'Inspiring our farmers, growers and industry to succeed in a rapidly changing world'

Housekeeping

@Cereals_NE

@potatoes_north

'Inspiring our farmers, growers and industry to succeed in a rapidly changing world'

Improving Nitrogen Use Efficiency: Environmental Perspective

Dr. Sajjad Awan Environment and Resources Scientist AHDB

CEREALS & OILSEEDS

Presentation Summary

- Nitrogen use in the UK agriculture
- How efficient is our Nitrogen use
- Measures to improve Nitrogen use efficiency
- Clean Air Strategy 2019; 25 year environment plan
- An update on RB209-New edition

UK Farm Nitrogen Balance

A 17% decrease in the total N surplus (111 kg/ha to 92 kg/ha):

- Lower inorganic (manufactured) fertilisers and
- Lower manure production (the result of lower livestock numbers)

Long term crop yield (2000-2019)

Defra Statistics

AHDB

Nitrogen Use Efficiency- arable crops

Defra Statistics

Can we improve Nitrogen Use Efficiency

1. Right source

2. Right rate

3. Right time

4. Right place

Nitrogen fertiliser sources

- Organic;
 - Farmyard manure
 - Green manure
 - Slurries
 - Digestate
 - Biosolids etc

Inorganic

- Nitrate fertilisers
- Urea
- Sulphates etc

Urea fertiliser

- Approximately 22% of N used as urea
- Concentrated N (46%)
- Easy to store and use
- Cheaper than other N sources
- Environment losses are higher compared to ammonium nitrate

Urea volatilisation

= Ammonium

Urease Inhibitors

Urease produced by plants and microbes in the soil

Urease Inhibitors slow down the conversion of

Ammonium to Ammonia

• Ammonium can stay in the soil

for several weeks

Urease Inhibitors

- Phosphoramide compounds are extremely potent inhibitors
 - NBPT (n-butyl thiophosphoric triamide) marketed as Agrotain
 - Phenyl phosphorodiamidate (PPDA) is also a strong UI
 - 2-NPT (2-nitrophenyl) phosphoric triamide is a mixture of NBPT and NPPT
 - Heavy metals
 - Nutrisphere[™]

Right time of application

- Apply when the crop is growing at its fastest rate!
- N recovery;
 - Autumn applications ~ 10%
 - Spring applications ~ 55%

In NVZs highly readily available N should not be applied during close periods

- For inorganic fertilisers such as UAN and Urea, careful planning is essentials
- Nitrogen use efficiency for grain protein boost is around 12-15%

Clean Air Strategy 2019

Why to focus on environment?

- Environment will be the cornerstone of agricultural policy in England
- Delivery of clean air, water and habitat Environment Land Management Schemes (ELMs)
- Direct payment schemes to be replaced by ELMs
- Capital grants for land managers ;
 - to improve sustainability and
 - reduce negative environmental impacts

KK HM Government

A Green Future: Our 25 Year Plan to Improve the Environment

25 Year Environment Plan

Sustainable growth

Improve resource use efficiency •(soil, water and air)

Improve environment & economy

•Working with farmers to use fertilisers efficiently

Provide clean air and water

1. Sustainable Growth for future generations

Soil

Water

Nutrients

Improve Soil Health

Aquatic life/drinking water

Nutrient use efficiency

3. Clean Air and Water

3. Clean Air and Water

AHDB

- Methane from livestock:
 - 51% methane from agriculture
 - 14% NMVOC (Non-methane volatile organic compounds)
 - Both create ozone, harmful for

humans/habitats

• Ozone on average reduces yield by 5% in

Cereals & oilseeds

Emissions of key pollutants

Reduction of ammonia emissions from farming

1. Introduce rules on specific emissions

- Reduce emissions from urea-based fertilisers (ASAP)
- Solid manure/digestate spread to bare land- incorporate within 12 hours, except no-till land (ASAP)

28% ammonia

2. Regulation to minimise pollution from organic and inorganic fertiliser use

- Introduce limits on N rich fertilisers
- Consultation is proposed with growers, agronomists, scientists, academics

Updates on RB209

2020 revision of RB209

Olsen-P and grain-P tests, better indicators of soil P availability Recommendation to test grain and soil

One more message! Sulphur for optimum yield and proteins

High sulphur deficiency in lighter soils with high rainfall

Thanks for your attention!

Questions

For further queries contact; Sajjad.Awan@ahdb.org.uk 02476 47 8787 07815505800

Version: 16:9/2017-11-30a

Inspiring our farmers, growers and industry to succeed in a rapidly changing world

A clear solution

Intercropping in the

Reducing Our Reliance on Herbicides

by Andy Howard

advice that counts

A clear solution for farmers

- 300 ha Family Farm
- No-Till Since 2011
- Soil Type –varied
- Rainfall 700-800ml
- Topography: rolling, small, irregular shaped fields, wooded

advice that counts
Cropping 2019

- Winter Wheat
- Herbage Seed
- Winter Beans
- Spring Barley
- Spring Bean/Oats
- Spring Linseed
- Lentils
- Marrowfat Peas/SOSR
- Stewardship Legume Fallow
- 11 ha Solar Farm

Cropping 2020

- Winter Wheat
- Herbage Seed
- Spring Beans
- Winter Barley
- Spring Bean/Oats
- Spring Oat/Beans
- Lentils/ Oats
- Marrowfat Peas/?
- Stewardship Legume Fallow
- 11 ha Solar Farm

advice

that counts

DIVERSITY

Design a Farm system that can thrive with minimal human and outside inputs

5 Year Plan: reduce inputs by 50%

It all starts with the soil!!

advice that counts

Definition of Intercropping "The growing of two or more crop species where part or all of their crop cycle overlaps temporally and/or spatially, where one or more of the component species is taken to harvest"

Root morphological and physiological plasticity

-Root surface -Root depth

-Root systems interpenetration

Belowground interactions

Water and nutrient partitioning

f above nts

Spatial and tempora

and

belowgrout

advice that counts

Soil water and nutrient availability

Soil transport :

Soil-root transport :

-Physical and hydrodynamic properties

- Water and nutrients availability

-Root interception and extraction - Mass flow and nutrients cycling

advice that counts

12.20

Pasture Cropping

East Sussex:

Full Season Intercrop

Difficult Soils a Speciality Fertilisers Advisory Service Toxic Residue Testing Soil Health Problems **Environmental Testing**

advice that counts

Analysis Results (LEAF)

Customer BOCKHANGER FARMS L OAKLANDS FARM HOTHFIELD ASHFORD KENT TN26 1ER		,	Distributor	INDEPENDENT SOIL SERVICES HARVEST HOUSE NEW ROAD CRIMPLESHAM DOWNHAM MARKET NORFOLK PE33 9FH
Sample Ref	GODINGTON	37	Date Received	06/06/2017
Sample No	E229306/04		Area	10
Crop	OILSEED RAPE			

Analysis	Result	Guideline	- norprossil	Comments	
Nitrogen (%)	4.31 -	4.00	Normal	Ad quate Level.	
Phosphorus (%)	0.47	0.35	Tronnar	Adequate Level.	
Potassium (%)	1.55	2.80	Low	PRIORITY FOR TREATMENT.	
Calcium (%)	1.99 `	1.00	Normal	Adequate Level.	
Magnesium (%)	0.19 *	0.25	Slightly Low	Consider foliar applications of MAGNESIUM	
Manganese (ppm)	35.7 *	30.0	Normal	Adequate Level.	
Boron (ppm)	44.8 *	30.0	Normal	Adequate Level.	
Zinc (ppm)	36.3 *	25.0	Normal	Adequate Level.	
Iron (ppm)	48 -	30	Normal	Adeqate Level.	
Copper (ppm)	4.2 *	5.0	Slightly Low	Low priority. See comments below.	
Molybdenum (ppm)	1.66	2.00	Slightly Low	Consider foliar applications of MOLYBDENUM.	
Sulphur (%)	0.55 +	0.40	Normal	Adequate Level.	

Additional Comments

BIO-LOGICAL FARMING SOLUTIONS

Please note: Any indicated guidelines are intended for early to mid-season sampling. For any product applied, always refer to manufacturers advice for rates and timing of application. PLEASE NOTE : The guideline levels quoted should be regarded as the absolute minimum at which crop yield or quality may be affected. Treatment of deficient low priority nutrients may be beneficial if all sensitive nutrients are adequate.

Please Note

Whilst every care is taken to ensure that the Results from Analysis are as accurate as possible, it is important to note that the analysis relates to the sample received by the laboratory, and is representative only of that sample. No warranty is given by the laboratory that the Results from Analysis relates to any part of a field or growing area not covered by the sample received. It is important to ensure that any soil, leaf, silage or fruitlet sample sent for analysis is representative of the area requiring analysis and that samples are obtained in accordance with established sampling techniques. A leaflet containing instructions on how to take soil, leaf, herbage, silage and fruit samples for analysis is available from the laboratory on request.

AMMONIA EMISSIONS

Independent Soil Services, Harvest House, New Road, Crimplesham, Norfolk. PE33 9FH TEL: 01366 384899 * FAX: 01366 380205 * E mail: info@independentsoils.co.uk * Website: WWW.independentsoils.co.uk

Companion Cropping Wheat

NAN TANK	Diat	Spacios	Sood Pate (kg/ba)	Soods por M2	
Deegen	PIUL	Species	Seeu nate (kg/IIa)	Seeus per MZ	
Reason	<u>S:</u>				
• Aph	id confusior	Crimson Clover			
• Scav	enge Nitrog	gen (~ 15kg	g/ha) 5		
• Incr	ease Yield				
• Incr	ease Protein	n Content	8.1 (0.6, 1.5, 1.25, 5)	66 (26,12,18,10)	
• Wee	d Suppressi	on?			
• Imp	rove rooting	Common Vetch			
• Add	Diversity	Spring Beans	80	15	
XALX					

No need for pre-em herbicide

Cranesbill suppression: reduced biomass from 285g/m2 to 86g/m2

Temporary Intercropping

Flax Flea Beetle Trial in Linseed								
Treatment	Avg. Yield as a percentage of control							
Linseed Only	100 %							
Linseed plus Oats (70 plants/m2)	118.3%							
Linseed plus Oats (140 plants/m2)	119.4%							
9 (0.54) 70	00 140 (76kg/ha)							

Bean Oat trial 2019

Mix	Area (ha)	Beans (seed	Oats (seeds	LER					
		per m2)	per (Sown 2 m2)		of March 9)	Plant	ts Establi	shed per	M2
Bean mono	0.83	50 (256kg /ha)	0		Gross output	Gross output Oats	Total Gross	Variable	Gross output-
2 Bean 0.76 Oats	0.76	.76 45	70	Treat	Beans £190/t	£140/t	output £	cost £	variable £
		(230kg	(38kg/	1. SB50	902.50	0.00	902.50	240.63	661.87
		/ha)	ha)						
3 Oats 0.67 0	0.67	7 0	300 (163kg	2. SB45 SO 70	528.20	649.60	1177.80	241.41	936.39
				3. SO 250	0.00	905.80	905.80	245.00	660.80
	/ha)	/ha)	4. SB45 SO45	556.70	539.00	1095.70	247.25	848.45	
Bean Oats	0.58	50 (256Kg	50 (27/kg	5. SB35 SO125	307.80	826.00	1133.80	232.36	901.44
Outs		/ha)	(27) NB /ha)		1412				
Bean Oats	0.50	35 (180kg /ha)	125 (68kg/ ha)					P	GRO
	MixBean monoBean OatsOatsBean OatsBean OatsBean Oats	MixArea (ha)Bean mono0.83Bean Oats0.76Oats0.67Bean Oats0.58Bean Oats0.50	MixArea (ha)Beans (seed per m2)Bean mono0.8350 (256kg /ha)Bean Oats0.7645 (230kg /ha)Oats0.670Bean Oats0.5850 (256Kg /ha)Bean Oats0.5850 (256Kg /ha)Bean Oats0.5035 (180kg /ha)	MixArea (ha)Beans (seed per m2)Oats (seeds per m2)Bean mono0.8350 (256kg /ha)0Bean Oats0.7645 (230kg /ha)70 (38kg/ ha)Dats0.670300 (163kg /ha)Bean Oats0.5850 (256Kg /ha)50 (27/kg /ha)Bean Oats0.5035 (180kg /ha)125 (68kg/ ha)	MixArea (ha)Beans (seed per m2)Oats (seeds per m2)(Sown 29th 201Bean mono0.8350 (256kg /ha)01Bean Oats0.8350 (256kg /ha)01Bean Oats0.7645 (230kg /ha)70 (38kg/ ha)1Oats0.670300 (163kg /ha)2. SB45 SO 70 3. SO 250Bean Oats0.5850 (256Kg /ha)300 (163kg /ha)2. SB45 SO 70 3. SO 250Bean Oats0.5035 (180kg /ha)125 (68kg/ ha)5. SB35 SO125	Mix (ha)Area (ha)Beans (seed per m2)Oats (seeds per m2)Oats (seeds per m2)Oats (Sown 29th of March 2019)Bean mono0.83 (256kg /ha)0 (256kg (256kg /ha)0 (256kg (38kg/ ha)Gross output Beans £190/tBean Oats0.76 (230kg (230kg /ha)45 (38kg/ ha)70 (38kg/ ha)Gross output Beans £190/tOats0.67 (256kg (256kg /ha)0 (163kg /ha)300 (163kg /ha)2. SB45 SO 70 (2. SB45 SO 70Bean Oats0.50 (2. S56kg (ha))125 (68kg/ ha)1000 (1. SB40 (1. SB40 (1. SB40 (1. SB40 (1. SB40 (1. SB40 (1. SB40 (1. SB40 (1. SB40 (1. SB40	Mix (ha)Area (ha)Beans (seed per m2)Oats (seeds per m2)Oats (seeds per m2)Cats (Sown 29th of March 2019)LERBean mono0.8350 (256kg /ha)0 (256kg /ha)0 (256kg (38kg/ ha)Gross output OatsGross output OatsGross output OatsBean Oats0.76 (230kg /ha)45 (230kg (38kg/ ha)70 (38kg/ ha)Treat (Sown 29th of March (2019)Gross output OatsOats Oats0.67 (256kg (ha)0 (163kg /ha)300 (163kg /ha)300 (163kg /ha)2. SB45 SO 70 (2. SB45 SO 70 (2. SB45 SO 70)528.20 (2. SB45 SO 70)Bean Oats0.58 (2. S66kg /ha)50 (2. SB35 SO125)307.80826.00Bean Oats0.5035 (180kg (68kg/ /ha)125 (68kg/ ha)307.80826.00	Mix (ha)Area (ha)Beans (seed per m2)Oats (seeds per m2)Oats (seeds per m2)Oats (seeds per m2)Oats (Sown 29th of March 2019)Plants EstabliaBean mono0.8350 (256kg /ha)0 (230kg (38kg/ ha)0 (230kg (163kg /ha)0 (163kg /ha)Gross output Gross output Beans £190/tGross output E140/tTotal OatsOats Oats0.670 (256kg (256kg /ha)300 (163kg /ha)300 (163kg /ha)2.5845 SO 70 (250kg528.20 (0.00649.60 (1177.80 (3.50250)Bean Oats0.5850 (256kg (256kg (21/kg /ha)50 (27/kg (218kg/ /ha)50 (256kg (27/kg (21/kg /ha)50 (256kg (27/kg (21/kg /ha)50 (256kg (27/kg (21/kg /ha)300 (133.80Bean Oats0.5035 (180kg (180kg (ha)125 (68kg/ (ha)307.80826.001133.80	Mix (ha)Area (ha)Beans (seed per m2)Oats (seeds per m2)Oats (seeds per m2)Oats (seeds per m2)Oats (Sown 29th of March 2019)Plants Established per PlantsBean Oats0.7645 (230kg (ha)70 (38kg/ ha)70 (38kg/ ha)Ireat (Beans £190/tGross (140/t)Total OatsVariable GrossDats Oats0.67 (256Kg (ha)0300 (163kg (ha)300 (163kg (ha)300 (163kg (ha)2.5845 SO 70 (163kg (ha)528.20649.601177.80 (177.80241.41 (241.41Bean Oats0.58 (256Kg (ha)50 (27/kg) (ha)50 (27/kg) (ha)50 (27/kg)5.5835 SO125307.80826.001133.80 (133.80232.36

- 100 F

Living Mulch

Carlin Peas and Triticale, Green Acres Farm, Shropshire

Spring Carlin Peas and Triticale, Green Acres Farm

Peas	Peas 250 Trit	Peas 250 Trit	Peas Trit	Peas Trit	Mo
250kg/ha	5% RD (12.5kg/ha)	10% RD (25kg/ha)	20% RD (50kg/ha)	30% RD (75KG/HA)	qua triti (pos con
1ha, 12m strips		Drilled 25 th April in two passes			

(VATIVE

FARMERS

PART OF THE DUCHY FUTURE FARMING PROGRAMME Motivations – structural support for peas, pea quality, weed suppression, triticale for animal feed (possibly human consumption)

Wheat-Beans, James Hares, Roundhill Farm, Wilts

<u>Wheat and Beans, Roundhill Farm, Wilts</u>

Wheat 175kg/ha Beans 125kg/ha

1ha

Beans 125kg/ha

Motivations: Weed control (organic), mixed higher protein animal feed, use up left over wheat, wheat not too competitive

1ha

Total Yield Combine – 24th August ^{222%} increase in

WEEDS

Weed biomass – 0.5m quadrat cuts, June 18

Weed biomass dry (g)

Reflects findings in previous studies

Companion Cropping Potatoes

Rockey Farms Pro-Biotic Approach

Intercrops and Weeds

Cover crop or Intercrop?

advice that

counts

Do weeds know the difference?

How do Cover Crops and Companion Crops affect Weeds?

- Allelopathy
- Shading (competition for radiation) reduce amount reaching the soil by 30%

advice

- Competition for nutrient and water
- Encourage/protect weed seed predators (increase predators x3)
- Improve soil characteristics (change microbial communities)

Undersowing Mammoth Red Clover in wheat reduced brome by 98%

advic that count

- Some weed species only germinate when nitrate levels are around 50ppm
 - 20% inclusion of barley in a legume/cereal intercrop reduces weed pressure by 90%
- Weeds were x3 worse in pea sole crop compared to pea/barley intercrop
- Weed diversity reduces in intercrops (filling niches)

 Can use herbicides, mowing and grazing to prevent mulches becoming weeds

RECENT RESEARCH

Effect of drought on weed emergence and growth vary with the seed burial depth and presence of a cover crop – Stephane Cordeau et al (2018)

- Tested eight different weed species
- Unburied seeds had 26% lower emergence
- Cover crop reduced emergence by 17% overall
- Unburied seeds under drought stress had 45% less emergence compared to buried seeds with no drought stress
- All weed growth measurements decreased in the presence of a cover crop

Are there practical alternatives for terminating cover crops?

David White, Hawk Mill Farm

Why

A growing body of evidence is showing the benefits of cover crops for both soil health and productivity. But currently there are limited tools for destroying them prior to establishing a cash crop. The options are generally ploughing if farming organically, or glyphosate for non-organic and no-till farmers. Now, a group of organic and non-organic arable farmers are looking to add to the toolbox by assessing a range of alternative methods, including flailing, roller crimping, grazing and rolling, and comparing how effective they are against their normal practices.

Trial Design

7 farms took part in the trial. Each using a range of cover crop mixes and destruction techniques.

At Hawk Mill Farm:

Cover crops drilled early and destroyed on 25
November to take advantage of frost.
 A second field of beans and phacelia was
rolled and fiailed.

After destruction a crop of spring barley was
 sown.

£9,600

Destruction method

 The yield data are indicative of the potential for other destruction methods. However, they also reflect in-field variation as well as the success of the different techniques. Yield assessments could have been affected by some areas of the field that were waterlogged at establishment due to the wet spring of 2018.
 The group reported that they learned significantly more about cover crop selection, establishment and destruction methods from doing the trial – both in relation to their own farms, and from each other.
 "The main conclusion from this trial for this season is that there is scope to destroy cover crops in a variety of ways and not impact on yields of the following spring crop." – Helen Holmes

David's Analysis

AHDB

Sponsor

As a group, we've learned a lot this year about cover crops. There are so many variables, and good destruction is all about getting the species and the timing right. Destroying on 25 November felt a little early, but we wanted to take advantage of the effects of the frost plus the mustard was starting to set seed.

When it comes to the different destruction methods, it was a case of the right tool for the right crop. The Cambridge roller was pretty consistent though, and as we've already got one on the farm, that's what I'd be most likely to use in the future. At a field scale I'd give it two passes, the first along the tramlines and the second at a 30 degree angle. If I had the right cover crops in, this would mean I could halve my

AHDB

CEREALS & OILSEEDS

Questions?

Thank you

Inspiring our farmers, growers and industry to succeed in a rapidly changing world

North East Agronomy Day – 19 Feb 2020

Cereal and Oilseed market outlook

James Webster, Senior Analyst

CEREALS & OILSEEDS

Global market

The global drivers for the rest of this season and beyond.

Early signs of large crops giving way to new crop concerns

AHDE

Source: Refinitiv

Major exporter production up in 2019/20, stocks grow again

Major exporter wheat production

Source: USDA

Source: USDA

Source: USDA

Source: Refinitiv

We are in a weather market

		J	F	М	А	М	J	J	А	S	0	Ν	D
Argentina	Winter	Н				Ρ	Ρ	Ρ	Ρ			Н	Н
Australia	Winter	Н	Н		Ρ	Ρ	Ρ	Ρ			Н	Н	Н
Canada	Winter				Ρ	Ρ	Ρ	Ρ	Н	Н	Н	н	Н
	Spring				Ρ	Ρ			Н	Н	Н		
EU	Winter						Н	н	Н	Ρ	Ρ	Ρ	Ρ
	Spring		Ρ	Ρ	Ρ	Ρ		Н	Н	Н			
Kazakhstan	Spring					Ρ			Н	Н			
Russia	Winter							Н	Н	Ρ	Ρ		
	Spring				Ρ	Ρ			Н	Н			
Ukraine	Winter							Н	Н	Ρ	Ρ		
	Spring		Ρ	Ρ	Ρ			Н	Н				
USA	Winter						Н	Н		Ρ	Ρ	Ρ	
	Spring				Ρ	Ρ			Н	Н			

Weather in South America a key watch point

Subsurface Soil Moisture Anomaly (SMAP) Jan. 30 - Feb. 1, 2020 -0.7 -0.5 0.5 2.0 -2.0 -1.5 -1.2 0.7 1.2 1.5 Drier than Normal Normal Wetter than Normal

Russian weather and trade important

Russian milling wheat (FOB, Novorossiysk)

Source: Refinitiv

Global new crop

What do we know so far?

Further signs of potential tightness for US and EU

Change in wheat acreage - 2020 v 2019

EU 2020/21 outlook

Surface Soil Moisture Anomaly (SMAP) Jan. 9 - Jan. 11, 2020

EU production of major cereal crops

Source: Stratégie Grains

Global summary

Large supplies pressured early market, before giving way to new crop concerns We are in the midst of a weather market, with a focus on South America and Russia. Winter wheat area down in the US and EU. Stronger areas in the Black Sea Region.

Oilseed volatility

Soyabeans tighter year-on-year but China key

Global soyabean S&D

Source: Refinitiv

Source: USDA

EU rapeseed deficit growth continues

Source: Refinitiv

Source: EU Commission

Vegetable oil and biodiesel market trends

-five-year average

Source: Malaysian Palm Oil Board

Monthly palm oil ending stocks in decline

Oilseed summary

Soyabeans have been volatile on the back of Chinese demand and coronavirus concerns.

.EU oilseed defecit continues to grow, however, market now heavily dictated by import prices Vegetable oil prices and imports of biodesiel will be crucial to markets going forward.

Domestic market

What can we expect in domestic markets over the next 12 months?

UK Wheat S&D

UK volume of wheat for free stock or export

Closing stocks Exports Operating stocks Surplus available for export or free stock

Source: AHDB

UK Early Bird Survey results

UK planting intentions at end-Nov

■ 2016 ■ 2017 ■ 2018 ■ 2019 ■ AHDB Early Bird Survey - 2020

Source: AHDB Early Bird Survey, Defra

Is the UK market already reaching it's peak?

Source: HMRC

Source: Refinitiv

UK barley S&D

UK volume of barley for free stock or export

Closing stocks Exports Operating stocks Surplus available for export or free stock

2015-16 2016-17 2017-18 2018-19 2019-20*

What about premium markets?

Premium of malting barley over feed barley in January

Source: AHDB Corn Returns

Domestic oilseed rape deficit, prices dictated by the global market.

UK delivered OSR prices (Spot, Erith)

AHDB

Source: AHDB Delivered Survey

UK summary

UK prices for the remainder of this season to be heavily influenced by the global picture. Winter crop production and yield potential down, but by how much?

Tighter production to be supported by carryout.

Diverging picture in market for premium crops. With more uncertainty for milling wheat and potentially large spring barley supplies.

Questions?

James.Webster@ahdb.org.uk 02476 478 844 @James_R_Webster

Inspiring our farmers, growers and industry to succeed in a rapidly changing world

Agronomy North East

Variety selection as the basis of IPM

Bastiaan Brak (AHDB)

CEREALS & OILSEEDS

- Demo of new RL Variety Selection Tool(s)
- Demonstrate the value of 'treatment benefit' (yield response to fungicide) when considering varieties and fungicide input
- Corroborate with field-based results from AHDB Strategic Farm East (data courtesy of Brian Barker)

Scenario for WW Variety Selection Tool demonstration

- End-use group: Group 4 wheat
- Yellow Rust rating: at least 7.5
- Latest safe sowing date: mid / end Feb

Note: Least Significant Difference for Yield, scale of Agronomic Merit

https://ahdb.org.uk/vst

End-use group

Multiple selections

Septoria tr. rating

Mildew rating

Lodging (+) rating

Yield (early drilled)

Yield (light soils)

8.2

8.2

8.0

109

108

321

UK distilling suitability

(1)

(i)

 \sim

 (\mathbf{i})

 \sim

(1)

92

4.3

2.8

6.4

96

95

HFN

151

All

All

80

Ripening days

Height (-PGR)

Filter varieties¹ Calc. Agronomic Merit on X-axis²

4.2

3.2

4.0

95

11.2

 \sim

 \sim

 \sim

Eyespot rating

Sprouting rating

Variety

Yellow rust rating (i)

Fusarium rating

Lodging (-) rating ()

Yield (late drilled)

Yield (heavy soils)

Specific weight

Export suitability

8.9

6.5

7.3

110

105

80.7

Latest safe sowing date

OWBM resistance (i)

G

All

5.4

5.4

6.0

97

96

73.8

All

All

All

Select regional yield measure on Y-axis 5 year data

8.2

7.1

7.2

104

12.7

Clear all filters

Last year data

Filter varieties¹

Calc. Agronomic Merit on X-axis²

Select regional yield measure on Y-axis

Treatment benefit: Yld (+F) – Yld (-F)

"High fungicide input" varieties

"Medium fungicide input" varieties

"Low fungicide input" varieties

ahdb.org.uk/vst

Demonstration layout

Input costs: fungicides, PGRs & micronutrients

	Untreated	Low	Medium	High
ТО	-	£6.99	£17.32	£17.32
T1	-	£27.31	£29.73	£42.18
T2	-	£9.00	£36.12	£53.90
Т3	-	-	£9.20	£29.00
Total input costs	£0.00	£43.30	£92.37	£142.40
				1
ed yield increase (£129 /	/ tonne): 0.34 t	/ ha 0.38 t	/ha 0.39	t / ha

IPM: Yield optimum vs Gross Margin optimum

https://bit.ly/2sA9J85

AHDB

IPM: Yield optimum vs Gross Margin optimum

https://bit.ly/2sA9J85

IPM: Yield optimum vs Gross Margin optimum

https://bit.ly/2sA9J85

Treatment benefit

Take home message

The new Recommended List Variety Selection Tool makes it easier for farmers to select (new) varieties in the context of disease management / fungicide input

Inspiring our farmers, growers and industry to succeed in a rapidly changing world

The role of plant breeding in ICM

John Miles KWS UK

Genetics, one spoke in the wheel?

• crop & variety site suitability

- Cropping options
- Sustainable rotations

- Protection
- Sustainable use
- Utilisation
- sustainable use
- Water use efficiency
- Different species

- Variety and crop scheduling
- Cost of production

 Variety and crop scheduling

IPM: what's it all about?

Tuesday, 23 July 2019

Integrated pest management (IPM) is a hot topic, but it's not a new idea.

In this podcast episode we find out who's doing what, and why, along the road towards integrated pest management. We hear from Warwickshire arable farmer Rob Fox, AHDB's Jon Knight, Emma Hamer from the NFU and Alison Stewart, all the way from New Zealand's Foundation for Arable Research.

Image: Natural enemy Asilidae Diotctria rufipes, by lan Andrews. The larvae predate the larvae of other insects and the adults predate other insects on the wing. Find out more in the <u>Encyclopaedia of pests and natural enemies</u>

View AHDB resources on IPM

What does IPM mean?

 Sustainable use Directive sets out the principles of IPM

Q

- Varieties have an important part to play
- A greater role for genetics moving forward

'Integrated Pest Management' is the careful consideration of all available plant protection methods and subsequent integration of appropriate measures that discourage the development of populations of harmful organisms and keep the use of plant protection products and other forms of intervention to levels that are economically and ecologically justified and reduce or minimise risks to human health and the environment. SUD 2009

Q What is Integrated Pest Management (IPM)?

A The Sustainable Use Directive defines IPM under the following 8 headings the VI believes that most UK growers will be implementing some if not all of

these measures depending upon the farm enterprise. source so

 Source https://voluntaryinitiative.org.uk/schemes/integratedpest-management/

- crop rotation,
- cultivation techniques,
- use of resistant/tolerant cultivars and standard/certified seed/planting material,
- use of balanced fertilisation, liming and irrigation/drainage practices,
- hygiene measures (e.g. cleansing of machinery)
- protection and enhancement of important beneficial organisms,
- Monitoring of Harmful organisms
- Application of plant protection based on monitoring data
- Use of biological, physical and other non-chemical methods must be preferred to chemical methods if they provide satisfactory pest control.
- Application of pesticide should be as Targeted as possible.
- The professional user should keep the use of pesticides and other forms of intervention to levels that are necessary and that do not increase the risk for development of resistance in populations of harmful organisms.
- Anti-resistance strategies should be applied to maintain the effectiveness of the products.
- Review the success of plant protection measures.

Integrated pest management (IPM)

Use a pyramid of control measures to manage disease. An appropriate variety (to resist the main diseases present) and a well-designed rotation (to minimise disease pressure) are at the heart of IPM

Source https://ahdb.org.uk/cereal-dmg

Principles

- Resistance genetics allow plant to withstand levels of infection from a pathogen
- Mechanisms of resistance will work in a number of ways
 - restricting pathogen growth- methods by which may not clearly known
 - Septoria
 - Light leaf spot
 - Interrupting a life cycle
 - OWBM
- RL varieties have differing levels of disease resistance
 - None are immune but some show very few symptoms.
- Two types of Resistance:
 - Genetic
 - Adaptive resistance (Avoidance)

Resistance through adaptation (Zymoseptoria tritici)

- Septoria is dispersed through water droplets. Rain splashes move Septoria up the plant.
- Taller lines show less disease symptoms.
 - Speed of movement in the spring
 - Proximity of early leaf layers
- Leaf morphology is also indicated in disease avoidance
 - Smaller leaves
 - Lower stomatal density
 - Altered stem to leaf angle

Why is genetic Resistance complicated

- Genes are situated on specific locations in the genome loci.
- Single gene Traits (Major gene) are traits that often show big phenotypic effects
- e.g. yellow rust genes, OWBM, RLM 7
 - Controlled by one gene at a single loci
 - Simpler to breed for, clear phenotypical differences
- Quantitative Traits (Minor gene) are traits that show small effects singularly if found, strength is in the sum of parts
- e.g. Yield, Septoria
 - Controlled by many genes at different loci
 - Difficult to breed for, needles in haystacks

The difficulty in working with wheat

Genetic disease Resistance (Zymoseptoria tritici)

- 20 major resistance genes have been mapped
- Many genes have been identified over the years conferring isolate specific resistance
- Major genes can be risky
 - They work very well providing strong resistance
 - Often breakdown after 'short' period of time with potentially severe consequences.
- Partial resistances have much smaller effects but are additive.
- Most RL varieties are relying on partial resistance.
- One study identified over 50 genes involved directly in either resistance or susceptibility.
- Adult and Juvenile resistance genes

Current status

- Currently overall ratings for Septoria are as high as they have been in the last 15 years
- Much more of a focus area for breeding community
- Major gene resistances are present in current RL varieties but history shows these major genes can breakdown
- Protecting and utilising current genetic resistances is of extreme importance
- Adequate fungicide control can assist with longevity of effectiveness
- In most cases major genes are identified after field resistance breakdown has started

Recommended list average Septoria score

The Highest resistances available

RL response to fungicides

Variety	Untreated Treated		Contonio tritici coore	Yield difference
	(T/Ha)	(T/Ha)	Septoria tritici score	(T/Ha)
Theodore	10.1	11.2	8.2	1.1
KWS Extase	10.6	11.3	8.1	0.7
LG Sundance	9.5	11.2	7.9	1.7
KWS Firefly	9.4	11.4	7	2.0
RGT Saki	9.6	11.6	6.8	2.0
Graham	9.9	11.4	6.8	1.6
KWS Siskin	9.3	11.3	6.6	2.0
SY Insitor	9.2	11.8	6.6	2.6
KWS Zyatt	9.3	11.1	6.4	1.8
Gleam	9.4	11.5	6.3	2.1
Crusoe	8.0	10.8	6.2	2.8
Costello	9.1	11.1	6.1	2.0
KWS Crispin	9.3	11.3	5.9	2.0
Skyfall	8.7	10.9	5.8	2.1
KWS Parkin	9.1	11.4	5.5	2.4
LG Skyscrapper	9.3	11.8	5	2.5
KWS Barrel	8.1	11.2	4.3	3.1

Combining agronomy, variety and chemistry to maintain control of septoria tritici in wheat

Start date:01/08/2015, End date: 31/03/2019

Factors being investigated:

- Varieties: 3 with different Septoria susceptability
- Two sowing dates and seed rates targeting:
- 80 or 160 plants/m² (mid Sept)
- 160 or 240 plants/m² (mid Oct sown)
- Four fungicide treatments:

Treatment	T1 – GS32	T2 – GS39
Nil	Untreated	Untreated
Low	CTL 1.0	CTL 1.0
Medium	Brutus 1.5 + CTL 1.0	Brutus 2.25 + CTL 1.5
High	Brutus 1.5 + CTL 1.0 + Imtrex	Brutus 2.25 + CTL 1.5 + Imtrex
	1.0	1.5

Brutus = epoxiconazole + metconazole Imtrex = fluxapyroxad CTL = chlorothalonil Low, Medium and High input strategies also received T0 – CTL 1.0, and T3 – Folicur Additionally to control rusts, strobilurins were applied across all plots when rust was detected

Sowing date, Variety and fungicide impact on Septoria 3-4 weeks post T2 (Mid June)

Mean levels of Septoria on leaf 2 at T2 + 3-4 weeks2016 and 2017 total of 10 sites)

Sow date, Variety and fungicides impact on Septoria

AHDB

Mean levels of Septoria on leaf 2 at T2 + 3-4 weeks 2016 and 2017 total of 10 sites)

Yield response t/ha by agronomic factor (9 sites) 2016 & 2017

Progression of Septoria in 2017

... How much time does varietal resistance buy you

Impact of drilling date and the latent period on disease pressure in 2017 KWS Trinitiy Septoria rating 5.3

Callow. Leaf 2 sampled from untreated plots immediately prior to T2 application and 10 days later

2021 Septoria control and role of more resistant varieties

- More choice with exciting new levels of resistance (6-8)
- Varieties with resistance of 6 and above offer opportunities to save some fungicide costs especially in lower risk seasons and localities, later drillings.
- Help deliver effective disease control in high disease seasons when critical fungicide timings might be compromised
- Variety resistance will help fill the role of lost multisite chemistry
- Don't forget rusts!

Barley Yellow Dwarf Virus

Challenges

- Aphid resistance
- Loss/restriction of chemistry
- Need to start sowing in September
- Solutions
 - Varieties
 - Tolerance
 - Delay drilling

Yd2 -BYDV tolerance

- Discovered in several Ethiopian spring barley accessions in 1950's.
- Been used for the past 50 years in many varieties

- True 'tolerance'. BYDV virus grows and multiplies in plant just as in a susceptible line.
- No (or very little) effect on plant growth and yield
- Any yield penalty is disappearing with new material

Amistar- early sown natural infection trials, Thriplow 2018

2018	+ Insecticide	- Insecticide	% yield secured
ORWELL REDIGO DETER	11.6	10.6	91.6
FUNKY REDIGO DETER	11.3	10.6	93.6
AMISTAR REDIGO DETER	11.3	10.9	96.6
ORWELL SINGLE PURPOSE RAXIL	11.5	9.6	83.8
FUNKY SINGLE PURPOSE RAXIL	11.1	9.9	89.2
AMISTAR SINGLE PURPOSE RAXIL	11.1	10.6	95.6

- Very little visible infection, located next to breeding nursery
- Large amounts of BYDV nearby in breeding material

Amistar- early sown natural infection trials, Thriplow 2019

2019	+ Insecticide	- Insecticide	% yield secured
Orwell (Redigo Deter)	10.2	10.2	99.2
Orwell (SPD)	10.4	10.1	97.4
Amistar (SPD)	10.7	10.6	99.1

- No visible infection
- BYDV present in nearby in breeding material

- In three years of naturally infected field trials with low infection levels
 - KWS Orwell has lost on average 9% yield without Insecticide protection.
 - Amistar has lost 3% yield.
 - Tolerance offers protection for 6% of yield

Gross margins

Gross Margin Analysis -							
	Amistar	Amistai	Orwell	Orwell	Orweit	Orweii	Orweii
Price (£/t)	£135	£135	£135	£135	£135	£135	£135
Yield (% controls)	98	100	100	100	98	96	94
ave controls (t/ha)	10	10	10	10	10	10	10
	9.80	10.00	10.00	10.00	9.80	9.60	9.40
Total Output / ha	£1,323.00	£1,350.00	£1,350.00	£1,350.00	£1,323.00	£1,296.00	£1,269.00
Variable costs	1 x spray	1 x spray	2 x spray	3 x spray	2 x spray	2 x spray	2 x spray
Seed SPD	112	112	87	87	87	87	87
Sprays Insecticides	13	13	26	39	26	26	26
Total Variable Costs	584	584	572	585	572	572	572
Gross Margin / Ha	£739.00	£766.00	£778.00	£765.00	£751.00	£724.00	£697.00
Margin over input	£1.27	£1.31	£1.36	£1.31	£1.31	£1.27	£1.22

How do we use BYDV Tolerance

Aphids control will be required in :

- High risk sites and seasons
- Aphid numbers are likely to create significant 2nd generation wingless offspring
- Over wintered aphid numbers are likely to create a significant generation of winged aphids.

BYDV Tolerance offers an option to reduce insecticidal inputs in some situations

BYDV Tolerance is a risk reduction tool for aphid prone areas such as headlands beside margins or areas of application difficulties such as water courses

BYDV Tolerance offers growers the opportunity to drill earlier or continue with traditional September sown by mitigating risk

'Inspiring our farmers, growers and industry to succeed in a rapidly changing world'

Fraser Hugill – Northern Area Co-ordinator Agronomy North East

CFE is supported by major agricultural unions and trade bodies, government agencies, environmental and wildlife organisations.

Department for Environment Food & Rural Affairs

Tenant

Farmers Association

- AICC
- AHDB
- BASIS
- Bumblebee Conservation Trust
- CAAV

- Catchment Based Approach
- Catchment Sensitive
 Farming
- Environment Agency
- FWAG
- Hedgelink

• LEAF

ta

- British Grassland Association
- Natural England
- Water UK
- The Woodland Trust

CFE – Working in partnership

BIG FARMLAND BIRD COUNT 2020 – extended to 23 Feb

Providing a rounded approach to the way we farm

Building resilience into our systems

The challenge.

Helping farmers to integrate environmental management in a productive farming businesses.

www.cfeonline.org.uk

'Inspiring our farmers, growers and industry to succeed in a rapidly changing world'

© Agriculture and Horticulture Development Board 2017 | All Rights Reserved