned areas are shown in Figure 1. The areas of increased conductivities (lighter colour) 

are associated with increased soil water contents which, in turn, are associated with larger clay 

contents. When compared with the scans from the 2020 Reference Crops, there was less 

variation in conductivity in 2021. However, Figure 1a shows areas of low and high conductivity 

in proximity c. half-way down the field. Ground truthing by digging soil pits showed that the 

heavy (darker) areas were nearly pure clay at depth, whilst the lighter areas had a very high 

stone content. The soils in the Reference Crop appeared relatively uniform in the upper soil 

horizons but adjustment of the scanning coils showed some variation at depth. This information 

was used to redesign the experiment so that the block-structure could take more account of this 

variation. Using the EMI data, the block structure was changed from four rows of blocks (as 

used in 2021) to 2 rows within 2 columns. Analysis of the date of 50 % plant emergence showed 

that this revised blocking structure removed a statistically significant amount of variation from 

the analysis of variance and helped improve the sensitivity of the experiment. The variation of 

soil properties over a range of scales is also illustration in the variogram shown in Figure 25. 
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Figure 24. Electromagnetic Induction scans of (a) NIAB CUF experimental area (c. 48 × 220 m, low-

resolution scan). The dashed line represents the location of Reference Crop, and (b) Reference 

Crop experimental area (c. 21 × 72 m, high-resolution scan) at three different depths. The dashed 

perimeter in the low-resolution scan is location of high-resolution scans shown in (b). 

(a) 

 (b) 
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Figure 25. Variogram of electrical conductivity measurements. The measurements used are 

horizontal coplanar with a coil spacing of 1.15 (depth of investigation = 1.5m) 

 
 

4.4. Conclusions. 

Geophysical methods have demonstrated their usefulness in providing cost-effective ways of 

providing metrics of variation in soil texture which, in-turn, can be used to design more effective 

experiments. Furthermore, a better understanding of the causes of variation in potato crop 

emergence will be key in understanding the wider issue of spatial variation in potato crop 

performance and yield. This study has also provided useful insight into the effects of agronomic 

treatments (irrigation, organic amendments, and compaction) on water abstraction by potato 

crops. Apart from providing further insights into the link between soil conditions and crop 

performance, these techniques have wide applicability in phenotyping potato varieties to 

efficiently gather information on water capture. 
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5. PLOUGH DRAFT 

Previous experimental work at Rothamsted had shown that variations in plough draft (a measure 

of soil strength) were inversely correlated with grain yield. It was hoped that use of the draft-

sensing plough on potato fields would produce a map of the variation in soil strength which 

could then be correlated with spatial variation in potato yield. Unfortunately, one of the strain 

measuring steel pins was damaged in 2016 and was found to be beyond economic repair. 

Following discussions of this problem at a project review meeting on 29 March 2017 it was 

suggested that John Deere’s GreenStar system may collect information (power-output, forward 

speed, wheel-slip and plough-depth) that could be combined to make a proxy for a direct 

measurement of plough draft. However, despite repeated attempts to access data held on 

Grower Platform farmers’ tractors this idea also had to be abandoned. 
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6. FOURIER TRANSFORM INFRARED (FTIR) SCANNING OF SOIL TO QUANTIFY 

ORGANIC MATTER CONTENT 

6.1. Introduction 

Soil management strategies have significant effects on soil structure, soil chemistry and thus 

soil sustainability. It is therefore necessary to be able to track changes in soil status within 

rotations. While assessing soil physical status of soils in rotations through measurement of 

water release curves and penetrometer resistance, the work also aimed to assess the use of 

alternative methods that could be used to track soil status (i.e. FTIR and image analysis of soil 

images for soil structure). Fourier Transform Infrared (FTIR) Spectroscopy is a technique which 

uses infrared (IR) radiation to analyse samples and provide an overall chemical profile, or IR 

spectrum, of the sample (see example in Figure 26). The IR radiation is absorbed by the sample 

at specific frequencies depending on the chemical composition of the sample. It is an ideal 

method for characterisation of soil as, importantly, it can simultaneously provide information on 

both the organic and mineral components of the soil. Qualitative analysis, through interpretation 

of the IR spectrum of a soil sample, allows an instant insight into the mineralogy of the soil, 

including nature and relative proportion of clay minerals present. In addition, the IR spectrum 

provides a rapid assessment of the relative amount and nature of the organic matter present. 

 

Figure 26. Example of an infra-red spectrum of a mineral soil. 

 

 

For highly organic soils, patterns are seen in the IR spectrum which relate to the undecomposed 

vegetation, differing due to plant population, and degree of decomposition. The chemical 

functional groups present in the soil and the degree of humification of the organic matter can be 

determined. For arable soils with lower organic matter content the patterns due to the soil 

organic matter (SOM) are generally weaker and less distinct in the bulk soil but can still provide 

useful information. In addition to qualitative analysis, quantitative analysis of soil using FTIR 

spectroscopy is possible. Statistical correlations between the FTIR spectra and measured soil 

properties create calibration models which can then be used to predict multiple parameters for 

a soil sample from a single spectrum (e.g. %C, %N, pH, and bulk density). FTIR analysis 

provides a means for accurate prediction of soil organic carbon (SOC) as has been illustrated 

for a national dataset of Scottish soils (Haghi et al. 2021).  
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6.2. Material and Methods 

6.2.1. Datasets 

All the datasets used in the FTIR analysis were existing or historical trial plots from the James 

Hutton Institute, Rothamsted and NIAB farms, some of which were being used for other studies 

within this project. 

 

6.2.1.1. Cover Crops (Binns Field, Balruddery farm, The James Hutton Institute) 

For the study of the variation in SOM through a rotation, soils were analysed as part of a study 

to investigate whether cover crops could be established and to quantify the effects of such crops 

on soil conditions at the Balruddery farm of the James Hutton Institute (Holland et al. 2021). 

Details of this experiment may also be found in the report for the ‘Grower Platform,’ Project 

9114000101. There are several possible effects that cover crops could have on soil conditions 

that are of interest to farmers. These include changes to the soil water status, the resistance of 

the soil to erosion, and changes to the soil biology and chemistry, and the consequences and 

benefits for subsequent cereal crops. The FTIR analysis was conducted to assess any changes 

in SOM over the rotation and between the different treatments. 

 

A replicated trial was designed with a control of stubble from the previous barley crop remaining 

on the soil surface and 7 treatments. The treatments were different cover crops as follows:  

• 1 Control, 

• 2 Jupiter Turnip rape sown at 12 kg/ ha 

• 3 Kings Structure mix sown at 25 kg/ha 

• 4 Defender Oil Radish at 20 kg/ha 

• 5 Radish Mix 15 at 20 kg/ha 

• 6 Vitality Mix at 25 kg/ha 

• 7 Vetch and Rye at 40 kg/ha 

• 8 EFA Mix 1 at 20 kg/ha 

 

The Control and treatments were all replicated 3 times in a randomised block design i.e., there 

are 3 blocks. Sowing was in strip 6 m wide and approximately 200 m long. FTIR analysis was 

conducted for 2 growing seasons - 2017 and 2018. In total, 72 soil samples were analysed for 

each year (3 replicates  x 8 treatments x upper, middle, and lower field) 

 

6.2.1.2. Rothamsted Long term historical plots 

Characterisation of soil, including the nature of organic matter (SOM), on selected plots of the 

Broadbalk and Hoosfield long-term experiments at Rothamsted was conducted. Variation in two 

different series of soils which have undergone long-term addition of FYM over time was 

compared with corresponding soils which have had long term N, P, K and Mg addition, and an 

unfertilised control. For each experimental plot, 8 time points over ~150 years were selected for 

the FYM, N,P,K and Mg and control treatments (48 samples in total). The Broadbalk plot was 

under continuous wheat and the plots selected for analysis were Section 1 -FYM addition (Plot 

2.2), N,P,K and Mg addition (Plot 8) and Nil addition (Plot 3). Samples were taken from years 

1865, 1893, 1904, 1914, 1944, 1987, 2000, 2015. The Hoosfield plot was under continuous 
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barley and the plots selected for analysis were Series A, FYM (Plot 72), N,P,K and Mg (Plot 42) 

and Nil addition (Plot 11). Samples were taken from years 1889, 1904, 1913, 1946, 1975, 1998, 

2008, 2018. 

 

6.2.1.3. Broom’s Barn medium term trial plot, NIAB 

Full details of this experiment may also be found in the report for WP1 Grower Platform 

(9114000101). In summary, the experiment was started in the mid 1960's and assessed a three-

course rotation of two cereals and then sugar beet, with FYM addition every 3 years prior to the 

beet crop. FYM was added to plots S & T immediately before the beet crop, but plots N & P 

received none. The last FYM application was in 2012, after which the experiment reverted to 

standard cropping. The plots were relocated in autumn 2016, and fresh FYM applied to either 

the E or W half of the original trial plots. Potatoes were grown in 2017, spring barley in 2018, 

winter wheat in 2019 and winter wheat in 2020. The plots were sampled for this study in 2020. 

FTIR spectra were recorded of 48 samples after drying, sieving, and milling and the samples 

selected are highlighted in the Broom’s Barn plot plan (Figure 27). 

 

Figure 27. Broom’s Barn plot plan -  The letters N, P, S, T denote historical treatment of the plot 

 

 

 

6.2.1.4. Elveden medium term trial plot, from the Lodge Warren Organic Manure 
Trial, NIAB 

This trial started in 1999 and a comparison was made in this study between the no muck and 

the treatment in which 35t/ha of FYM had been added for 13 of the last 20 years (10 years 

continuously) at the Shakers Road end. The plan of the experimental plot is shown in Figure 

28. Again, this was a medium-term study in which there was variation by treatment, but no time 

points. FTIR analysis was conducted of 20 samples comprising 10 replicates from the 2 

treatments, taken over 200m. 
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Figure 28. Plot plan for the Lodge Warren Organic Manure Trial, Elveden 

 

 

6.2.1.5. Grieves house tillage trial, Balruddery farm, James Hutton Institute 

This plot comprises two types of tillage x winter or spring rotations i.e., 4 main management 

treatments, fully replicated (4 times) across the field (16 main blocks). Each Tillage x Rotation 

contains 4 strips so that each block has 4 years of cropping (forming the within treatment 

rotations – totalling 64 strips). Over the past 3 years each of the 64 strips have been sampled 

once or twice a year. FTIR analysis was conducted of 64 samples from the latest sampling date 

in 2020. Ideally comparison would have been made with a set of samples from an earlier date 

but, largely due to the COVID-19 situation, there was insufficient time available to complete this. 

 

6.2.2. FTIR Spectroscopic Analysis 

Samples for FTIR analysis were dried, sieved and finely milled, using a Retsch mill, prior to 

analysis to ensure representative and reproducible spectra were obtained. Where possible, they 

were subsequently milled using a McCrone mill and reanalysed. This milling method is more 

time consuming but has been shown to give the best quality spectra (Robertson et al., 2013). 

FTIR spectra were recorded on a Bruker Vertex 70 FTIR spectrometer (Bruker, Ettlingen, 

Germany) fitted with a potassium bromide beam splitter and a deutroglycine sulphate detector. 

A Diamond Attenuated Total Reflectance (DATR) sampling accessory, with a single reflectance 

system, was used to produce “transmission-like” spectra. Samples were placed directly on a 

DATR/KRS-5 crystal, and a flat tip powder press was used to achieve even distribution and 

contact. Spectra were acquired by averaging 64 scans at 4 cm-1 resolution over the range 4000 

– 370 cm-1. A correction was made to the ATR spectra to allow for differences in depth of beam 

penetration at different wavelengths, using OPUS software (Bruker, Ettlingen, Germany, version 

7.0). The spectra were also baseline corrected, using the OPUS software Automatic Baseline 

Correction and a rubber band correction method on 64 baseline points. No correction was 

required for water vapour and CO2 as the spectrometer is continuously flushed with dry air. 

Following FTIR analysis it was evident that some of the samples contained calcium carbonate, 

which was obscuring part of the spectrum relevant to the SOM. It was decided to try removal of 

the carbonate in a proportion of the affected samples, and then re-recording the spectra to allow 

the SOM region of the spectra to be more clearly seen. The procedure to remove the carbonate 

involved sodium acetate dissolution, using a 1M sodium acetate solution, buffered to pH 5. A 

small portion of each sample was placed in an individual beaker with 200 ml of the acetate 

solution and heated on a hotplate at 100 °C for 6 hours, after which time the bubbling of CO2 

had ceased. Fresh solution was added to the beakers at this point, but there appeared to be 

little additional reaction. Each sample was then warm water washed, two or three times, to 

remove the acetate and the samples were then dried prior to recording of the FTIR spectra.  
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Statistical analysis of the FTIR data was conducted using Unscrambler X software (CAMO, 

Norway). 

 

6.3. Results 

6.3.1. FTIR Analysis of Cover Crop Soils at Binns Field, Balruddery farm, The 
James Hutton Institute) 

FTIR spectral analysis of the cover crop samples for the 2017 growing season showed the 

control samples (no cover crops), and some of the species’ treatments, have very consistent 

spectra with some but not a lot of SOM evident (it is a soil with some kaolinite clearly visible). 

However, for some species/mixtures there were spectra which show greater proportions of SOM 

in some samples. An example of the set of FTIR spectra for the Jupiter Turnip Rape is shown 

in Figure 29. 

Figure 29. FTIR Spectra of Species 2 Jupiter Turnip Rape. 

 

The top IR spectrum (in red) has a more intense band close to 1600 cm-1 than the others in the 

group indicating the presence of a higher proportion of SOM. This was confirmed by the lab 

analysis of the %C for this sample, which was 5.1%. The results for the %C analysis of the 

samples showed that the %C value for most of the samples was between 3-4% and the %N s 

~0.3%. Overall, the Average %C (averaged over all the samples for a particular species) is 

lowest, at 3.40%, for the control samples and highest, at 3.73%, for species 8 (EFA mix). 

However, this high value for species 8 is skewed by a large value of 6.69% for the Upper 3 

sample (Figure 30). It does appear that the Upper 3 samples generally have high %C values for 

the cover crops, despite the control value being relatively low (3.2%). Species 2, the Jupiter 

Turnip Rape had the second highest average % C value (3.67), and values for each sample 

appear more consistently high than for species 8, although there is still the value already 

mentioned (Upper 3) at 5.1% which may slightly skew the result. This is of interest as it was one 

of the treatments which showed an increased yield (Holland et al. 2021) in barley. 
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Figure 30. Percentage C Results for the 2017 samples for each treatment 1 Control, 2 Jupiter 

Turnip rape, 3 Kings Structure mix, 4 Defender Oil Radish, 5 Radish Mix, 6 Vitality Mix, 7 Vetch 

and Rye, and 8 EFA Mix 1. 

 
Although any differences in %C observed between treatments were not necessarily statistically 

significant, good correlations between the IR spectra and the %C values were obtained, as 

summarised in Table 6 and illustrated in Figure 31. 

 

Table 6. Results for Carbon 

Constituent 
RMSECV 

(%, w/w) 
R2 Bias (%,w/w) RPD 

%C 0.61 0.83 0.003 1.61 

 

Figure 31. Measured vs. predicted C% for the 2017 calibration set 
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FTIR spectral analysis of the 2018 samples showed the spectra, and % C values, to be broadly 

similar to those of 2017. However, none of the 2018 samples showed the significantly higher 

SOM (%C >5) seen in a few 2017 samples and this is likely to be due to very different growing 

seasons, with the cover crops not establishing nearly as well in the 2018 growing season. The 

SOM bands in the FTIR spectra also closely correlate to the %C results (predominantly between 

3 - 4% C) for the 2018 samples.  

 

6.3.2. FTIR spectroscopic characterisation of Rothamsted long term historical 

plots, Hoosfield (continuous barley) and Broadbalk (continuous wheat) 

FTIR analysis was conducted on three versions of these samples, the Retsch milled, McCrone 

milled and McCrone milled after carbonate removal. The IR spectra of samples from both the 

Hoosfield plot and the Broadbalk plot showed subtle but evident differences between treatments 

and for the same treatment on different sampling dates. Figure FTIR_6 shows that, for the 1889 

sampling of the Hoosfield plot, there was carbonate present in samples from each of the 

treatments, with the most evident in the spectrum of the nil treatment and the least (only just 

detectable) in that of the NPKMg treatment. However, by the 2008 sampling, no carbonate was 

detectable in the spectra of any of the treatments but the IR spectrum of the FYM addition 

showed the presence of a greater proportion of SOM. 

 

Figure 32. Hoosfield Barley – IR Spectra for the three treatments in 1889 and 2008  

 
Figure 33 shows that, for the 1893 sampling of the Broadbalk plot, there was also carbonate 

present in samples from each of the treatments, but in this case proportions in the spectra of 

the nil treatment and that of the FYM addition was very similar, and more than in the 

“corresponding” Hoosfield spectra, with less in that of the N, P, K and Mg treatment.  

 

Figure 33. Hoosfield Barley – IR Spectra for the three treatments in 1893 and 2000. 
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By the 2000 sampling, the proportions of carbonate in the IR spectra of all treatments had 

reduced but was only not detectable in the IR spectrum of the NPKMg treatment. It did appear 

that there was a greater proportion of SOM in the spectrum of the FYM addition. 

A range of statistical analysis was conducted on the spectra from this trial. Good correlations 

were found between the spectral data and %C values, especially given the small numbers in 

the dataset and the lack of certainty as to how closely the soil samples analysed by FTIR related 

to those analysed by wet chemistry, and the potential lab measurement errors. The best results 

appeared to be for the McCrone milled Hoosfield data and Broadbalk data, individually, using 

the full spectral range (Figure 34). 

Figure 34. Predicted versus Reference %C for Hoosfield (Top) and Broadbalk (Bottom) 

 

 

Other statistical analysis looked at correlating the soil spectra to yields of grain and barley. 

Although the correlations using the IR spectra of the McCrone milled samples were poor, those 

using the Retsch milled samples were much more promising and suggest this is worth pursuing 

with bigger datasets. In addition, PCA analysis of various groups of the spectra were completed. 
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For example, using the range between 1750-1500 cm-1 (which relates to the SOM components 

present), for the McCrone milled Hoosfield samples, see Figure 35. 

 

Figure 35. PCA Analysis for the Hoosfield Samples, using the spectral range between 1750-1500 

cm-1 with treatment 1 – nil, treatment 4 - N,P,K,Mg, treatment 7 – FYM. 

 

Using the full spectral range, for the Hoosfield McCrone milled samples, the FYM addition (7) 

and Nil addition (1) groups could be largely separated out, but did overlap to some extent with 

the N,P,K and Mg group (4). It seems that N,P,K and Mg group lies more with the FYM addition 

but does overlap both other treatments. However, when the more limited range of 1750 -1500 

cm-1 is used (Figure 35), the FYM addition group can be almost completely separated from the 

other two, and there is also limited overlap between them. 

 

6.3.3. FTIR Analysis of Broom’s Barn Soil Samples 

Visually the differences in the IR spectra of this set of samples appeared very small, with spectra 

being mineral soils with relatively small amounts of SOM and no detectable carbonate present. 

A PCA statistical analysis was used to explore whether the spectra from the different treatments, 

over the whole spectral range, could be discriminated. It is shown in Figure 36, below. The 

patterns in the PCA are complex but there are some groupings evident, indicating the treatments 

were influencing the overall chemical profile of the soil. Further investigation would be required 

to understand the changes more fully. 
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Figure 36. PCA Analysis of the Broom’s Barn Samples. 

 

 

6.3.3.1. FTIR Analysis of the Lodge Warren Organic Manure Trial Samples 

The IR spectra in the control group show that all have appreciable carbonate present, in addition 

to the silicate minerals, with the proportion of carbonate varying considerably between the 

replicates taken over the 200m. The carbonate present appears to be essentially calcite 

(calcium carbonate) with evidence in a few samples for the presence of trace amounts of 

dolomite (calcium magnesium carbonate). Organic matter can be detected but some of the 

bands are obscured by those of the carbonate – particularly in the CH region. 

The IR spectra in the organic trial group also show a high proportion of carbonate present with 

the proportion again variable but appearing to be higher on average than in the control samples 

(in one sample the bands from the carbonate are stronger than that of the silicate minerals). As 

variability in carbonate between replicates, along the field, is detected it cannot be excluded that 

there is a natural variation in the carbonate concentration of the soil across the field, between 

the two treatment strips. However, the variation could also be related to the FYM additions, 

either directly through addition of carbonate or indirectly by maintaining carbonate already there. 

Removal of the carbonate was successfully completed for a subset of samples and bands 

attributable to SOM are much more clearly seen, with an appreciable amount of organic matter 

in the trial samples (Figure 37). The IR spectra of the samples, with the carbonate removed, 

allow us to detect the presence of features of the SOM including ester, protein, and lignin 

functional groups (1735, 1540 and 1518 cm-1). A PCA analysis, for spectra over the whole 

spectral range, shown in Figure 38, compares the IR spectra of the no muck and 35t/ha of FYM 

treatments. Although there is some overlap in the points does show that the two groups can be 

largely discriminated 
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Figure 37. Comparison of the spectra of an OM Trial sample before and after carbonate removal. 

 

 

Figure 38. Analysis of the Lodge Warren Organic Manure Trial Samples 
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6.4. Discussion 

This study set out to assess if FTIR spectroscopic analysis could be used to study variation in 

SOM through a rotation, including evaluating the measurement of %SOC measurement on a 

field scale. In the case of the cover crop trial, where there is increased SOM in the soil it can be 

detected using the FTIR spectroscopic analysis and the nature of it, such as whether there is 

increased protein present can be assessed. Calibrations developed on a field scale have been 

demonstrated to give accurate predictions of SOC, particularly when compared with the error 

for wet chemistry measurement, and overall, the FTIR spectroscopic method is a powerful tool 

for assessing soil C. 

The influence of organic matter amendments e.g., farmyard manure (FYM) on the soil using 

FTIR spectroscopic analysis was also investigated. The results show that the FTIR method can 

provide real insight into the effect of management practices on the soil, including revealing some 

unexpected changes which may not have been readily picked up in any other way. The 

technique proved extremely useful in assessing the effect of different treatments and providing 

information on which components were varying. In addition, the spatial variability of soil across 

a field site for a single treatment could readily be assessed. This included the potential influence 

of variation in mineralogy as well as OM. 

Preliminary investigation of correlations between the soil spectra and grain and straw yield for 

the Rothamsted long term historical plots gave some promising results and would be worth 

further study with larger and more current datasets. 

 

6.5. Conclusions 

• Interpretation of FTIR spectra of amended soil can provide valuable information on the 

changes in the amount and chemical composition of the SOM. 

• Results show accurate prediction of %SOC are possible on a field scale using FTIR 

• FTIR is a novel method for characterising soil which can rapidly assess variation in soil 

across a field, providing insight not otherwise available 

• FTIR soil characterisation would give more accurate zoning of soil across a field and 

could be recommended prior to field trials being set up 

• The potential for correlating crop yields directly to soil spectra has been shown 
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7. USE OF FLAT-BED SCANNERS TO UNDERSTAND ROOTING IN SOILS 

7.1. Introduction 

Soil structure plays a significant role in determining root elongation rates, in terms of inhibiting 

root growth due to soil strength (from a combination of dry bulk density and water status), 

available oxygen (linked to pore space and water content), and water availability (linked to water 

content and pores space distribution). Soil pore structure influences water flow through soil, and 

root elongation rates, though avoidance of soil compaction (by roots goring through pores), and 

by influencing water and oxygen availability to roots. To establish measurements of pores 

structure methods employed include X-ray Computed Tomography (CT), calculation of pore 

space bands from water release curves, and embedding fluorescent wax in soil pores followed 

by imaging and image analysis. Each of these methods has benefits, however they can be 

expensive and time consuming (e.g. X-ray CT), take several months to complete (water release 

curves), or are limited to larger pores space sizes. Cheap high resolution flatbed scanner can 

scan at a resolution of 1200 dpi (or 480 dp cm-1), and therefore have the potential to image 

pore sizes of 20µm in diameter or smaller with interpolation between pixels. These scanners 

produce a single high resolution which can be split into three images (red, green and blue), 

however colour variation in narrower bands can be accessed through multispectral cameras. 

Images from these cameras while often lower resolution can potentially as a combined dataset 

correlate to soil properties. Multispectral imaging has previously mainly been used in terms of 

remote sensing using satellite or drone imagery. However, here it is proposed that soils are 

evaluated at a scale relevant to the interaction of plant roots and soil. Root elongation at the 

early stages of crop development can be significantly impeded in soil with high bulk density, but 

differences in pore structure between soils of the same density can alleviate or worsen the 

effects of soil strength (Valentine et al., 2012). Once a crop is established, unless roots continue 

to elongate, the size of the root system will affect access to water depending on the relationship 

between soil water pools and root soil contact. The exact relationship between ability to elongate 

in drying hard soils and the root soil contact, will thus depend on differential root traits (e.g. root 

diameter) that vary significantly within and between cereals and root crops such as potato and 

carrot/parsnips but also on the pore structure of the soil developed due to underlying soil 

properties and the management used. Previously work with barley, has shown the influences of 

soil strength and pores size distribution on root elongation and had shown significant reduction 

in root elongation in soils both across the landscape scale in Scotland, and in soil cores taken 

from different tillage systems, within field trials across the UK (McKenzie et al., 2017; Valentine 

et al., 2012. This project therefore aimed at assessing the initial root growth characteristics of 

carrot and parsnip roots, in structured soil. This required the initial assessment of root growth 

under controlled mono conditions, the development of a soil-based root elongation assay, 

followed by testing of root elongations under heterogenous structured soil conditions, all under 

controlled water conditions. 

 

7.2. Materials and Method 

Intact soil cores were sampled from: 1)  Grieves House Tillage Platform (GHTP); 2) the Centre 

for Integrated Cropping (CSC); 3) Lodge Warren (LW); 4) Brooms Barn (BB); 5) and Oxnead 

(On). Table_SS_Methods_1 gives an overview of the field trials used in this section of the report. 

Usually cores consisted of two 5cm high x 5cm diameter plumbing pipe taped together with duct 

tape to form a 10cm high cores. For sites 3-5 two metal cores (4 cm high x 5.5 diameter) taped 

together forming an 8 cm x 5.5 diameter core) were used. Sites were sampled depending on 

the site experimental plan and treatments given in Table 7. At each individual sampling site 
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within a Trial, both an intact soil core and loose soil was taken. Loose soil was sieved to <2mm 

and repacked at a dry bulk density of 1.25gcm-3 into cores 5cm high for CSC & GH and double 

height cores for all NIAB site cores. Where necessary for validation or comparison soil cores, 

were saturated and taken through partial water release curves. Finally, the matric potential of 

cores was adjusted to -50kPa. If cores were double height cores, the duct-tape was removed 

from the outside of the cores, and the cores were broken by pulling the core apart allowing the 

soil to fracture according to the soil structure, without sheer movement. 

 

Table 7. Table SS_Methods_1 : Sites sampled for example datasets 

Trial Site Abbreviation Brief site description 

Grieves House Tillage Platform GHTP Four replicates of factorial combination of two 

tillage (inversion plough to 20 cm) and two 

rotations (including 4 cropping years). 

https://www.arablescotland.org.uk/virtual-tours 

Centre for Integrated Cropping CSC Six split fields, half Integrated cropping (including 

direct drill), half conventional cropping (including 

inversion tillage, mineral nutrition, standard 

pesticide). Fields are under a six-year rotation. 

https://www.arablescotland.org.uk/virtual-tours 

https://csc.hutton.ac.uk/ 

Lodge Warren LW Organic amendments compared with control. See 

FTIR section 

Brooms Barn BB Factorial comparison of historic and recent 

additions of FYM. See FTIR section 

Oxnead On Organic amendment compared with control.  

 

7.2.1. Soil imaging 

For imaging of soil samples in metal cores, the cores were covered with a ring template cut 

out of paper to give a “white” exposed surface, over the ring. For plumbing pipe soil cores the 

cores were imaged as is. For high resolution RGB images the exposed surface of the soil 

cores were imaged using a flatbed scanner (Cano Canoscan 9000F Mark II) turned upside 

down and placed so that it was approximately 5mm from the soil surface, but not touching the 

surface. This scanner has a depth of field focus of approximately 1cm). Images were taken at 

1200dpi and stored as uncompressed TIFF. For multispectral images two Ximea cameras 

(https://www.ximea.com/en/usb3-vision-camera/hyperspectral-usb3-cameras-mini) VIS 

(400nm-600nm)nm) and a VIS-NIR (600-975 nm) were used without filters. The soil core 

surface was illuminated using white LED lamps from two sides of the core. The cameras 

produce mosaiced images, which once split into waveband channels comprise of 16 

wavebands  x 512 x 272 pixels images (VIS) or 25 wavebands x 409 × 217 pixels images (VIS 

– NIR). 
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7.2.2. Image Analysis 

All image analysis was performed in RStudio running R. Figure 39 illustrates the sequence of 

processes involved for RGB images and Figure 42 illustrates the process for multispectral 

images. For multispectral images, the images are initially de-mosaiced such that there are 16 

or 25 separate images corresponding to each camera wavelength. RGB images were 

separated into the 3 wavelengths. The soil area of the image is extracted based on the 

position of the soil core and a contour map followed by polygonization was used to obtained 

areas of the soil designated as “pores/structures,” edge correction was added to the analysis 

for multispectral dataset analysis. This corrected for areas where contour lines were 

connected to the edge of the soil core. For each initial set of pores/structures the area and 

perimeter were calculated, and then for each dataset the total, mean, standard deviation, 

skew and kurtosis of the distribution of the area and perimeter values was calculated. 

 

7.2.3. Statistical Analysis 

All statistical analysis was performed in Rstudio running R. For each of the soil images the 

profile of the histogram of pore/features sizes was analysed to produce descriptive statistics. 

These were not of features in total ("Features"), the area of the image assigned to features / 

pores ( "Total_Area"), the total length of the perimeters of the features ( "Total_Perim"), the 

mean size ("Mean_size"), the mean length of the perimeters ( "Mean_Perim"), the standard 

deviation of size and perimeter (  "SD_size", "SD_Perim"), the skewness of the size and 

perimeter length histogram ( "Skew_size" , "Skew_Perim") and the kurtosis of the size and 

perimeter histograms ( "Kurt_size" , "Kurt_Perim" ).    For datasets of images the soil pore 

profile statistics were then analysed use linear mixed models (package “lmerTest”) based on 

the experimental design of the field experiment, to determine shifts in feature profiles linked to 

field treatments. Normality and fit of models were assessed using mcp.fnc function, and where 

necessary to improve model fit, dependant variables were transformed using yeo.johnson 

transformation (or link functions). Models were evaluated with ANOVA (package “car”), and 

emmeans (package “emmeans”) was used for evaluation of contrasts between specific 

treatments. 
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7.3. Results 

7.3.1. RGB high resolution analysis 

High resolution structural analysis was able to parameterise structural changes in the soil cores 

obtained from the Grieves House platform and the CSC. Figure 39 shows example images from 

an example sample taken through the analysis process. 

 

Figure 39. Visualisation of the process of extracting feature information from RGB soil images. 

(A) Original images from scanner, (B) extraction of soil area of image, (C) splitting image into Red, 

Green, and Blue channels, (D) Histogram of features and correction of the PCA direction, (E) PCA 

image after correction with features marked in black. (F) Shape Area vs the average brightness 

for extracted features (G) Features coloured by size (H) higher resolution example area showing 

feature edges. 

 

 

7.3.2. RGB analysis of Grieves House tillage Trial soil  

Samples from Grieves House Tillage platform were sampled from the plot rows, rather than 

main plots. Three soil core types (top bottom and repacked) were analysed from the two 

separate sampling points randomly chosen on a North South line from the top of each plot 

strip, totalling 384 core images. Differences in the full models were limited to differences 

between Core types (for Total Area, Total Perimeter, and Skew of the Size histogram) Figure 

40. The reduced models however were perhaps more informative, with several significant 

differences showing up for Tillage. Within the reduce models, differences in tillage were found 

in the Total area (p = 0.011), Mean size (p = 0.001), mean perimeter length (p = 0.017). There 

were also significant interactions between Tillage and the Core type (Total Area p = 0.033, 

Mean size p =0.021, SD size p = 0.020, SD Perimeter p = 0.039). The direct drill plots 

therefore had a similar number of features, but these covered a smaller area of the sampled 

soil (573k vs 612k (pixels)), because they were on average smaller (24.2 vs 28.9), however 

the interaction with core type, showed that repacking the cores changed this relationship. The 

mean perimeter values were also slightly lower for the DD vs the IP plots also (10.0 vs 10.8). 

A B C D

E F G H
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Figure 40. Variation in features parameters extracted from soil images from Grieve’s House 

Tillage Trial. (i) No of features, (ii) Total area of features (pixels), (iii)  mean perimeter of the 

features extracted, (iv) Mean length of feature perimeters. 

 

 

7.3.3. RGB analysis of Centre for Sustainable Cropping (CSC) soil 

Samples were obtained from the Centre for integrated cropping, including the furrows and 

rows of the potato field. A total of 420 cores were analysed 3 core types (top, bottom, 

repacked), from the two treatments (integrated and conventional) from each of the six fields, 

and in each of the two “cultivar rows” in each management half. In the potato fields, samples 

were taken from the top of the ridges and the bottom of the furrows. Each field strip was 

sampled at five sampling intervals, totalling 20 sample points per half field, giving the total of 

420 core images. Analysis comes with the caveat that the samples are taken from one time 

point, and the fields are split fields, so true replication is not achieved as the treatments are 

split fields and are not true replications. However, analysis of the shape parameters of the 

histograms of feature sizes, revealed differences in the structures between field halves/tillage 

systems within individual fields. Specifically, differences were found between the field 

halves/tillage treatments in the potato fields and the WOSR fields (Table 8), Figure 41(A)), but 

not in the other crops/fields. Samples from the integrated side of the fields in the potatoes, had 

a higher number of features (No. of features p = 0.043), that were larger than average in 

overall size (Mean size, p = 0.005). Within the WOSR, the samples from the integrated side, 

had a reduced number of features (No. of features p = 0.009), however they were on average 

larger (Mean size p = 0.038), with a longer perimeter (Mean perimeter, p = 0.010). Differences 

could also be detected between the soil sampled from the furrows and rows of the potato field 

(Table 9), however the effect on soil features was tillage dependent. For example, differences 

were found between the ridges and furrows of the conventional tillage, with a higher area of 

the image being designated as features in the ridge samples (Total Area p = 0.042), 

suggesting a higher pores space in the ridges compared with furrows. Although the trend was 

the same for the integrated side of the field, the difference was not statistically significant 

(Figure 41B(i) Total Area p = 0.277). The opposite effect occurred for the "skew of the 
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perimeter" and "Kurtosis of the perimeter" parameters, which showed significant differences in 

the integrated side of the fields, but not the conventional. The values of "Skew_Perim" were 

higher for the furrows than for the ridges, within the integrated side of the potato field (Figure 

41B(ii) Perimeter skewness p = 0.016), suggesting, more complicated pores/features with 

increased perimeter length. The distribution of the perimeter lengths within the soil cores from 

the potato field was also shown to be different between the ridges and furrows in the 

integrated side of the fields but not the conventional (p =0.019 vs p = 0.871), suggesting the 

furrows of the integrated fields had a more extended range but narrower peak than the ridges. 

Difference between the integrated and conventional treatment in the potato field only analysis 

was found in the furrows only for feature numbers (p = 0.015),  Total perimeter (p=0.010), 

mean size (p = 0.045) 

Figure 41. Analysis of the CSC soil samples, showing differences in the image analysis extracted 

parameters. Across (A) all fields (B) Potato field 9comparing ridges and furrows. Ai Number of 

features Aii mean area of features, Aiii mean perimeter length of features. Bi Total area of features, 

Bii Skewness of the histogram of features, Biii kurtosis of the features histogram. 
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Table 8. Analysis of soil cores descriptive statistics of the feature / pore distribution in the CSC soil cores using the high-resolution scanner image analysis 

method 

Parameter (Intercept) Crop Tillage Core Type Crop Tillage 

Crop Core 

Type 

Tillage Core 

Type 

Crop Tillage 

Core Type 

Features 0.000 0.910 0.159 0.036 0.027 0.000 0.005 0.014 

Total area 0.000 0.195 0.717 0.499 0.459 0.015 0.011 0.001 

Total perimeter 0.000 0.557 0.414 0.033 0.108 0.000 0.132 0.176 

Mean size 0.000 0.570 0.339 0.024 0.048 0.000 0.000 0.000 

Mean perimeter 0.000 0.525 0.200 0.154 0.036 0.000 0.007 0.009 

S.D. size 0.000 0.173 0.840 0.000 0.142 0.000 0.004 0.000 

S.D. perimeter 0.000 0.111 0.706 0.000 0.376 0.019 0.233 0.013 

Skew size 0.000 0.940 0.755 0.005 0.504 0.000 0.569 0.197 

Skew perimeter 0.000 0.962 0.603 0.013 0.810 0.000 0.413 0.245 

Kurtosis size 0.000 0.901 0.809 0.010 0.464 0.000 0.520 0.231 

Kurtosis perimeter 0.000 0.954 0.648 0.024 0.795 0.000 0.335 0.265 
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Table 9. Analysis of soil cores descriptive statistics of the feature / pore distribution in the potato field soil cores samples from the CSC using the high-

resolution scanner image analysis method, comparing the ridge and furrow. 

Parameter (Intercept) Tillage Core Type Potatoes 

Tillage Core 

Type 

Tillage 

Potatoes 

Core Type 

Potatoes 

Tillage Core 

Type Potatoes 

Features 0.000 0.000 0.000 0.053 0.000 0.001 0.301 0.004 

Total area 0.000 0.151 0.006 0.016 0.050 0.359 0.306 0.791 

Total perimeter 0.000 0.000 0.000 0.067 0.002 0.003 0.394 0.007 

Mean size 0.000 0.002 0.019 0.971 0.000 0.026 0.716 0.054 

Mean perimeter 0.000 0.003 0.002 0.374 0.000 0.038 0.611 0.245 

S.D. size 0.000 0.862 0.004 0.259 0.001 0.591 0.433 0.786 

S.D. perimeter 0.000 0.145 0.017 0.191 0.002 0.080 0.314 0.177 

Skew size 0.000 0.021 0.001 0.490 0.082 0.031 0.122 0.040 

Skew perimeter 0.000 0.012 0.004 0.302 0.084 0.006 0.121 0.032 

Kurtosis size 0.000 0.019 0.002 0.510 0.081 0.034 0.124 0.044 

Kurtosis perimeter 0.000 0.013 0.010 0.341 0.115 0.007 0.129 0.041 
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7.3.4. Multispectral 

Example images demonstrating the analysis of structure using the VIS, and VIS_NIR Ximea 

cameras is illustrated in Figure 42. This analysis was applied to samples from Lodge Warren, 

Brooms Barn, Oxnead trials. The intact and repacked cores were analysed separately due to 

the differences in core diameter and height. If these were analysed together the differences may 

have resulted in differences in lighting conditions during imaging and would have resulted in 

non-comparable areas analysed during the image analysis process. A total of 96 intact and 

repacked cores were analysed. Sample “Lodge_Warren_OM_4” was removed from the Intact 

data analysis due to the analysis not successfully finding the core in  

the image. 

Figure 42. Visualisation of the multispectral soil feature analysis. (A) PCA of wavelengths with 

extraction area marked. (B) PCA1 wavelength image. (C) Histograms of wavelength across full 

extracted soil area. (D) histogram of PC1 of image at point of direction correction. (E) PCA1 image 

with feature overlay (alternative colour). (F) PCA1 image with area marked (in yellow) where edge 

correction occurred. (G) Features marked after edge correction. (H) Example output PCA and 

individual wavelength reflection from area of image designated inside or outside of features. 

 

 

Figure 43 illustrates summary PCA of the differences in the wavelength patterns across the 

whole soil cores from the three Trials and the treatments. No individual wavelength was 

significantly different between the trials, but 13 out of 41 showed differences at the soil 

treatment level (p<=0.05). Investigations of the contrasts within each Trial between the 

principal components of the brightness of wavelengths across the soil cores were found 

between Brooms Barn – Lodge Warren (Intact cores- PC 1 ,3,4,5 & 6 (PC 1,3,4,6) repacked 

cores – PC 2,4,5 & 6 (PC2, 4,5,6,7), Brooms Barn - Ox2 (Intact cores- PC 3,6 & 8 (PC4,6,7, 

13) repacked cores -PC 2,4 & 10 (PC2,3), and Lodge Warren - Ox2 (Intact cores- PC 5,6,8 & 

13 (PC6,13) repacked cores - PC4 & 6 (PC5,7).  Differences between treatments within the 

Trials were more limited with differences between treatment in the Brooms Barn (Intact PC21, 

Repacked), Lodge Warren (Intact PC6 (P1,3,4,6) Repacked – PC4, PC5 (PC3), but no 

significant differences were found in the treatment contrasts for Oxnead ((Intact (PC 6), 

Repacked). Therefore, there is evidence that the overall distribution of reflectance across the 
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wavebands from the different Trials and treatments was different, with the potential to track 

changes in land usage in terms of organic matter amendments. 

 

Figure 43. Principal comments analysis of the reflection intensity for wavelength bands across 

the whole of the extracted areas (no separation between inside / outside features. (A)   (B) 

 

 

Datasets were also analysed at the features level, i.e. area, mean size and shape of the parts 

of the image designated as features. Differences in structural measurements were found 

between Trials in both repacked (Table 10) and Intact Cores (Table 11) see also Figure 44 A 

& B.  There were also differences found at the treatment level within the individual trials (Table 

10 and Table 11 and Figure 44). 
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Table 10. Feature level evaluation of repacked soil cores from Lodge Warren, Oxnead and 

Brooms Barn experiments 

Parameter Model type (Intercept) Trial Trial Parameter 

VIS_Features base 0.000 0.097 0.010 0.083 

VIS_Total_Area yj 0.000 0.837 0.461 0.557 

VIS_Total_Perim base 0.000 0.050 0.024 0.163 

VIS_Mean_size yj 0.000 0.168 0.024 0.077 

VIS_Mean_Perim bcn 0.000 0.168 0.009 0.008 

VIS_SD_size yj 0.000 0.022 0.168 0.300 

VIS_SD_Perim bcn 0.000 0.022 0.101 0.170 

VIS_Skew_size base 0.000 0.019 0.209 0.570 

VIS_Skew_Perim base 0.000 0.005 0.434 0.566 

VIS_Kurt_size bcn 0.000 0.026 0.199 0.459 

VIS_Kurt_Perim yj 0.000 0.008 0.382 0.495 

NIR_Features base 0.000 0.223 0.000 0.120 

NIR_Total_Area yj 0.000 0.177 0.526 0.281 

NIR_Total_Perim base 0.000 0.071 0.015 0.013 

NIR_Mean_size yj 0.000 0.355 0.100 0.946 

NIR_Mean_Perim yj 0.000 0.333 0.065 0.889 

NIR_SD_size yj 0.000 0.016 0.655 0.837 

NIR_SD_Perim yj 0.000 0.001 0.634 0.901 

NIR_Skew_size base 0.000 0.060 0.004 0.580 

NIR_Skew_Perim base 0.000 0.008 0.006 0.523 

NIR_Kurt_size bcn 0.000 0.108 0.003 0.631 

NIR_Kurt_Perim yj 0.000 0.020 0.004 0.523 
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Table 11. Feature level evaluation of intact soil cores from Lodge Warren, Oxnead and Brooms 

barn trials. 

Parameter Model_type (Intercept) Trial Trial Parameter 

VIS_Features base 0.000 0.012 0.579 0.006 

VIS_Total_Area yj 0.000 0.311 0.439 0.436 

VIS_Total_Perim base 0.000 0.157 0.960 0.111 

VIS_Mean_size yj 0.000 0.005 0.409 0.000 

VIS_Mean_Perim bcn 0.000 0.000 0.263 0.001 

VIS_SD_size bcn 0.000 0.081 0.627 0.196 

VIS_SD_Perim yj 0.000 0.139 0.746 0.353 

VIS_Skew_size base 0.000 0.768 0.618 0.033 

VIS_Skew_Perim base 0.000 0.615 0.432 0.057 

VIS_Kurt_size base 0.000 0.692 0.556 0.023 

VIS_Kurt_Perim bcn 0.000 0.678 0.525 0.041 

NIR_Features base 0.000 0.009 0.953 0.358 

NIR_Total_Area bcn 0.000 0.046 0.240 0.908 

NIR_Total_Perim base 0.000 0.145 0.404 0.479 

NIR_Mean_size bcn 0.000 0.011 0.815 0.507 

NIR_Mean_Perim bcn 0.000 0.003 0.500 0.589 

NIR_SD_size bcn 0.000 0.079 0.436 0.862 

NIR_SD_Perim bcn 0.000 0.153 0.330 0.540 

NIR_Skew_size base 0.000 0.252 0.140 0.077 

NIR_Skew_Perim base 0.000 0.292 0.095 0.076 

NIR_Kurt_size yj 0.000 0.206 0.170 0.107 

NIR_Kurt_Perim bcn 0.000 0.225 0.124 0.132 

 

In post-hoc analysis for significant contrast differences between treatment within trials 

differences were found within the Brooms barn trials for NIR Features (N plusFYM - S plusFYM 

p = 0.042 in the repacked soil cores. For the intact soil cores, differences were found between 

treatments at Lodge Warren site (VIS_Features  p=0.0250). 
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Figure 44. Selected feature characteristics of Repacked (A) and Intact (B) soil cores extracted 

using the multispectral feature analysis. 

 

7.4. Discussion 

This study aimed to apply an image analysis protocol designed to extract features from soil 

images using high resolution 2D scanned images, and multispectral images obtained using 

ximea multispectral cameras. The sampled soils were collected from a range of field trial sites 

with different managements and rotations. In order, to apply the developed methods to the 

field samples, streamlining of the methods was undertaken, with improvements in 

automatically finding the core in the image implemented, and implementation of changes to 

increase speed from the initial protocols. Within the RGB analysis there were issues at the 

edge of the soil core image where structures were not assessed due to being in contact with 

the edge of the core, therefore in the multispectral analysis an edge correction section of the 

analysis was added. 

The adaption of the methods allowed analysis of soil image datasets from two rotational sites 

for the high-resolution scanning methods (CSC & Grieves House), both of which include crop 

rotations and reduced tillage methods in comparison with inversion plough cultivation. Within 

the Grieves House samples, differences were found between the tillage methods in terms of 

the distribution of the pore space, but no strong correlation to crops within rotation. In the CSC 

samples there were differences found between tillage methods in some of the crop fields 

(Potato and WOSR) but not in all fields. The methods were also able to show differences 

between the tillage methods and the soils in the rows and furrows of the potato fields. Further 

analysis is ongoing to correlate these results with soil properties such as DBD. 

The multispectral method was applied to samples from three field trials (Brooms Barn, Oxnead 

and Lodge Warren), two of which had organic amendments (Ox, LW) with Brooms Barn 

having treatments comprising old and new application of manure. Analysis of the distribution 

of wavelengths was able to separate the soils into site categories and some of the treatment 

categories within individual field trials, showing the potential to track changes in field 
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composition. Evaluation of the structural information gained from the images also showed 

differences between trial treatments. Further study will allow an in-depth analysis of the within 

feature wavelength variation and correlations between calculated features and other soil 

measurements (calculations of pore distribution, soil strength and DBD, water content (at time 

of imaging)). However, the work demonstrated the potential of these two methods in 

assessing changes in structural composition between soil management within trials. 

 

7.5. Conclusions 

• Flatbed scanner imaging, followed by image analysis of the soil structure was sensitive 

enough to differentiate between structural changes under different tillage / management 

systems. 

• Multispectral imaging with ximea cameras followed by image analysis was faster than the 

flatbed scanner process due to smaller datasets. This process was also able to 

demonstrate differences between treatments in terms of soil spectra and in terms of soil, 

structure. 

• Edge correction was possible for the RGB due to the lower resolution, but further 

development is required to apply this to the higher resolution RGB images. 

• The tool offers a protocol for tracking structural changes over time at a scale relevant to 

root:soil interactions 

• Further analysis is needed to assess whether the spectral patterns obtained from the 

multispectral camera correlates with soil properties.  

• Both methods gave an alternative way of tracking structural changes in soils, and as 

previously experienced with soil structural measure (See WP1 report), differences in soil 

were found more frequently when comparing across trials or sites, however differences 

were found with sites across treatments. 
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8. TRAFFICKING IN ARABLE FIELDS 

8.1. Introduction 

The purpose of this study was to gather information on the effects of (1) different implement 

working widths and (2) variation tyre pressure on soil compaction and on crop performance. 

 

8.2. Materials and Methods 

8.2.1. Experiment at Greenwell Farms, Orford, Suffolk 2017 (2017-18) 

This comparison was done in Poor Walk at Greenwell Farms. There was one strip trial 

examining bedformer configuration and soil compaction at Greenwell Farms, Orford, Suffolk in 

the same field as Expt 2017-4 (Table 2). This was conducted on sand soil (91 % S, 6 % Z, 3 % 

C, 1.6 % OM). Two different width bedformer were used: a 4-bed Grimme bedformer pulled by 

a tracked Case IH Quadtrac 540 (laden weight 21.7 t) which was standard farm practice and a 

single bed machine pulled by a Case IH Puma 215 (8.1 t) running on 650/65 R42 + 540/65 R30 

tyres at a pressure of 19 PSI. Strips of eight beds were pulled up using both machines in three 

areas of the field on 15 March following Sumo and Flatlift cultivations on 11 and 14 March, 

respectively. Measurements of soil resistance were taken immediately after bedforming using 

an Eijkelkamp Penetrograph with a 60° 2 cm2 cone tip. The positions corresponding to the centre 

of each row were located and measured to a depth of 50 cm. On 19 July, duplicate soil cores 

(55 mm diameter x 40mm cylinders) were taken from four depths (25, 45, 65 and 85 cm from 

the top of the ridge) under each bed and furrow position under each bedformer. One core was 

dried at 105 °C for 24 hours to determine dry bulk density and the other was sent to James 

Hutton Institute for measurements of water release and micro-penetrometer resistance. 

 

8.2.2. Experiment at Farmcare Ltd, Cambridgeshire 2017 (2017-20) 

The second trial looked at tyre pressure modifications at Farmcare Ltd, Coldham Estate, 

Cambridgeshire. This was conducted on a silty clay loam soil (12 % S, 54 % Z, 34 % C, 5.3 % 

OM). The single-pass cultivation implement was a three-bed Basilier 5.4 m rotoridger pulled by 

a John Deere 8360R tractor with a combined weight (tractor, rotoridger, fertilizer tank) of 19.9 t. 

The tyres were Michelin Axiobib (rear 800/70/38 and front 600/70/30). The standard tyre 

pressure was 17 PSI and two treatments were imposed: low (14.5 PSI) and high (22.5 PSI). 

Soil strength was measured using the Eijkelkamp Penetrograph (as described above), in 12 

equally- spaced positions across a full three-bed module immediately after the bedforming was 

completed (19 April). On 26 September, duplicate soil cores (55 mm diameter x 40 mm 

cylinders) were taken from four depths (17, 37, 57 and 77 cm from the top of the ridge) under 

each bed and furrow position under each tyre pressure treatment. One core was dried at 105 

°C for 24 hours to determine dry bulk density and the other was sent to James Hutton Institute 

for measurements of water release and micro-penetrometer resistance. 

 

8.2.3. Experiment at Greenwell Farms, Orford, Suffolk 2018 (2018-40) 

Expt 2018-40 was done in Orford walk at Greenwell Farms, Orford, Suffolk. It tested the effect 

of compost amendment on trafficking compaction from the bedformer was examined. The soil 

was a sand (88 % S, 6 % Z, 6 % C, 1.6 % OM). At planting on 11 April, the four-bed Grimme 

bedformer was pulled by a tracked Case IH Quadtrac 540 (laden weight 21.7 t). Measurements 

of soil resistance were taken at harvest on 24 July using an Eijkelkamp Penetrograph with a 60° 
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2 cm2 cone tip. The positions corresponding to the centre of each row were located and 

measured to a depth of 50 cm. On the same date, duplicate soil cores (55 mm diameter x 40 

mm cylinders) were taken from four depths (20, 30, 40 and 50 cm from the top of the ridge) 

under each bed and furrow position under each bedformer. One core was cold stored at 3 °C 

to examine root length density at a later date and the other was sent to the James Hutton 

Institute for measurements of water release and micro-penetrometer resistance. A final harvest 

of 3 m length of single row was taken on 24 July from each of the four rows formed by one half 

of the bedformer to assess the effect of trafficking on yield. 

 

8.2.4. Experiment at Stevenson Brother, Essex 2018 (2018-41) 

Experiment 2018-41 The second trial looked at trafficking compaction on two contrasting areas 

of a heavy clay field near Hatfield Broad Oak, farmed by Stevenson Bros. The position of the 

centre of two bedformer runs was located on two contrasting soil types planted with a crop of 

King Edward on 9 May. One area was conducted on a clay loam soil (25 % S, 44 % Z, 32 % C, 

3.2 % OM) with moderate water holding capacity and the other was on a silty clay loam soil (12 

% S, 54 % Z, 34 % C, 2.8 % OM) with high water holding capacity. The bedforming operations 

were carried out with a Caterpillar Challenger MT775E running on 75 cm tracks (gross weight 

15.6 t) and three-bed Grimme bedformer. Soil strength was measured using the Eijkelkamp 

Penetrograph (as described above) on 21 September under each of the three rows of one half 

of a bedformer module. On the same date, duplicate soil cores (55 mm diameter x 40 mm 

cylinders) were taken from four depths (15, 25, 35 and 45 cm from the top of the ridge) in each 

of the three rows. One core was cold stored at 3 °C to assess root length density at a later date 

and the other was sent to the James Hutton Institute for measurements of water release and 

micro-penetrometer resistance. A final harvest of 3 m length of single row was taken from each 

of the three rows on 28 September to assess the effect of trafficking on yield on the two different 

soil types. Three replicate areas were sampled in each soil type for soil strength, rooting and 

yield. 
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8.3. Results and discussion of wheeling management studies 

8.3.1. Experiment at Greenwell Farms (Expt 2017-18) 

At Greenwell Farms, with the standard four-bed bedformer and Quadtrac combination, there 

were effects of compaction measured down to 45 cm depth and there was greater compaction 

within beds (both in row and furrow positions) under the tracks than in untracked areas. The 

further away from tracks, the lower the compaction and the inside of each track created more 

compaction than the outer edges (Figure 45a). With the single-bed bedformer and wheeled 

tractor, compaction was still evident down to 45 cm depth and compaction under the rows was 

worse than outer rows of the four-bed system, but not as severe as under the tracks in the four-

bed system (Figure 45b).  Overall, the effects between extra loading and wider tracks of the 

four-bed system compared with the single-bed system probably cancelled out any benefits of 

more untrafficked rows in the four-bed system. 

 

8.3.2. Experiment at Farmcare Ltd (2017-20) 

On the heavier soil at Farmcare Coldham Estate, with low tyre pressure outside beds were 

slightly more compacted than the middle bed at 20-25 cm depth and wheeled areas were slightly 

more compacted than unwheeled at 20-40 cm depth. The outside of the tyre created more 

compaction at 20-30 cm depth than inside. Wheeled furrows were slightly more compacted than 

where wheels were absent. The effects of increasing the tyre pressure from 14 to 22 PSI were 

restricted to depths shallower than 40 cm (most effects were observed between 20 and 40 cm 

deep). Outside beds were more compacted than the middle bed at 22 PSI than at 14 PSI, but 

there was limited overall effect of tyre pressure in unwheeled beds, wheeled beds or wheeled 

furrows (Figure 46). 
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Figure 45. Soil resistance at planting in different positions a) 4-row bedformer; b) single row 

bedformer. a) Rows 1 and 8, ◼; Rows 2 and 7, □; Rows 3 and 6, ; Rows 4 and 5, ; b) Rows 1 

and 2, ◼. Hatched areas represent the position and width of tracks or wheels. 
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Figure 46. Soil resistance at planting for different tyre pressures. Data are means of 12 

positions across a three-bed module. 14 PSI, ◼; 22 PSI, □. 

 

 

8.3.3. Experiment at Greenwell Farms Orford (Expt 2018-40) 

At Greenwell Farms, with the standard four-bed bedformer and Quadtrac combination, there 

were effects of compaction measured down to 45 cm depth and using the whole four-bed 

cultivated module, there was greater compaction under the four rows trafficked by the tracks of 

the bedformer than in the four rows in untracked areas. The further away from tracks, the lower 

the compaction and the inside of each track created more compaction than the outer edges 

(Figure 45a; b). Averaged over all eight rows, compost amendment seemed to slightly reduce 

soil strength by c. 0.5 MPa between 30 and 40 cm depth below the top of the ridge compared 

with no compost amendment (Figure 45c). When comparing the whole eight-row module width, 

there was a consistent trend for the four rows trafficked by the bedformer to have a lower yield 

than the four untrafficked rows, but there was no effect of compost amendment on reducing the 

effects of trafficking on yield (Table 12). 

 

Table 12. Effect of row position and compost amendment on yield (t/ha) at Orford Walk, 

Greenwell Farms (Expt 2018-40) 

 Position 

 Untrafficked Trafficked 

Amendment Row 1/8 Row 2/7 Row 3/6 Row 4/5 

None 36.1 37.9 34.8 31.8 

Compost 33.5 33.6 29.5 31.2 

Mean 34.8 35.7 32.2 31.5 

S.E. 1.45 1.89 1.49 1.91 
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Figure 47. Soil resistance in different positions under 8-row bedforme at Orford Walk, 

Greenwell Farm (Expt 2018-40). (a) No compost; (b) compost; (c) mean effect of compost 

treatment averaged over all rows. (a) and (b) Rows 1/8, ◼; Rows 2/7, □; Rows 3/6, ; Rows 

4/5, . (c) No compost, ◼; compost, □. 
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8.3.4. Experiment at Stevenson Brother, Essex 2018 (2018-41) 

On the heavier soil at Stevenson Bros in Essex, there was a similar effect of row position on soil 

resistance to that found in Suffolk. The untrafficked Row 1 had lower resistance between 30 

and 40 cm below the top of the ridge than Rows 2 and 3 where the bedformer wheels had run, 

but there was little effect of soil type on the resistance measured (Figure 48). 

Figure 48. Effect of row position and soil type on soil resistance at Missens, Stevenson 

Bros (Expt 2018-41)  in one half of a six-row bedformer configuration. (a) clay loam; (b) silty clay 

loam. Row 1, ◼; Row 2, □; Row 3, . 

(a) 

 

(b) 

 

 

Tuber yield appeared to be reduced in rows previously trafficked by the bedformer tractor than 

in untrafficked rows and there was a larger effect of row position on the wetter silty clay loam 

soil than the drier clay loam soil (Table 13). 
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Table 13. Effect of row position and soil type on yield (t/ha) at Missens, Stevenson Bros 

(Expt 2018-41) 

Soil type Sample position 

(water content at cultivation) Untrafficked 

Row 1 

Trafficked 

Row 2/3 

Silty clay loam (31 %) 46.6 41.7 

S.E. 1.45 1.76 

Clay loam (26 %) 51.6 48.2 

S.E. 1.66 1.72 

 

8.4. Conclusions 

There appears to be a clear effect of trafficking reducing yield as a consequence of increased 

soil strength under areas of the bed where wheels have run during the bedforming operation, 

and compost may help in increasing the soil’s resistance to damage from compaction. Once 

fully analysed, the soil data will help determine to what the extent the treatment differences are 

explicable in terms of soil-physical properties or are due to increased nutrient availability. In 

some experiments, the residual effects of the treatment will be followed in subsequent crops 

and these data will also provide valuable insights into the relative benefits of cover crops and 

amendments 
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10. APPENDIX – ZONING OF POTATO YIELDS 

This section describes the results from an extensive empirical study, designed to investigate 

how the zoning methods detailed in Section 3.2.3 address the issues created by different types 

of data sparsity. Specifically, there were three fields with wheat yield measurements obtained 

from multiple years at a reasonable spatial density. The effects of variable sparsity were studied 

by restricting data to different subsets of years, and the effects of spatial sparsity, by considering 

different grid sizes, on clustering and smoothing. In combination, these enabled us to investigate 

the effect of colocation sparsity. To each data scenario 2 cluster options were implemented, 

• Original fuzzy c-means, requiring complete observations 

• Fuzzy c-means with optimal completion strategy 

and two smoothing options, 

• Over a neighbourhood defined using the underlying grid alignment 

• Over a neighbourhood defined using the Voronoi tessellation. 

For these data, explicit information, such as soil maps, which designate a definitive clustering 

are not available. As such, no true validation datasets exist that can be used to calculate 

algorithm error. Thus, to assess algorithm performance, a subjective assessment of the 

clustering and smoothing was made for each data scenario. The clustering was categorised as 

“good” if a classification could be clearly identified from the calculated cluster entropy, 

“moderate” if a classification could be identified, albeit with some scepticism or “bad” if no clear 

classification could be identified. The smoothing was categorised as “good” if a clear maximum 

could be identified from the coherence index, “moderate” if a maximum existed but was not 

clearly identified, e.g. through discontinuities in the coherence index and “bad” if no clear 

maximum could be identified. Examples of these categorisations are shown in Figure 49. 

 



 

88 

 

Figure 49. (A) – (C) The relationship between the cluster entropy and number of clusters. These 

are illustrative examples of a “bad” (no distinct change point in the gradient of entropy can be 

identified), “moderate” and “good” (a distinctive change in gradient can be identified) cluster 

assessment, respectively. (D) – (F) The coherence index plotted as a function of the smoothing 

radius. These are illustrative examples of a “bad” (jagged, ill-behaved curve), “moderate” and 

“good” (smooth, with clear maximum identifiable) smoothing assessments, respectively. 

 

 

The results of this assessment are shown in Figure 50. From here, a tendency for improved 

clustering with the inclusion of more variables can be identified (Figure 50A)). Furthermore, at 

the smallest grid sizes, cluster identification appears to worsen as there is a greatly reduced set 

of locations which are fully observed (Figure 50C)). It is interesting to note, that at the smaller 

grid sizes, the cluster assessment becomes more dichotomous when using the original fuzzy c-

means algorithm compared to the two alternative clustering methods. This reflects the fact that 

the fuzzy c-means relies upon having a sufficient number of completely observed locations to 

make an effective assessment. In comparison, the alternative approaches incorporate partially 

observed locations which could both increase available information but also dilute information 

if there is little overlap in the partially observed subset (e.g. many locations for which only a 

single variable is observed). 

Figure 50(D) shows a tendency for improved smoothing with a finer grid size, particularly when 

the clustering algorithm allows the inclusion of partially observed locations. In addition, in 

scenarios of poorly identified clusters, this coincides with a poorer performance of the coherence 

index, where peaks are difficult to identify, and the coherence index exhibits jagged behaviour. 

This may be due to the relatively little information that distinguishes one location from another, 

regardless of its position in the field. 
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Figure 50. Figure 16 Results from an empirical study of three fields through an assessment of 

clustering (A and C) and smoothing (B and D). A)-B) The frequency of data scenarios that were 

considered to have “bad,” “moderate” or “good” assessment for differing numbers of variables 

(years of data) under each of the three clustering options. C)-D) The frequency of data scenarios 

that were considered to have “bad,” “moderate” or “good” assessment for data aligned to 

different grid sizes under each of the three clustering options. Frequency refers to the number of 

data scenarios of each type. Cluster option 1, refers to the original fuzzy c-means, option 2 

includes the post-hoc allocation of partially observed locations and option 3 refers to the fuzzy c-

means with optimal completion strategy. 

 
 


